
1.8. Eigenvalues and eigenvectors: physical interpretation 24

a b c

v1

α

x1

x2

Figure 1.10: A shear flow. A fluid particle with vorticity. v1 = cx
2

2.

1.7.2 Shear flow

Another example – which is rotational – is the lower half of fully-developed channel

flow for which the velocity reads (see Eq. 3.28)
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where x2 < h/2, see Fig. 1.10. The vorticity vector for this flow reads
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When the fluid particle is moving from position a, via b to position c its has vor-

ticity. Its vertical too edge move faster than its bottom edge. The horizontal edges

stay horizontal because v2 =. Its vertical edges are rotating in clockwise direction.

The diagonal is rotating which really is the definition of rotation. Note that the posi-

tive rotating direction is defined as the counter-clockwise direction, indicated by a in

Fig. 1.10. This is why the vorticity, ω3, in the lower half of the channel (x2 < h/2) is

negative. In the upper half of the channel the vorticity is positive because ∂v1/∂x2 < 0.

It may be noted that for the flow in Fig. 1.10 the magnitude of the shear, S12, and the

vorticity, Ω12, are equal but of opposite sign, i.e. S12 = −Ω12.

1.8 Eigenvalues and eigenvectors: physical interpretation

See also [1], Chapt. 2.5.5.

Consider a two-dimensional fluid (or solid) element, see Fig. 1.11. In the left figure

it is oriented along the x1 − x2 coordinate system. On the surfaces act normal stresses

(σ11, σ22) and shear stresses (σ12, σ21). The stresses form a tensor, σij . Any tensor has

eigenvectors and eigenvalues (also called principal vectors and principal values). Since

σij is symmetric, the eigenvalues are real (i.e. not imaginary). The eigenvalues are

obtained from the characteristic equation, see [1], Chapt. 2.5.5 or Eq. 13.5 at p. 165.

When the eigenvalues have been obtained, the eigenvectors can be computed. Given


