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Comparing models

I In our “cookbook” of Lecture 13.1, the fourth step was described as:

Compare the possible candidate models by looking at the probability
of observing the actual data under each model. Decide on one or a
combination of models.

In this section of lecture 13 we describe how.

I The above is called Bayesian model choice. There are also many
non-Bayesian ways to compare models, we discuss this briefly.
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Bayesian model choice

I In Bayesian statistics, just as we can use a prior that is a mixture of
other priors, we can use a model that is a mixture of other models:

I Let y denote the data, and let M1, . . . ,Mk denote k different
stochastic models for this data.

I For example, if model i has parameters θ and additional variables x ,
we can write the joint density as π(y , θ, x | Mi ).

I If the joint density is proper we can integrate out x and θ to get a
marginal distribution for the data under model Mi : π(y | Mi ).

I If we have for the models prior probabilities
π(M1), π(M2), . . . , π(Mk) that sum to 1, we can use a mixed model:

π(y) =
k∑

i=1

π(y | Mi )π(Mi )

I Computation can proceed as with any other Bayesian model.
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Computations

I Example: For predicting new data ynew given the information from
old data y , we use a mixture of updated models with updated
weights:

π(ynew | y) =
k∑

i=1

π(ynew | Mi , y)π(Mi | y)

I The updated weights can be computed with Bayes formula:

π(Mi | y) =
π(y | Mi )π(Mi )∑k
j=1 π(y | Mj)π(Mj)

I Note that we introduce no new theory, we simply introduce an extra
variable M which has k different values, so that conditionally on this
variable being i , the model has a particular form Mi .
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Example: Comparing three simple models

I Toy example: Data (x1, y1), . . . , (x10, y10) to be fitted with
regression. (Visualize toy data)

I We consider three possible models:
I Model 1

yi | a, xi ∼ Normal(axi , 0.5
2)

a ∼ Normal(0.3, 0.12)

I Model 2

yi | a, b, xi ∼ Normal(axi + bx2
i , 0.5

2)

a ∼ Normal(0.3, 0.12)

b ∼ Normal(0.02, 0.012)

I Model 3

yi | a, xi ∼ Normal(exp(axi ), 0.5
2)

a ∼ Normal(0.1, 0.012)

I Our prior probability for each model is 1/3.
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Computations for the example

I Let’s say we want to find the posterior weights for the models.
I For each model, we need to compute the probability of the data

under the model. For example, in the first model, we get

π(y1, . . . , y10 | M1) =

∫ ∞
−∞

π(y1, . . . , y10 | a, x1, . . . , x10)π(a) da

=

∫ ∞
−∞

[
10∏
i=1

Normal(yi ; axi , 0.5
2)

]
Normal(a; 0.3, 0.12) da

I For the second model we get

π(y1, . . . , y10 | M2)

=

∫ ∞
−∞

∫ ∞
−∞

π(y1, . . . , y10 | a, b, x1, . . . , x10)π(a)π(b) da db

=

∫ ∞
−∞

∫ ∞
−∞

[
10∏
i=1

Normal(yi ; axi + bx2
i , 0.5

2)

]
·

Normal(a; 0.3, 0.12) Normal(b; 0.02, 0.012) da db
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Computations for the example

I Computations in R (using discretiaztion) give us

π(y1, . . . , y10 | Mi ) =

0.00038832 for i = 1
0.00008302 for i = 2
0.00055191 for i = 3

I Using Bayes formula and the uniform prior on the weigts gives us the
posterior weights

π(M1 | y1, . . . , y10) =

0.38 for i = 1
0.08 for i = 2
0.54 for i = 3

I If we want, we can make predictions for new observations ynew with
a mix of the posterior models using these posterior weights.
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Special interpretation and nomenclature

I The value π(y | Mi ) is called the evidence for model Mi .

I Ratios like
π(y | Mi )

π(y | Mj)

are called Bayes factors.

I The setup above is called model averaging.

I If the weight of a model becomes “very small” after updating
weights with data, we may choose to drop the model entirely, to
simplify.

I If we drop all but one model, the method becomes a type of model
choice!
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Using Bayes factors without first establishing prior
probabilities for models

I We saw above: The vector of posterior model weights is proportional
to the vector of evidences times the vector of prior weights.

I As prior weights may be difficult to establish, one may instead first
look at the relative values of the evidences, i.e., the Bayes factors.

I If the Bayes factor in favour of one model is “sufficiently large”, one
may directly decide to choose this model and to discard the others.
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Problems with Bayesian model choice

There are two major problems with using the theory above

1. If Mi uses an improper prior, the joint model, before conditioning on
data, will be improper, and π(y | Mi ) cannot be computed!

2. Even when Mi is proper, it may be computationally very difficult to
compute the number π(y | Mi ).
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Difficulty of computing π(y | Mi)

I Remember Bayes formula:

π(θ | y) =
π(y | θ)π(θ)

π(y)
.

We have mentioned many times that the denominator π(y), which
we now denote π(y | Mi ) and call the evidence, may be difficult to
compute!

I Some approaches to compute or approximate π(y):
I In not-too-high dimensions, (numerical) integration of π(y | θ)π(θ).
I In not-too-high dimensions, you may approximately fit some density

f (θ) using a sample from the posterior. Then the integration
constant π(y) is approximated by π(y | θ)π(θ)/f (θ) for any value θ.

I Laplace approximation (see below).
I Nested sampling (see below).
I Computing the ELBO in a Variational Bayes approximation.
I . . .
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The Laplace multivariate normal approximation

I Rewrite π(y | θ)π(θ) as follows:

π(y | θ)π(θ) = exp(−h(θ))

for some function h.

I Use a Laplace multivariate normal approximation (see Lecture 7):

π(y | θ)π(θ) ≈ exp(−h(θ̂)) exp

(
−1

2
(θ − θ̂)tH(θ̂)(θ − θ̂)

)
where θ̂ is the θ maximizing the posterior and H(θ̂) is the Hessian
matrix at θ̂.

I Integrating both sides over θ and using the formula for the
multivariate normal density, we get

π(y) ≈ exp(−h(θ̂))|2πH(θ̂)−1|1/2
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Nested sampling (for orientation only)

A method to approximate the number π(y) =
∫
π(y | θ)π(y) dθ.

I The general idea of nested sampling:

1. Sample N points from the prior and compute the likelihood in these
points.

2. Store and remove from list the point at which the likelihood is
smallest.

3. Add to list a point simulated from the prior, conditional on having at
least as high likelihood as the removed point.

4. Loop back to step 2 and repeat a number of times.
5. From the stored points and their likelihoods, the integral of the

posterior can be estimated.

I The conditoinal simulation of new points can be done in various
ways (rejection sampling, MCMC,...)

I The method works well in situations with multiple peaks.
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Non-Bayesian model selection (for orientation only)

I Given the drawbacks of Bayesian model choice using Bayes factors,
there is of course a huge number of alternatives.

I Some focus on weighing how well the model fits the data against the
complexity of the model.

I A large class of methods use information criteria that penalize the
complexity of a model:

I AIC Akaike Information Criterion.
I BIC Bayesian Information Criterion.
I DIC Deviance Information Criterion.
I TIC Takeuchi Information Criterion.
I FIC Focus Information Criterion.
I ...
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