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Bayesian modelling

I When using Bayesian statistics, you generally start with:
I A context.
I A question or goal within that context.
I A dataset.

I There are then generally two steps:

1. Going from the above to a set of variables consisting of variables
you want to predict, variables representing the data, and often
additional variables and a joint probability model for these
variables.

2. Doing the computations to make the probabilistic predictions.

I So far this course has focused on the second step above. In this
lecture, we focus on the first step.

I The lecture is a bit of a “cookbook”, but we also look at some
mathematical tools.
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Bayesian modelling

The modelling step can often be divided into

1. Understanding the context and the question, and exploring the data
(e.g., visualizing it).

2. Based on the context, decide on the set of variables you want in
your model, and an independence structure between them.

3. Based on the context, come up with one or a handful of possible
stochastic models relating the variables.

4. If necessary and if possible: Compare the possible candidate models
by looking at the probability of observing the actual data under each
model. Decide on one or a combination of models. We return to
this question in Lecture14.1.

5. After computations for your chosen model has been made, do
posterior predictive checks: If there are unreasonable results, go
back to step 3.
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Simple example: Braking distance of cars

Go back to “braking distance of cars” example used earlier. The steps
become:

1. Question? (Breaking distance at some given speed?) Plotting!

2. I We decide on denoting the observed speeds as x1, . . . , xn, denoting
the observed breaking distance as y1, . . . , yn, variables for prediction
xnew and ynew , and a parameter (vector) θ.

I We assume that

π(y1, . . . , yn, ynew , θ | x1, . . . , xn, xnew )

= π(θ)π(ynew | xnew , θ)
n∏

i=1

π(yi | xi , θ)

I Note: A lot of assumptions are made already here! We also assume
that all the density functions π(yi | xi , θ) are the same.

I Causality can be a good guide for setting up model assumptions!
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Simple example continued: Braking distance of cars

3. Some possible likelihood models are

yi | xi , θ1, θ2, θ3 ∼ Normal(θ2 + θ3xi , θ
−1
1 )

or
yi | xi , θ1, θ2, θ3, θ4 ∼ Normal(θ2 + θ3xi + θ4x

2
i , θ

−1
1 ).

For the prior π(θ) some possibilities are

π(θ1, θ2, . . . ) ∝ 1 (flat prior)

or
π(θ1, θ2, . . . ) ∝ 1/θ1 (uninformative prior)

or an informative prior based on previous observations about braking
distances for cars.

4. With our particular question and a fair amount of data: Why not
use the most general model and the uninformative prior. We return
to discussing priors in part 3 of this lecture.

5. In this simple model, it should be enough to check that, e.g.,
predictions at reasonable speeds are not whacky (i.e., that the data
contains enough info to inform the distribution of θ).
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Help in step 5: Posterior model checking

I The posterior model (conditioned on data) can be used to make
many types of predictions, not only of the variables of interest.

I If some such predictions seem very unreasonable, then maybe a
better model should be found.

I Toy example:
I Data, 4.33, 4.32, 4.35, 4.30.
I Model: yi ∼ Normal(µ, σ2).
I If the prior is µ ∼ Normal(0, 100), σ2 = 1, simulations from the

posterior predictive will have too much spread in the data.
I If the prior is µ = 0, π(σ2) ∝ 1/σ2, simulations from the posterior

predictive will have both wrong mean and wrong spread.

I Generally: The prior may indicate that some ”features” of the model
can be ”informed” by the data, while other ”features” are fixed. Are
there ”features” that are fixed that need to be informed by the data?
This can be investigated by comparing simulations from the posterior
predictive with the actual data. Are there systematic differences?
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Model checking with cross validation

I Assume you have observations y1, y2, . . . , yn that are independent
given the parameter θ.

I Then for i = 1, . . . , n:
I Remove yi and find the posterior for θ using only the remaining yj .
I Compare the value of yi with the y∗

i predicted using this posterior for
θ.

I Are there any systematic differences between yi and y∗
i when

i = 1, . . . , n?

I An example in part 2 of this lecture.
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Model checking with posterior predictive p-values

Assume a model π(y , θ) for data y and parameters θ has been defined.

I We also assume a discrepancy function D(x , θ) is given, measuring a
way in which data x is “unlikely” to be the result when θ is the
parameter.

I Simulate a sample θ1, . . . , θN from the posterior θ | y , and simulate
corresponding data x1, . . . , xN using the likelihood π(x | θ).

I The proportion of i ’s for which D(xi , θi ) ≥ D(y , θi ) is an estimate
for the posterior predictive p-value.

