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Second Order Linear Nonhomogeneous Differential Equations; 

Method of Undetermined Coefficients 
 

 

 

We will now turn our attention to nonhomogeneous second order linear 

equations, equations with the standard form 

 

  y″ + p(t) y′ + q(t) y = g(t),  g(t) ≠ 0.  (*) 

 

Each such nonhomogeneous equation has a corresponding homogeneous 

equation: 

 

   y″ + p(t) y′ + q(t) y = 0.     (**) 

 

Note that the two equations have the same left-hand side, (**) is just the 

homogeneous version of (*), with g(t) = 0. 

 

 

 

We will focus our attention to the simpler topic of nonhomogeneous second 

order linear equations with constant coefficients:  

 

   a y″ + b y′ + c y = g(t).     
 

Where a, b, and c are constants, a ≠ 0; and g(t) ≠ 0.  It has a corresponding 

homogeneous equation a y″ + b y′ + c y = 0.   
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Solution of the nonhomogeneous linear equations 
 

 

It can be verify easily that the difference y = Y1 − Y2, of any two solutions of 

the nonhomogeneous equation (*), is always a solution of its corresponding 

homogeneous equation (**).  Therefore, every solution of (*) can be 

obtained from a single solution of (*), by adding to it all possible solutions 

of its corresponding homogeneous equation (**).  As a result: 

 

 

Theroem:  The general solution of the second order nonhomogeneous linear 

equation 

   y″ + p(t) y′ + q(t) y = g(t)  
 

can be expressed in the form 

 

    y = yc + Y  
 

where Y is any specific function that satisfies the nonhomogeneous equation, 

and yc = C1 y1 + C2 y2 is a general solution of the corresponding 

homogeneous equation   

 

y″ + p(t) y′ + q(t) y = 0. 

 

(That is, y1 and y2 are a pair of fundamental solutions of the corresponding 

homogeneous equation; C1 and C2 are arbitrary constants.) 

 

 

 

The term yc = C1 y1 + C2 y2 is called the complementary solution (or the 

homogeneous solution) of the nonhomogeneous equation.  The term Y is 

called the particular solution (or the nonhomogeneous solution) of the same 

equation. 
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Comment:  It should be noted that the “complementary solution” is never 

actually a solution of the given nonhomogeneous equation!  It is merely 

taken from the corresponding homogeneous equation as a component that, 

when coupled with a particular solution, gives us the general solution of a 

nonhomogeneous linear equation.  On the other hand, the particular solution 

is necessarily always a solution of the said nonhomogeneous equation.  

Indeed, in a slightly different context, it must be a “particular” solution of a 

certain initial value problem that contains the given equation and whatever 

initial conditions that would result in C1 = C2 = 0. 

 

 

 

In the case of nonhomgeneous equations with constant coefficients, the 

complementary solution can be easily found from the roots of the 

characteristic polynomial.  They are always one of the three forms:  

 
trtr

c eCeCy 21

21 +=  

 

yc = C1 e
 λ t

 cos µ t + C2 e
 λ t

 sin µ t   
 

yc = C1 e
 rt

 + C2 t e
 rt

   
 

 

 

Therefore, the only task remaining is to find the particular solution Y, which 

is any one function that satisfies the given nonhomogeneous equation.  That 

might sound like an easy task.  But it is quite nontrivial. 

 

There are two general approaches to find Y : the Methods of Undetermined 

Coefficients, and Variation of Parameters.  We will only study the former in 

this class. 
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Method of Undetermined Coefficients 
 

 

The Method of Undetermined Coefficients (sometimes referred to as the 

method of Judicious Guessing) is a systematic way (almost, but not quite, 

like using “educated guesses”) to determine the general form/type of the 

particular solution Y(t) based on the nonhomogeneous term g(t) in the given 

equation.  The basic idea is that many of the most familiar and commonly 

encountered functions have derivatives that vary little (in the form/type of 

function) from their parent functions: exponential, polynomials, sine and 

cosine.  (Contrast them against log functions, whose derivatives, while 

simple and predictable, are rational functions; or tangent, whose higher 

derivatives quickly become a messy combinations of the powers of secant 

and tangent.)  Consequently, when those functions appear in g(t), we can 

predict the type of function that the solution Y would be.  Write down the 

(best guess) form of Y, leaving the coefficient(s) undetermined.  Then 

compute Y ′ and Y ″, put them into the equation, and solve for the unknown 

coefficient(s).  We shall see how this idea is put into practice in the 

following three simple examples. 
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Example:    y″ − 2y′ − 3y = e
2t

    

 

 

The corresponding homogeneous equation y″ − 2y′ − 3y = 0 has 

characteristic equation r
2
 − 2r − 3 = (r + 1)(r − 3) = 0.  So the 

complementary solution is yc = C1 e
−t

 + C2 e
3t

.   

