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The information of an event

We assume given a probability mass function 7(x) on a finite set.
» We want to define the “information” h(x) in an event x.
Requirements:

> An event with probability 1 should have zero information.

> The information should increase with decreasing probability 7(x).

> The information in two independent events should be the sum of the
information in each.

» We define h(x) = — log(w(x)).
» When using the base 2 logarithm log,, information is measured in
“bits”. We however use the natural logarithm.
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Expected information: Entropy

» Define the entropy H[X] of the random variable X as the expected
information:

HIX] =) h(x)m(x) = =Y m(x) log(m(x))
» Note: H[X] is always non-negative.

» Example: A uniform distribution on n values has entropy log n. This
is the largest entropy possible for a distribution on n values.

» Shannon's coding theorem: The entropy (using log,) is a lower
bound on the expected number of bits needed to transfer the
information from X.
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(Differential) entropy for continuous distributions

» For any random variable X, its (differential) entropy is defined as

HIX] = E [~ log(r(x))] = — / log((x))(x) dx

X

v

H[X] may now be negative.

v

Example: Assume X ~ Normal(u, 0?). Then

1 1 )
E {— log (%271_02) + E(X — 1) }
= % log(2r0?) + % E[(x— )] = % log(2m0?) + %

E [ log(m(x))]

v

In fact, among all random variables X with E[X] = x and
Var[X] = 02, the normal has the largest entropy.
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Conditional entropy and mutual information

>

The conditional entropy is defined as

Hiyix) = [ [ [ 710 tog(a(y | ) dy} () dx

Show that

v

HIX, Y] = H[Y|X] + H[X].

» The mutual information is defined as

11X, Y]:—//ﬂ'(x,y)log (W) dx dy

Show that

v

11X, Y] = HIX] + H[Y] — H[X, Y]
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The Kullback-Leibler divergence (relative entropy)

For two densities p(x) and g(x) we define the Kullback-Leibler
divergence from p to q as

KLipllal = = [ plx) 1og (Zgg) dx

» Note that KL[p||q] is generally different from KL[g||p].

However, it has the distance property that KL[p||g] > 0 always,
while KL[p||g] = 0 if and only if p = q.

The standard proof uses Jensen's inequality.
Jensen’s inequality: If a function v is convex, then

P(E[X]) < E[Y(X)].
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The KL divergence

> Note that
KL (7 (x, )llw(x)m(y)) = 11X, Y]
> Note that
KL[pllg] = Ep [—log(q(x))] — Hp[X]
where X is a random variable with density p(x).

» EXAMPLE: Assume X ~ Normal(ux,o%) and
Y ~ Normal(uy,o%).
Show by direct computation that

1 o 1 1 1
KL [7x]||my] = 5 Iog(2wo$)+ﬁ+ﬁ(/¢x—uy)2_§ Iog(27ra§<)—§.
14 4

We see how the result is zero when the two distributions are
identical.
We see how KL [nx||my] # KL [7y||7x] in general.
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Maximum posterior (MAP)

> The advantages and disadvantages of only finding the Maximal
APosteriori (MAP): The value 6 that maximizes the posterior
(0 | data).

» When the prior is flat, 7(6) o 1, this corresponds to finding the
maximum likelihood (ML) estimate for 6.

» This should be easy to compute when 6 consists of all unknown
variables: Just differentiate log(7 (6 | data)), i.e. differentiate
log(m(data | 6)7(0)).

> Much harder if the model also contains other unknown variables Z:
Then (6 | data) is the marginal of 7(0, Z | data) and much harder
to maximize.

» The Expectation-Maximization (EM) algorithm comes to the
rescue...
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The EM algorithm

» We want to find the 6 maximizing the posterior 7(0 | x); i.e.,
maximizing

log (7(x | 0)m(6)) = log(m(x | 0)) + log(w(6))

» Assume we have a joint model 7(x, z | #) which includes augmented
data z. We may then write, for any density g(z),

log((x | 8)) + log(7(0)) = KL(ql|7z) + L(q,0) + log(n(0)) (1)

£(a.0) = [ a(=)og (W> dz

KL(ql[m) = —/q(Z) log (WZ(Z(LX)’G)) dz

where

and
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The EM algorithm, cont.

» Fix q(z) = m,(z | x,0°9) for some value §°.

» With this g(z), KL(g||7;) will be zero when 6 = 6°'¢ and positive
for other #'s. THUS: If we find 0" maximizing £(q, 0) + log(7(0)),
so that £(q,0™") + log(w(07")) > L(q, 0°) + log(w(6°'9)),
replacing 0°'¢ with ™" will increase the right side of Equation 1,
and thus also the left side.

> Set 6°9 to the value " and start again from the first step above.
Continue until convergence.

> Note that maximizing £(q, 0) + log(m(#)) is the same as maximizing

[ at)iog(r(x.z 1 6)) dz + og(x )
where the left term is the expected full loglikelihood, taking the
expectation over the density q(z) = 7,(z | x, 0°9).

» E-step: Computing the expectation above. M-step: Maximizing.
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A toy example

We have data xi, ..., x,, where we assume the following model, with a
single parameter u: With probability 0.5, x; ~ Normal(0, 1) and with
probability 0.5, x; ~ Normal(yu,1). We assume a flat prior on p.

» The likelihood can be written as
n

(X1, .oy Xn | ) = H (0.5 - Normal(x;; 0,1) + 0.5 - Normal(x;; p, 1))
i=1
» With the loglikelihood programmed numerically, we may for example
> Optimize to find the maximum likelihood estimate i for p.
> Simulate from the posterior, using, e.g., discretization.
> Instead, we may introduce augmented data zi, ..., z,, where each z;
has value 0 or 1, so that z; ~ Bernoulli(0.5) and
x; | zi ~ Normal(z; - i, 1). The full joint density may be written as

n n
(X1 ooy Xy Z1y v oy Zny b)) X Hﬂ'(X,' | zi,p) = H Normal(x;; z;-p, 1)
i=1 i=1
» The augmented model may be used both for simulation (using Gibbs
sampling (inefficient)) and for finding the p maximizing the posterior
using the EM-algorithm.
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A toy example: Using the EM algorithm

» First, find the complete data logposterior (which in our case is the
same as the loglikelihood). It is (up to a constant)

i=1

» Then, for a fixed value u = p°, find the distribution z | x;, u°":
7(Xt, . Xny ooz =0,...,1°4) = K -Normal(x;;0,1)
(Xt Xy zi=1,...,1°9) = K- Normal(x;; u°, 1)

Normalizing the distribution, we get

zi | xi, p®®  ~  Bernoulli(p;), where

Normal(x;; u°, 1)
Normal(x;; 0, 1) + Normal(x;; u°, 1)

pi =

> E step: Compute Ez[/(1)]. M step: Set u"" as the parameter
maximizing this function.
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A toy example continued

» The E step becomes

E2li()] = Ez lZ—;(Xi—qu)Z]

i=1

1 n
= Ez l—z ;x? — 2x;zip + z,-2u2

1 n
= =5 Y X~ 2xEfzlu+ Bzl
i=1

1 n
= -3 Z xP = 2xipip + pi
i=1

» The M step becomes
8 1 n n n
o Ez[/(n)] = 3 Z(_2Xipi +2pjp) = ZX/'P/ - HZP; =0
i=1 i=1 i=1

resulting in p"®" = (Z7=1 Xipi) / (27:1 pi)'
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