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Figure 4.2: Vortex stretching. Dashed lines denote fluid element before stretching.
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We recognize the usual unsteady term, the convective term and the diffusive term.

Furthermore, we have got rid of the pressure gradient term. That makes sense, because

as mentioned in connection to Fig. 4.1, the pressure cannot affect the rotation (i.e. the

vorticity) of a fluid particle since the pressure acts through its center. Equation 4.21

has a new term on the right-hand side which represents amplification and bending or

tilting of the vorticity lines. If we write it term-by-term it reads
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The diagonal terms in this matrix represent vortex stretching. Imagine a slender, Vortex

stretchingcylindrical fluid particle with vorticity ωi and introduce a cylindrical coordinate system

with the x1-axis as the cylinder axis and r2 as the radial coordinate (see Fig. 4.2) so

that ωi = (ω1, 0, 0). We assume that a positive ∂v1/∂x1 is acting on the fluid cylinder;

it will act as a source in Eq. 4.21 increasing ω1 and it will stretch the cylinder. The vol-

ume of the fluid element must stay constant during the stretching (the incompressible

continuity equation), which means that the radius, r, of the cylinder will decrease. For

high Reynolds numbers, the viscous term is neglible. Hence, the viscous forces on the Re number=

ratio of con-

vective to vis-

cous term

surface is small. This means than the angular momentum, r2ω1, is constant during the

elongation (stretching) of the cylinder which gives an increased ω1. We see that vortex

stretching will either make a fluid element longer and thinner with larger ω1 (as in the

example above) or shorter and thicker (when ∂v1/∂x1 < 0). The illustratation given

here is mainly relevant when a fluid particle actually rotates (as it does in turbulent

flow, see Section 5).

The off-diagonal terms in Eq. 4.22 represent vortex tilting. Again, take a slender Vortex

tiltingfluid particle, but this time with its axis aligned with the x2 axis, see Fig. 4.3. Assume

is has a vorticity, ω2, and that the velocity surrounding velocity field is v1 = v1(x2).
The velocity gradient ∂v1/∂x2 will tilt the fluid particle so that it rotates in clock-wise

direction. The second term ω2∂v1/∂x2 in line one in Eq. 4.22 gives a contribution to

ω1. This means that vorticity in the x2 direction, through the source term ω2∂v1/∂x2,

creates vorticity in the x1 direction..

Vortex stretching and tilting are physical phenomena which act in three dimensions:

fluid which initially is two dimensional becomes quickly three dimensional through

these phenomena. Vorticity is useful when explaining why turbulence must be three-