 

The nonhomogeneous equation has g(t) = e
2t

.  It is an exponential 

function, which does not change form after differentiation: an 

exponential function’s derivative will remain an exponential function 

with the same exponent (although its coefficient might change due to 

the effect of the Chain Rule).  Therefore, we can very reasonably 

expect that Y(t) is in the form A e
2t

 for some unknown coefficient A.  

Our job is to find this as yet undetermined coefficient.  

 

Let Y = A e
2t

, then Y
 
′ = 2A e

2t
, and Y

 
″ = 4A e

2t
.  Substitute them 

back into the original differential equation: 

 

   (4A e
2t

) − 2(2A e
2t

) − 3(A e
2t

) = e
2t

    
   

    − 3A e
2t

 = e
2t

    
 

    A = −1 / 3  

 

 Hence, 
tetY 2

3

1
)(

−
= .   

 

Therefore, 
ttt

c eeCeCYyy 23

21
3

1
−+=+=

−

. 

 

 

 

 

Thing to remember:  When an exponential function appears in g(t), use an 

exponential function of the same exponent for Y.   



© 2008, 2012  Zachary S Tseng   B-2 - 6 

Example:    y″ − 2y′ − 3y = 3t
2
 + 4t − 5   

 

  

The corresponding homogeneous equation is still y″ − 2y′ − 3y = 0. 

Therefore, the complementary solution remains yc = C1 e
−t

 + C2 e
3t

. 

 

Now g(t) = 3t
2
 + 4t − 5.  It is a degree 2 (i.e., quadratic) polynomial.  

Since polynomials, like exponential functions, do not change form 

after differentiation: the derivative of a polynomial is just another 

polynomial of one degree less (until it eventually reaches zero).  We 

expect that Y(t) will, therefore, be a polynomial of the same degree as 

that of g(t).  (Why will their degrees be the same?) 

 

So, we will let Y be a generic quadratic polynomial:  Y = A
 
t
2
 + B t + 

C.  It follows Y
 
′ = 2A

 
t + B, and Y

 
″ = 2A. Substitute them into the 

equation: 

   (2A) − 2(2A t + B) − 3(A t
2
 + B t + C) = 3t

2
 + 4t − 5   

 

   − 3A t
2
 + (− 4A − 3B) t + (2A − 2B − 3C) = 3t

2
 + 4t − 5   

  

The corresponding terms on both sides should have the same 

coefficients, therefore, equating the coefficients of like terms.  

 

 t 
2
 :  3 = − 3A          A = −1 

 t  :  4 = −4A − 3B    →   B = 0 

 1 :  −5 = 2A − 2B − 3C       C = 1 

 

 

Therefore, Y = − t
2
 + 1, and y = yc + Y = C1 e

−t
 + C2 e

3t
 − t

2
 + 1. 

 

 

Thing to remember:  When a polynomial appears in g(t), use a generic 

polynomial of the same degree for Y.  That is Y = An t
n
 + An−1 t

n−1
 + … + A1 t 

+ A0.  Note that if g(t) is a (nonzero) constant, it is considered a polynomial 

of degree 0, and Y would therefore also be a generic polynomial of degree 0.  

That is, Y is an arbitrary nonzero constant:  Y = A0.  Recall that the degree of 

a polynomial is the highest power that appears.  Therefore, the rule can be 

stated a little differently to say that “look for the highest power of t in g(t), 

then list it and all the lower powers (down to the constant term) in Y.  
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Example:    y″ − 2y′ − 3y = 5cos(2t)   
 

 

Again, the same corresponding homogeneous equation as the previous 

examples means that yc = C1 e
−t

 + C2 e
3t
 as before. 