I If this value is “very small” and your intention had been to use a
prior without much information, “reject” the model.
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Heart transplant example (Sections 7.3 - 7.10 of Albert):
Context, question, and model structure

I Objective: Learn about differences and similarities in success rates
for heart transplants at 94 US hospitals.

I Concrete questions: Predict future mortalities at specific hospitals.
And: When can we reliably say that one hospital has a lower
mortality rate than another?

I Data (using some fixed time period): For i = 1, . . . , 94:
I yi : The number of deaths within 30 days of receiving a heart

transplant at hospital i .
I ei : A number (“exposure”) measuring the number of heart

transplants performed, and how sick the patients were, at hospital i .

I Other variables: λ1, . . . , λ94 representing the mortality rate of each
hospital, and a parameter (vector) θ.

I Structure of model: For i = 1, . . . , 94:

yi | λi , ei ∼ Poisson(eiλi ) with (possibly) π(λi | θ)

and a prior π(θ).
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Step 3: Some possible models

1. All λi are independent. (No θ in the model)

2. All λi are equal. (No θ in the model).

3. A hierarchical model: All λi are from the same density π(λ | θ), and
there is a prior on θ.

The actual densities are discussed below.

We will go through each of these models, and use posterior
predictive checks to select our model.
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Model 1: All λi are independent

I If we don’t have much other information about this type of data, we
would want to use non-informative priors π(λi ) ∝ 1/λi .

I However, for the hospitals where yi = 0, we then also get improper
posteriors for λi .

I So we would need to use a proper prior, but what if we have no
other data than this?

I Using fixed estimates λ̂i = yi/ei does not help.
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Model 2: All λi are equal

We write λi = λ.

I We can now easily use the non-informative prior π(λ) ∝ 1/λ.

I Conjugate computations show that

λ | y1, . . . , y94 ∼ Gamma (d , f ) .

where d =
∑94

i=1 yi and f =
∑94

i=1 ei .

I Note: When ynew ∼ Poisson(enewλ) and λ ∼ Gamma(α, β), we get
the predictive distribution

ynew ∼ Neg-Biomial

(
α,

β

β + enew

)
where we we write x ∼ Neg-Binomial(α, p) for the density

π(x | α, p) =
Γ(α + x)

Γ(α)x!
pα(1− p)x

I We do a posterior predictive check using cross-validation.
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Model 2: Posterior predictive check using cross-validation

I We get λ | y1, . . . , yi−1, yi+1, . . . , y94 ∼ Gamma(d − yi , f − ei ).

I With y∗i ∼ Poisson(eiλ) and λ ∼ Gamma(d − yi , f − ei ), the
predictive density becomes

y∗i | y1, . . . , yi−1, yi+1, . . . , y94 ∼ Neg-Binomial (d − yi , ei/f )

I For each i we can now compute the quantile of yi in the distribution
for y∗i .

I As the yi are discrete counts, we compute the adjusted quantiles

yi−1∑
j=0

Neg-Binomial(j ; d − yi , ei/f ) +
1

2
Neg-Binomial(yi ; d − yi , ei/f ).

I If the model fits perfectly, the computed quantiles will be
(approximately) uniformly distributed.

I R computations show that the yi are more spread out than they
should be according to the posterior predictive check, so we reject
Model 2.
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Model 3: A hierarchical model

I There is some similarity, but also some variation among the λi : We
build a model where we infer from data the amount of similarity.

I We use the model

yi ∼ Poisson(λiei ) and λi ∼ Gamma

(
α,
α

µ

)
,

π(α) ∝ 1

α
and π(µ) ∝µ

1

µ

I Note: With this parametrization, the expectation of the Gamma
distribution is µ and its standard deviation is µ/

√
α, so these

parameters can be more easily interpreted than standard ones.

I The posterior distribution on α will tell us how similar the λi
actually are.
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Computations for model 3

I The model above has 94 + 2 unknown variables. For more easy
computation, note that the distribution of y1, . . . , y94, α, and µ is
equivalent in the following marginalized model:

yi ∼ Neg-Binomial

(
α,

α

α + µei

)
, π(α) ∝α

1

α
and π(µ) ∝µ

1

µ

I As we now only have 2 unknown variables, we can do inference for µ
and α for example with discretization (see below).

I If we then want the posterior density for some particular λj , note
that

λj | α, µ, data ∼ Gamma

(
α + yj ,

α

µ
+ ej

)
.

