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Figure 1.10: A shear flow. A fluid particle with vorticity. v1 = cx3.
1.7.2 Shear flow

Another example — which is rotational — is the lower half of fully-developed channel
flow for which the velocity reads (see Eq. 3.28)
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where x2 < h/2, see Fig. 1.10. The vorticity vector for this flow reads
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When the fluid particle is moving from position a, via b to position c its has vor-
ticity. Its vertical too edge move faster than its bottom edge. The horizontal edges
stay horizontal because v, =. Its vertical edges are rotating in clockwise direction.
The diagonal is rotating which really is the definition of rotation. Note that the posi-
tive rotating direction is defined as the counter-clockwise direction, indicated by a in
Fig. 1.10. This is why the vorticity, ws, in the lower half of the channel (zo < h/2) is
negative. In the upper half of the channel the vorticity is positive because dv; /0zo < 0.
It may be noted that for the flow in Fig. 1.10 the magnitude of the shear, S5, and the
vorticity, {219, are equal but of opposite sign, i.e. S12 = —12.

1.8 Eigenvalues and eigenvectors: physical interpretation
See also [1], Chapt. 2.5.5.

Consider a two-dimensional fluid (or solid) element, see Fig. 1.11. In the left figure
it is oriented along the £; — x5 coordinate system. On the surfaces act normal stresses
(011, 022) and shear stresses (012, 021). The stresses form a tensor, o;;. Any tensor has
eigenvectors and eigenvalues (also called principal vectors and principal values). Since
0;; is symmetric, the eigenvalues are real (i.e. not imaginary). The eigenvalues are
obtained from the characteristic equation, see [1], Chapt. 2.5.5 or Eq. 13.5 at p. 165.
When the eigenvalues have been obtained, the eigenvectors can be computed. Given