 

The nonhomogeneous term is g(t) = 5cos(2t).  Cosine and sine 

functions do change form, slightly, when differentiated, but the 

pattern is simple, predictable, and repetitive: their respective forms 

just change to each other’s.  Consequently, we should choose the form  

Y = A cos(2t) + B sin(2t).  (Why do we choose to employ both 

cosine and sine?)  Substitute Y, Y ′ = −2A sin(2t) + 2B cos(2t), and Y ″ = 

−4A cos(2t) − 4B sin(2t) into the equation: 

 

(−4A cos(2t) − 4B sin(2t)) − 2(−2A sin(2t) + 2B cos(2t)) − 3(A cos(2t) + 

B sin(2t)) = 5cos(2t) 

 

(−4A − 4B − 3A) cos(2t) + (−4B + 4 A − 3B) sin(2t) = 5cos(2t)  

 

(−7A − 4B) cos(2t) + (4 A − 7B) sin(2t) = 5cos(2t) + 0 sin(2t) 

 

 Compare the coefficients: 

 

 cos(2t):  5 = −7A − 4B  →   A = −7 / 13 

 sin(2t):   0 = 4 A − 7B   →   B = −4 / 13 

 

  

 Therefore, )2sin(
13

4
)2cos(

13

7
ttY −

−
= , and 

)2sin(
13

4
)2cos(

13

73

21 tteCeCy tt
−−+=

−

 

 

 

 

 

Thing to remember:  When either cosine or sine appears in g(t), both cosine 

and sine (of the same frequency) must appear in Y. 

 



© 2008, 2012  Zachary S Tseng   B-2 - 8 

When g(t) is a sum of several terms 

 

 

When g(t) is a sum of several functions:  g(t) = g1(t) + g2(t) + … + gn(t), we 

can break the equation into n parts and solve them separately.  Given   

 

   y″ + p(t) y′ + q(t) y = g1(t) + g2(t) + … + gn(t) 

 

we change it into 

 

   y″ + p(t) y′ + q(t) y = g1(t) 

 

   y″ + p(t) y′ + q(t) y = g2(t) 

     : 

     : 

   y″ + p(t) y′ + q(t) y = gn(t). 

 

Solve them individually to find respective particular solutions Y1, Y2, … , Yn.  

Then add up them to get Y = Y1 + Y2 + … + Yn. 
 

 

 

Comment:  The above is a consequence of the general version of the 

Superposition Principle
*
: 

 

General Principle of Superposition:  If y1 is a solution of the equation 

    y″ + p(t) y′ + q(t) y = g1(t), 

 

and y2 is a solution of the equation 

    y″ + p(t) y′ + q(t) y = g2(t). 

 

Then, for any pair of constants C1 and C2, the function y = C1 y1 + C2 y2 is a 

solution of the equation 

 

   y″ + p(t) y′ + q(t) y = C1 g1(t) + C2 g2(t). 

 

                                                 
*
 Note that when g1(t) = g2(t) = 0, the above becomes the homogeneous linear equation version of the 

Superposition Principle seen in an  earlier section. 
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Example:     y″ − 2y′ − 3y = e
2t

 + 3t
2
 + 4t − 5 + 5cos(2t)   

 

 

 Solve each of the sub-parts: 

 

 y″ − 2y′ − 3y = e
2t

     →   
tetY 2

1
3

1
)(

−
=  

 

 y″ − 2y′ − 3y = 3t
2
 + 4t − 5  →  Y2(t) = − t

2
 + 1 

 

 y″ − 2y′ − 3y = 5cos(2t)    →  )2sin(
13

4
)2cos(

13

7
)(3 tttY −

−
=  

 

 

 Then add up the partial results: 

   )2sin(
13

4
)2cos(

13

7
1

3

1
)( 22 tttetY t

−−+−
−

= . 

 

 

 The general solution is 

  )2sin(
13

4
)2cos(

13

7
1

3

1
)( 223

21 ttteeCeCty ttt
−−+−−+=

−

. 
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If initial conditions are present, only apply the initial values after the general 

solution is found to find the particular solution.  While it might be tempting 

to solve for the coefficients C1 and C2 as soon as they appear (they would 

appear with the complementary solution yc, at the very beginning), we 

nevertheless could not have found them without knowing Y.  Since the initial 

values consist of contribution from both parts yc and Y.  Therefore, we must 

wait until we have found the general solution in its entirety before applying 

the initial values to find C1 and C2. 

 

 

Example:   y″ − 2y′ − 3y = 3t
2
 + 4t − 5,   y(0) = 9,   y′(0) = −4 

 

First find the general solution: y = C1 e
−t

 + C2 e
3t

 − t
2
 + 1. 

