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Comparing models

> In our “cookbook” of Lecture 13.1, the fourth step was described as:

Compare the possible candidate models by looking at the probability
of observing the actual data under each model. Decide on one or a
combination of models.

In this section of lecture 13 we describe how.

> The above is called Bayesian model choice. There are also many
non-Bayesian ways to compare models, we discuss this briefly.
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Bayesian model choice

» In Bayesian statistics, just as we can use a prior that is a mixture of
other priors, we can use a model that is a mixture of other models:

» Let y denote the data, and let My, ..., My denote k different
stochastic models for this data.

» For example, if model i has parameters 6 and additional variables x,
we can write the joint density as 7(y, 0, x | M;).

» [f the joint density is proper we can integrate out x and 6 to get a
marginal distribution for the data under model M;: w(y | M;).

» |If we have for the models prior probabilities
w(My), m(My),...,m(My) that sum to 1, we can use a mixed model:

k

w(y) =>_wly | M)m(M;)

i=1

» Computation can proceed as with any other Bayesian model.
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Computations

» Example: For predicting new data y,e, given the information from
old data y, we use a mixture of updated models with updated
weights:

k
_)/new ‘ y = Z”T .)/new | Miv}/)ﬂ(Mi | )/)
i=1

» The updated weights can be computed with Bayes formula:

W(y | Mi)W(Mi)
7w(M; =
M) = S5 0 ()

» Note that we introduce no new theory, we simply introduce an extra
variable M which has k different values, so that conditionally on this
variable being 7, the model has a particular form M;.

4/14



Example: Comparing three simple models

» Toy example: Data (x1,¥1),. .., (X10, y10) to be fitted with
regression. (Visualize toy data)

» We consider three possible models:

> Model 1
vi|a,xc ~ Normal(ax;,0.5%)
a ~ Normal(0.3,0.1%)
> Model 2
yi|la b,xi ~ Normal(axi + bx,-2,0.52)
a ~ Normal(0.3,0.1%)
b~ Normal(0.02,0.01%)
> Model 3

yi|a,xi ~ Normal(exp(ax;),0.5%)
a ~ Normal(0.1,0.01%)

» Our prior probability for each model is 1/3.
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Computations for the example

> Let's say we want to find the posterior weights for the models.
» For each model, we need to compute the probability of the data
under the model. For example, in the first model, we get

(Y1, .-, y10 | M) =/ 7(y1,.--,y10 | a,x1,...,x0)7(a) da
— 00
w [10
— / [H Normal(y;;ax;,0.52)] Normal(a; 0.3,0.1%) da
—oo |j=q

» For the second model we get
m(yis- s 10 | M)
= / / m(yi,..-y Y10 | 3, b, x1,...,xw0)w(a)w(b) dadb

oo oo [ 10
/ / |:H Normal(y;; ax; + bx?, 0.52):| .
—ooJ—oo |G

Normal(a; 0.3, 0.1*) Normal(b; 0.02,0.01%) da db
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Computations for the example

» Computations in R (using discretiaztion) give us

0.00038832 fori=1
7T(y1, ...y, Y10 ‘ M,) = < 0.00008302 for i =2
0.00055191 for i =3

» Using Bayes formula and the uniform prior on the weigts gives us the
posterior weights

0.38 fori=1
7(My | y1,...,y10) = § 0.08 fori=2
054 fori=3

» If we want, we can make predictions for new observations y,e, with
a mix of the posterior models using these posterior weights.
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Special interpretation and nomenclature

» The value w(y | M;) is called the evidence for model M;.

» Ratios like
m(y | M)
m(y | M)
are called Bayes factors.
» The setup above is called model averaging.

> |If the weight of a model becomes “very small’ after updating
weights with data, we may choose to drop the model entirely, to
simplify.

» If we drop all but one model, the method becomes a type of model
choice!
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Using Bayes factors without first establishing prior

probabilities for models

» We saw above: The vector of posterior model weights is proportional
to the vector of evidences times the vector of prior weights.

> As prior weights may be difficult to establish, one may instead first
look at the relative values of the evidences, i.e., the Bayes factors.

» If the Bayes factor in favour of one model is “sufficiently large”, one
may directly decide to choose this model and to discard the others.
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Problems with Bayesian model choice

There are two major problems with using the theory above

1. If M; uses an improper prior, the joint model, before conditioning on
data, will be improper, and w(y | M;) cannot be computed!

2. Even when M; is proper, it may be computationally very difficult to
compute the number w(y | M;).
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Difficulty of computing 7(y | M)

» Remember Bayes formula:

nly | 0)n(6)

w01y ="

We have mentioned many times that the denominator m(y), which
we now denote 7(y | M;) and call the evidence, may be difficult to
compute!
» Some approaches to compute or approximate 7r(y):
> In not-too-high dimensions, (numerical) integration of 7(y | 8)m(6).
> |n not-too-high dimensions, you may approximately fit some density
f(0) using a sample from the posterior. Then the integration
constant 7(y) is approximated by w(y | )7 (0)/f(0) for any value 6.
Laplace approximation (see below).
Nested sampling (see below).
Computing the ELBO in a Variational Bayes approximation.

vy vy vy
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The Laplace multivariate normal approximation

> Rewrite 7(y | 8)m(6) as follows:

m(y | 0)7m(0) = exp(—h(0))

for some function h.

» Use a Laplace multivariate normal approximation (see Lecture 7):

A

m(y | 0)m(0) ~ exp(—h(0)) exp (—;(9 — )" H(@)(6 ~ é))

where § is the 6 maximizing the posterior and H(é) is the Hessian
matrix at 6.

> Integrating both sides over 6 and using the formula for the
multivariate normal density, we get

7(y) ~ exp(—h())[2rH(H) />
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Nested sampling (for orientation only)

A method to approximate the number 7(y) = [ 7(y | 8)7(y) d6.
» The general idea of nested sampling:

1. Sample N points from the prior and compute the likelihood in these
points.

2. Store and remove from list the point at which the likelihood is
smallest.

3. Add to list a point simulated from the prior, conditional on having at
least as high likelihood as the removed point.

4. Loop back to step 2 and repeat a number of times.

5. From the stored points and their likelihoods, the integral of the
posterior can be estimated.

» The conditoinal simulation of new points can be done in various
ways (rejection sampling, MCMC,...)

» The method works well in situations with multiple peaks.
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Non-Bayesian model selection (for orientation only)

» Given the drawbacks of Bayesian model choice using Bayes factors,
there is of course a huge number of alternatives.

» Some focus on weighing how well the model fits the data against the
complexity of the model.

> A large class of methods use information criteria that penalize the
complexity of a model:

AIC Akaike Information Criterion.

BIC Bayesian Information Criterion.

DIC Deviance Information Criterion.

TIC Takeuchi Information Criterion.

FIC Focus Information Criterion.
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