I See computations in R for how we can now answer questions such as
I What is the probability of no deaths in hospital 24 given a new

exposure of 1000?
I What is the probability that hospital 90 is really better than hospital

9, i.e., that λ90 < λ9?
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Computations in model 3

I For the posterior π(α, µ | data)

π(α, µ | data) ∝α,µ
1

αµ

94∏
i=1

Neg-Binomial

(
yi ;α,

α

α + µei

)

∝α,µ
1

αµ

94∏
i=1

Γ(yi + α)

Γ(α)

(
α

α + µei

)α(
µei

α + µei

)yi

.

I To make the posterior more symmetrical (this improves numerical
properties), we do the reparametrization θ1 = log(α) and
θ2 = log(µ), i.e., α = eθ1 and µ = eθ2 .
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Reparametrizations

I Expressing the posterior density in terms of other parameters
(reparametrization) can be a good idea, in particular if it makes the
posterior more similar to a multivariatel normal (or at least more
symmetric) and less correlated.

I If you set α = f (θ) where α is the old and θ is the new parameter,
and these are continuous parameters, you must also multiply with
|f ′(θ)| (so the integral is unchanged).

I If α and θ are multivariate parameters, then |f ′(θ)| is the
determinant of the Jacobian matrix.

I Example: If you substitute α = eθ1 , then you must also multiply
with the extra factor eθ1 as this is the derivative of the
reparametrization function.

I For “scale” parameters, a reparametrization like θ1 = log(α) (i.e.,
moving to a log scale) is often a good idea.

I Reparametrization can improve numerical accuracy. An example is
improved convergence for Gibbs sampling, if reparametrization
makes the parameters less correlated.
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More on computations for model 3

I With the reparametrization above, the posterior for π(θ1, θ2 | data)
is proportional to

94∏
i=1

Γ(yi + eθ1)

Γ(eθ1)

(
eθ1

eθ1 + eθ2ei

)eθ1 (
eθ2ei

eθ1 + eθ2ei

)yi

.

I Remember that for numerical reasons we prefer to compute the
logged posterior:

L(θ1, θ2) =
94∑
1=1

log(Γ(yi + eθ1))− log(Γ(eθ1)) + θ1e
θ1 + yθ2 log(ei )

−yieθ1 log(eθ1 + eθ2ei )

I When discretizing this in 2D, it’s good to know for approximately
what values you expect it to be large: Note that∑

i yi/
∑

i ei ≈ 0.001 so µ ≈ 0.001 and θ2 ≈ −7. Furthermore, from
our interpretation of α, we see that it is probably greater than 1, so
θ1 > 0. See R computations.
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Using improper priors

I It is quite useful to use improper priors: Completely OK as long as
the posterior becomes proper.

I Proving that the posterior is proper may be difficult and may
unfortunately be forgotten about.

I The output of a Metropolis-Hastings or Gibbs algorithm applied to
an improper distribution will often look like some kind of random
walk. However, it may not be direcly obvious to spot the problem
from the output!

I Examples 7.18, 7.19 in RC
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Modelling priors

For the prior, choose between

I Using an uninformative prior.

I Compute a prior based on other, previous data.

I Elicit a subjective prior from experts. (Example: Use beta.select

in LearnBayes package).
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Uninformative priors

I We want an “uninformative prior” on a parameter θ to represent “no
knowledge”. Unfortutately, it is not mathematically clear how this
should be best defined.

I Such uninformative priors may or may not be improper.

I When using an improper prior, make sure your posterior is proper!!

I We have often used “flat” priors; however, a flat prior may not stay
flat if θ is re-parametrized.

I If µ is a “location” parameter, you might use π(µ) ∝ 1; if λ is a
“scale” parameter, a good alternative may be π(λ) ∝ 1/λ.

I A number of theories have been developed. Some aim for maximized
entropy.
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Robustness

I Another approach to the choice of prior: Check if switching between
different choices matters for the final result.

I NOTE: For any posterior, there exists a prior that will give this
posterior (assuming nonzero densities).

I Revised question: Do reasonable changes in the prior affect the
result much?

I If not, the prior is called robust for this likelihood.

I Example: See Albert 3.4
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Comparing the prior predictive with context knowledge

I The prior model should represent ”prior knowedge”: A way to check
that it does this correctly is to simulate new data from the prior
predictive and check if they look like what you expect a priori.

I Examples
I Simulate from the prior of a stochastic model for tree growth.
I Simulate from the prior of a stochastic model for geological faults.
I Simulate from the prior of a stochastic model for image noise.

I Example: If one believes some unobserved quantities should follow
some distribution, one may compute or simulate their quantiles in
this distribution: They should then be uniformly distributed.
(Example: Prior predictive p-values).
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