Then use the initial conditions to find that C1 = 7 and C2 = 1. 

 

 The particular solution is:  y = 7 e
−t

 + e
3t

 − t
2
 + 1. 
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A (possible) glitch? 

 

 

There is a complication that occurs under a certain circumstance… 

 

Example:     y″ − 2y′ − 3y = 5e
3t

    

 

 

The old news is that yc = C1 e
−t

 + C2 e
3t

.  Since g(t) = 5e
3t

, we should 

be able to use the form Y = A e
3t

, just like in the first example, right?  

But if we substitute Y, Y ′ = 3A e
3t

, and Y ″ = 9A e
3t

 into the differential 

equation and simplify, we would get the equation 

 

     0 = 5e
3t

.   

  

That means there is no solution for A.  Our method (that has worked 

well thus far) seems to have failed.  The same outcome (an inability to 

find A) also happens when g(t) is a multiple of e
−t

.  But, for any other 

exponent our choice of the form for Y works.  What is so special about 

these two particular exponential functions, e
3t

 and e
−t

, that causes our 

method to misfire?  (Hint: What is the complementary solution of the 

nonhomgeneous equation?) 

 

 

 

The answer is that those two functions are exactly the terms in yc.  Being a 

part of the complementary solution (the solution of the corresponding 

homogeneous equation) means that any constant multiple of either functions 

will ALWAYS results in zero on the right-hand side of the equation.  

Therefore, it is impossible to match the given g(t). 

 

The cure:  The remedy is surprisingly simple: multiply our usual choice by 

t.  In the above example, we should instead use the form Y = A t e
3t

.   

 

In general, whenever your initial choice of the form of Y has any term in 

common with the complementary solution, then you must alter it by 

multiplying your initial choice of Y by t, as many times as necessary but no 

more than necessary. 
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Example:     y″ − 6y′ + 9y = e
3t

    

 

 

The complementary solution is yc = C1 e
3t

 + C2 t e
3t

.  g(t) = e
3t
, 

therefore, the initial choice would be Y = A e
3t

.  But wait, that is the 

same as the first term of yc, so multiply Y by t to get Y = A t e
3t
.  

However, the new Y is now in common with the second term of yc.  

Multiply it by t again to get Y = A t
2

 e
3t

.  That is the final, correct 

choice of the general form of Y to use.  (Exercise: Verify that neither  

Y = A e
3t

, nor Y = A t e
3t

 would yield an answer to this problem.) 

 

Once we have established that Y = A t
2

 e
3t

, then Y
 
′ = 2At e

3t
 +  

3A t
2 
e

3t
, and Y

 
″ = 2A e

3t
 + 12At e

3t
 + 9A t

2
 e

3t
.  Substitute them 

back into the original equation: 

 

 

 (2A e
3t

 + 12At e
3t

 + 9A t
2

 e
3t
) − 6(2At e

3t
 + 3A t

2
 e

3t
) + 9(A t

2
 e

3t
) = e

3t
    

   

  2A e
3t

 + (12 − 12)At e
3t
 + (9 − 18 + 9)A t

2
 e

3t
 = e

3t
    

 

2A e
3t

 = e
3t
    

 

    A = 1 / 2  

 

 

 Hence, 
tettY 32

2

1
)( = .   

Therefore, 
ttt etteCeCy 323

2

3

1
2

1
++= .  Our “cure” has worked! 
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Since a second order linear equation’s complementary solution only has two 

parts, there could be at most two shared terms with Y.  Consequently we 

would only need to, at most, apply the cure twice (effectively multiplying by 

t
2
) as the worst case scenario.  

 

 

 

The lesson here is that you should always find the complementary solution 

first, since the correct choice of the form of Y depends on yc.  Therefore, you 

need to have yc handy before you write down the form of Y.  Before you 

finalize your choice, always compare it against yc.  And if there is anything 

those two have in common, multiplying your choice of form of Y by t.  

(However, you should do this ONLY when there actually exists something 

in common; you should never apply this cure unless you know for sure that a 

common term exists between Y and yc, else you will not be able to find the 

correct answer!)  Repeat until there is no shared term. 
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When g(t) is a product of several functions 

 

If g(t) is a product of two or more simple functions, e.g. g(t) = t
2
e

5t
cos(3t), 

then our basic choice (before multiplying by t, if necessary) should be a 

product consist of the corresponding choices of the individual components 

of g(t).  One thing to keep in mind:  that there should be only as many 

undetermined coefficients in Y as there are distinct terms (after expanding 

the expression and simplifying algebraically). 

 

 

Example:     y″ − 2y′ − 3y = t
3
e

5t
cos(3t) 

 

 

We have g(t) = t
3
e

5t
cos(3t).  It is a product of a degree 3 polynomial

†
, 

an exponential function, and a cosine.  Out choice of the form of Y 

therefore must be a product of their corresponding choices: a generic 

degree 3 polynomial, an exponential function, and both cosine and 

sine.  Try 

 

Correct form:  Y = (At
3
 + Bt

2
 + Ct + D) e

5t
cos(3t) +  

                               (Et
3
 + Ft

2
 + Gt + H) e

5t
sin(3t) 

 

Wrong form:  Y = (At
3
 + Bt

2
 + Ct + D) E e

5t
(F cos(3t) + G sin(3t)) 

 

 

Note in the correct form above, each of the eight distinct terms has its own 

unique undetermined coefficient.  Here is another thing to remember: that 

those coefficients should all be independent of each others, each uniquely 

associated with only one term. 

 

In short, when g(t) is a product of basic functions, Y(t) is chosen based on: 

 

   i. Y(t) is a product of the corresponding choices of all the parts of g(t). 

   ii. There are as many coefficients as the number of distinct terms in Y(t). 

   iii. Each distinct term must have its own coefficient, not shared with any 

        other term. 

 
                                                 
†
 A power such as t n is really just an n-th degree polynomial with only one (the n-th 

term’s) nonzero coefficient. 
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Another way (longer, but less prone to mistakes) to come up with the correct 

form is to do the following. 

 

Start with the basic forms of the corresponding functions that are to 

appear in the product, without assigning any coefficient.  In the above 

example, they are (t
3
 + t

2
 + t + 1), e

5t
, and cos(3t) + sin(3t). 

 

  

Multiply them together to get all the distinct terms in the product: 

 

(t
3
 + t

2
 + t + 1) e

5t
(cos(3t) + sin(3t))  

= t
3

 e
5t

 cos(3t) + t
2

 e
5t

 cos(3t) + t e
5t

 cos(3t) + e
5t

 cos(3t)  

+ t
3

 e
5t

 sin(3t) + t
2

 e
5t

 sin(3t) + t e
5t

 sin(3t) + e
5t

 sin(3t) 
 

 

Once we have expanded the product and identified the distinct terms 

in the product (8, in this example), then we insert the undetermined 

coefficients into the expression, one for each term:  

 

Y = A t
3

 e
5t

 cos(3t) + B t
2

 e
5t

 cos(3t) + C t e
5t

 cos(3t)  

+ D e
5t

 cos(3t) + E t
3

 e
5t

 sin(3t) +F t
2

 e
5t

 sin(3t) + G t e
5t

 sin(3t)  

+ H e
5t

 sin(3t) 
 

 Which is the correct form of Y seen previously.  

 

 

Therefore, whenever you have doubts as to what the correct form of Y for a 

product is, just first explicitly list all of terms you expect to see in the result.  

Then assign each term an undetermined coefficient. 

 

Remember, however, the result obtained still needs to be compared against 

the complementary solution for shared term(s).  If there is any term in 

common, then the entire complex of product that is the choice for Y must be 

multiplied by t.  Repeat as necessary. 
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Example:     y″ + 25y = 4t
3
 sin(5t) − 2e

3t
 cos(5t)  

 

 

The complementary solution is yc = C1 cos(5t) + C2 sin(5t).  Let’s 

break up g(t) into 2 parts and work on them individually. 

 

g1(t) = 4t
3

 sin(5t)  is a product of a degree 3 polynomial and a sine 

function.  Therefore, Y1 should be a product of a generic degree 3 

polynomial and both cosine and sine:   

 

  Y1 = (At
3
 + Bt

2
 + Ct + D) cos(5t) + (Et

3
 + Ft

2
 + Gt + H) sin(5t) 

 

The validity of the above choice of form can be verified by our second 

(longer) method.  Note that the product of a degree 3 polynomial and 

both cosine and sine:  (t
3
 + t

2
 + t + 1)×(cos(5t) + sin(5t)) contains 8 

distinct terms listed below. 

 

  t
3
cos(5t)  t

2
cos(5t)  t cos(5t)  cos(5t) 

  t
3
sin(5t)  t

2
sin(5t)  t sin(5t)  sin(5t) 

 

 

Now insert 8 independent undetermined coefficients, one for each: 

 

 Y1 = At
3
cos(5t)   +  Bt

2
cos(5t)  +   Ct cos(5t)  +  Dcos(5t)  + 

        Et
3
sin(5t)   + Ft

2
sin(5t)   +   Gt sin(5t)   +  Hsin(5t) 

 

However, there is still one important detail to check before we could 

put the above expression down for Y1.  Is there anything in the 

expression that is shared with yc = C1 cos(5t) + C2 sin(5t)?  As we can 

see, there are – both the fourth and the eighth terms.  Therefore, we 

need to multiply everything in this entire expression by t.  Hence, 

 

Y1 = t (At
3
 + Bt

2
 + Ct + D) cos(5t) +  

t (Et
3
 + Ft

2
 + Gt + H) sin(5t) 

 

     = (At
4
 + Bt

3
 + Ct

2
 + Dt) cos(5t) +  

(Et
4
 + Ft

3
 + Gt

2
 + Ht) sin(5t). 
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The second half of g(t) is g2(t) = −2e
3t

 cos(5t).  It is a product of an 

exponential function and cosine.  So our choice of form for Y2 should 

be a product of an exponential function with both cosine and sine. 

 

   Y2 = I e
3t

 cos(5t) + J e
3t

 sin(5t). 
 

There is no conflict with the complementary solution – even though 

both cos(5t) and sin(5t) are present within both yc and Y2, they appear 

alone in yc, but in products with e
3t

 in Y2, making them parts of 

completely different functions.  Hence this is the correct choice.  

 

 Finally, the complete choice of Y is the sum of Y1 and Y2. 

 

Y = Y1 + Y2 = (At
4
 + Bt

3
 + Ct

2
 + Dt) cos(5t) + (Et

4
 + Ft

3
 + Gt

2
 

+ Ht) sin(5t) + I e
3t

 cos(5t) + J e
3t

 sin(5t). 
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Example:    y″ − 8y′ + 12y = t
2

 e
6t

 − 7t sin(2t) + 4  

 

 

 Complementary solution: yc = C1 e
2t

 + C2  e
6t
. 

 

 The form of particular solution is   

 

 Y = (At
3
 + Bt

2
 + Ct) e

6t
 + (Dt + E) cos(2t) + (Ft + G) sin(2t) + H.   

 

 

 

 

 

 

 

Example:    y″ + 10y′ + 25y = t e
−5t

 − 7t
2

 e
2t

 cos(4t) + 3t
2
 − 2  

 

 

Complementary solution: yc = C1 e
−5t

 + C2  t e
−5t

. 

 

 The form of particular solution is   

 

Y = (At
3
 + Bt

2
) e

−5t
 + (Ct

2
 + Dt + E) e

2t
 cos(4t) + (Ft

2
 + Gt + H) e

2t
 sin(4t) 

+ I t
2
 + J t + K. 
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Example:  Find a second order linear equation with constant coefficients 

whose general solution is  

    y = C1e
t
 + C2 e

−10t
 + 4t

2
. 

 

 

The solution contains three parts, so it must come from a 

nonhomogeneous equation.  The complementary part of the solution, 

yc = C1 e
t
 + C2  e

−10t
 suggests that r = 1 and r = −10 are the two roots of 

its characteristic equation.  Hence, r – 1 and r + 10 are its two factors.  

Therefore, the characteristic equation is (r – 1)( r + 10) = r
2
 + 9r – 10.   

 

 The corresponding homogeneous equation is, as a result,  

 

    y″ + 9y′ − 10y = 0. 
 

 Hence, the nonhomogeneous equation is 

 

    y″ + 9y′ − 10y = g(t). 
 

 The nonhomogeneous part g(t) results in the particular solution  

Y = 4t
2
.  As well, Y′ = 8t and Y″ = 8.  Therefore, 

 

 g(t) = Y″ + 9Y′ − 10Y = 8 + 9(8t) – 10(4t
2
) = 8 + 72t – 40 t

2
. 

 

 

 The equation with the given general solution is, therefore, 

 

   y″ + 9y′ − 10y = 8 + 72t – 40 t
2
. 
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The 6 Rules-of-Thumb of the Method of Undetermined Coefficients 

 

 

1.  If an exponential function appears in g(t), the starting choice for Y(t) is an 

exponential function of the same exponent. 

 

2.  If a polynomial appears in g(t), the starting choice for Y(t) is a generic 

polynomial of the same degree. 

 

3.  If either cosine or sine appears in g(t), the starting choice for Y(t) needs to 

contain both cosine and sine of the same frequency. 

 

4.  If g(t) is a sum of several functions, g(t) = g1(t) + g2(t) + … + gn(t), 

separate it into n parts and solve them individually. 

 

5.  If g(t) is a product of basic functions, the starting choice for Y(t) is chosen 

based on: 

 

   i. Y(t) is a product of the corresponding choices of all the parts of g(t). 

   ii. There are as many coefficients as the number of distinct terms in Y(t). 

   iii. Each distinct term must have its own coefficient, not shared with any 

        other term. 

 

6.  Before finalizing the choice of Y(t), compare it against yc(t).  If there is 

any shared term between the two, the present choice of Y(t) needs to be 

multiplied by t.  Repeat until there is no shared term. 

 

Remember that, in order to use Rule 6 you always need to find the 

complementary solution first. 
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SUMMARY: Method of Undetermined Coefficients 
 

 

Given    a y″ + b y′ + c y = g(t) 

 

1.  Find the complementary solution yc. 

 

2.  Subdivide, if necessary, g(t) into parts:  g(t) = g1(t) + g2(t) … + gk(t). 
 

3.  For each gi(t), choose the form of its corresponding particular solution 

Yi(t) according to: 

 

gi(t) Yi(t) 

Pn(t) t 
s

 (An t
n
 + An−1 t

n−1
 + … + A1 t + A0) 

Pn(t) e
at

 t 
s

 (An t
n
 + An−1 t

n−1
 + … + A1 t + A0) e

at
 

Pn(t) e
at

 cos µt   and/or 

Pn(t) e
at

 sin µt 

t 
s

 (An t
n
 + An−1 t

n−1
 + … + A0) e

at
 cos µt 

+ 

t 
s

 (Bn t
n
 + Bn−1 t

n−1
 + … + B0) e

at
 sin µt 

 

 

Where s = 0, 1, or 2, is the minimum number of times the choice 

must be multiplied by t so that it shares no common terms with yc.  

 

Pn(t) denotes a n-th degree polynomial.  If there is no power of t 

present, then n = 0 and P0(t) = C0 is just the constant coefficient.  If no 

exponential term is present, then set the exponent a = 0. 

 

4.  Y = Y1 + Y2 + … + Yk. 

 

5.  The general solution is  y = yc + Y. 

 

6.  Finally, apply any initial conditions to determine the as yet unknown 

coefficients C1 and C2 in yc. 
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Exercises B-2.1: 

 

1 − 10  Find the general solution of each nonhomogeneous equation. 

1.  y″ + 4y = 8 

 

2.  y″ + 4y = 8t
2
 − 20t + 8 

 

3.  y″ + 4y = 5sin 3t − 5cos 3t 

 

4.  y″ + 4y = 24e
−2t

    

 

5.  y″ + 4y = 8cos 2t   

 

6.  y″ + 2y′ = 2t e
−t

    

 

7.  y″ + 2y′ = 6e
−2t

    

 

8.  y″ + 2y′ = 12t 
2
    

 

9.  y″ − 6y′ − 7y = 13cos 2t + 34sin 2t  

 

10.  y″ − 6y′ − 7y = 8e
−t

 − 7t − 6 

 

11 – 15  Solve each initial value problem. 

11.  y″ − 6y′ − 7y = −9e
−2t

,     y(0) = −2,   y′(0) = −13 

 

12.  y″ − 6y′ − 7y = 6e
2t

,      y(0) = 5,   y′(0) = −3 

 

13.  y″ − 4y′ + 4y = 2e
2t

 − 12cos 3t − 5sin 3t,   y(0) = −2,   y′(0) = 4 

 

14.  y″ − 2y′ − 8y = 8t
2
 + 20t + 2,    y(0) = 0,   y′(0) = −8 

 

15.  y″ − 2y′ + 4y = 8t − 12sin 2t,    y(0) = −2,   y′(0) = 8 

 

16 – 18  Determine the most suitable form of Y(t) that should be used when 

solving each equation. 

16.  y″ − 9y = 6t
4
e

3t
 – 2e

−3t
 sin 9t      

 

17.  y″ − 4y′ + 4y = 5t
3
 − 2 − t

2
 e

2t
 + 4e

2t
 cos t    
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18.  y″ + 4y′ + 20y = t
2

 e
−2t

 sin 4t − 3cos 4t − t e
−2t

   

 

19.  Find a second order linear equation with constant coefficients whose 

general solution is  y = C1 cos 4t + C2  sin 4t − e
t
 sin 2t.   

 

20.  Find a second order linear equation with constant coefficients whose 

general solution is  y = C1 e
−2t

 + C2  t e
−2t

 + t
3
 – 3t.   

 

21.  Suppose y1 = 2t sin 3t is a solution of the equation 

    y″ + 2 y′ + 2 y = g1(t), 

and y2 = cos 6t – e
−t 

cos t is a solution of the equation 

    y″ + 2 y′ + 2 y = g2(t). 

What is the general solution of  

   y″ + 2 y′ + 2 y = 5g1(t) – 2g2(t)? 

 

22.  Suppose the equation y″ − 4y′ − 5y = g(t) has y = 3t
3
 as a solution.   

(a) Which one(s) of the following functions is/are also a solution(s)?  

(i) y = e
−t

 + 3t
3
,  (ii) y = πe

5t
 + 3t

3
,     (iii) y = 2e

5t
 + 4e

−t
,   

(iv) y = e
−t

 + e
5t

 + 6t
3
,   (v) y = 3e

5t
 − 4e

−t
 + 3t

3
     

(b)  What is the general solution of the equation?  (c) Find g(t).   (d) Given 

that y(0) = 3 and y′(0) = 3, solve the initial value problem.  
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Answers B-2.1:  

 

1.  y = C1 cos 2t + C2  sin 2t + 2 

2.  y = C1 cos 2t + C2  sin 2t + 2t
2
 − 5t + 1 

3.  y = C1 cos 2t + C2  sin 2t + cos 3t − sin 3t 

4.  y = C1 cos 2t + C2  sin 2t + 3e
−2t

   

5.  y = C1 cos 2t + C2  sin 2t + 2t sin 2t 

6.  y = C1 e
−2t

 + C2 − 2t e
−t

   

7.  y = C1 e
−2t

 + C2 − 3t e
−2t

   

8.  y = C1 e
−2t

 + C2 + 2t
3
− 3t

2
 + 3t    

9.  y = C1 e
−t

 + C2  e
7t
 + cos 2t − 2sin 2t 

10.  y = C1 e
−t

 + C2  e
7t
 + t − t e

−t
   

11.  y =  e
−t

 − 2 e
7t

 − e
−2t

    

12. 
ttt eeey 27

5

2

5

2
5 −+=

−

   

13.  y = −2e
2t
 + 5 t e

2t
 + t

2
 e

2t
 + sin 3t    

14.  y = e
−2t

 − e
4t

 − t
2
 − 2t     

15. tttey t 2cos312)3sin(32 −++=   

16.  Y = (A t
5
 + B t

4
 + C t

3
 + D t

2
 +E t) e

3t
 + F e

−3t
 cos 9t + G e

−3t
 sin 9t  

17.  Y = A t
3
 + B t

2
 + C t + D + (E t

4
 + F t

3
 + G t

2
) e

2t
 + H e

2t
 cos t + I e

2t
 sin t   

18.  Y = (A t
3
 + B t

2
 + C t) e

−2t
 cos 4t + (D t

3
 + E t

2
 + F t) e

−2t
 sin 4t + G cos 4t  

       + H sin 4t + (I t + J) e
−2t

    

19.  y″ + 16y = −4e
t
 cos 2t −13e

t
 sin 2t    

20.  y″ + 4y′ + 4y = 4t
3
 + 12t

2
 − 6t − 12  

21.  y = C1 e
−t 

cos t + C2  e
−t 

sin t + 10t sin 3t − 2cos 6t    

22.  (a) i, ii, v   (b) y = C1 e
−t

 + C2  e
5t

 + 3t
3
    

       (c) g(t) = 18t – 36t
2
 – 15t

3
    (d) y = e

5t
 + 2e

−t
 + 3t

3
     

 


