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Chapter 2: Mathematical tools (summary)

November 6, 2020

Goal: Introduce some (abstract) spaces and various mathematical tools. This will help us to solve
(numerically) differential equations in the next chapters.

• A set V is called a vector space or linear space (VS) if, for all u, v, w ∈V and for all α,β ∈R one has

1. u +αv ∈V (linearity)

2. (u + v)+w = u + (v +w) = u + v +w (associativity)

3. There exists an element 0 ∈V such that u +0 = 0+u = u for all u ∈V (identity element)

4. For all u ∈V , there exists an element (−u) ∈V such that u + (−u) = 0 (inverse element)

5. u + v = v +u (commutativity)

6. (α+β)u =αu +βu

7. α(u + v) =αu +βv

8. α(βu) = (αβ)u =αβu

9. There exists 1 ∈R such that 1u = u for all u ∈V .

(Technical comment: the last condition is not written in the book, but should be part of the definition
if one wants to write it clearly).

The elements in V are called vectors (but they can be something else, like "normal" vectors, matri-
ces, functions, or sequences) and the ones in R scalars. The above axioms (rules) tell us that we can
do anything reasonable with vectors and scalars.

Example: The vector space of all polynomials, defined on R, of degree ≤ n is denoted by

P (n)(R) = {a0 +a1x +a2x2 + . . .+an xn : a0, a1, . . . , an ∈R}.

• A subset U ⊂V of a VS V is called a subspace of V if αu +βv ∈U for all u, v ∈U and α,β ∈R.

• Let V be a VS. The space of all linear combinations of the elements v1, v2, . . . , vn ∈V is denoted by

span(v1, . . . , vn) = {a1v1 +a2v2 + . . .+an vn : a1, . . . , an ∈R}.

Example: span(1, x, x2) = {a01+a1x +a2x2 : a0, a1, a2 ∈R} =P (2)(R).

• A set {v1, v2, . . . , vn} in a VS V is linearly independent if the equation

a1v1 +a2v2 + . . .+an vn = 0 ∈V

has only the trivial solution a1 = a2 = . . . = an = 0 ∈R. Else it is called linearly dependent.

Example: The set {1, x, x2} ∈P (2)(R) is linearly independent.

• A set {v1, v2, . . . , vn} in a VS V is called a basis of V if the set is linearly independent and span(v1, . . . , vn) =
V . The dimension of V is then given by the number of elements of this set, here dim(V ) = n.

Example: The set {1, x, x2} is a basis of P (2)(R) and thus dim(P (2)(R)) = 2.
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• A scalar product or inner product on a VS V is a map (·, ·) : V ×V → R such that, for all u, v, w ∈ V
and α ∈R,

1. (u, v) = (v,u) (symmetry)

2. (u +αv, w) = (u, w)+α(v, w) (linearity)

3. (u,u) ≥ 0 (positivity)

4. (u,u) = 0 ∈R if and only if u = 0 ∈V .

• A VS V with an inner product is called an inner product space, which is denoted by (V , (·, ·)) or
(V , (·, ·)V ) or (V ,〈·, ·〉V ).

Such space has a norm defined by ‖v‖ = p
(v, v) for all v ∈V .

Example: The space of square integrable functions defined on the interval [a,b] is denoted by

L2([a,b]) = L2(a,b) = L2(a,b) = { f : [a,b] →R :
∫ b

a
| f (x)|2 dx <∞}.

It is equipped with the inner product

( f , g )L2 =
∫ b

a
f (x)g (x)dx

which induces the norm ∥∥ f
∥∥

L2 =
√

( f , f )L2 =
√∫ b

a
| f (x)|2 dx.

• Let (V , (·, ·)) be an inner product space and u, v ∈ V . u and v are orthogonal if (u, v) = 0. Notation:
u ⊥ v .

• Let (V , (·, ·)) be an inner product space and u, v ∈V . Cauchy–Schwarz inequality (CS) reads

|(u, v)| ≤ ‖u‖ ·‖v‖ .

• Let (V , (·, ·)) be an inner product space and u, v ∈V . The triangle inequality (4) reads

‖u + v‖ ≤ ‖u‖+‖v‖ .

• The space of continuous function defined on [a,b] is given by

C 0([a,b]) =C 0([a,b]) =C (0)(a,b) = { f : [a,b] →R : f is continuous}

and equipped with the norm ∥∥ f
∥∥

C 0([a,b]) = max
a≤x≤b

| f (x)|.
(Technical observation: one should have a suppremum sup in place of max, see further resources if
you are interested. We will try to avoid this technicality in the lecture, hopefully.)

Similarly, one can define the space of continuously differentiable functions

C 1([a,b]) =C 1([a,b]) =C (1)(a,b) = { f : [a,b] →R : f , f ′ are continuous}

and equipped with the norm∥∥ f
∥∥

C 1([a,b]) =
∥∥ f

∥∥
C 0([a,b]) +

∥∥ f ′∥∥
C 0([a,b]) = max

a≤x≤b
(| f (x)|+ | f ′(x)|).

And the space C k ([a,b]) of k time continuously differentiable functions . . . .
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• For 1 ≤ p <∞, we consider the spaces

Lp ([a,b]) = Lp (a,b) = { f : [a,b] →R :
∥∥ f

∥∥
Lp <∞},

with the Lp -norm ∥∥ f
∥∥

Lp =
(∫ b

a
| f (x)|p dx

)1/p

.

For ′′p =∞‘, one has

L∞([a,b]) = L∞(a,b) = { f : [a,b] →R :
∥∥ f

∥∥
L∞ <∞},

with the L∞-norm ∥∥ f
∥∥

L∞ = max
a≤x≤b

| f (x)|.

(Technical observation: one should have an ess.sup in place of the maximum. But you can (probably)
forget this comment. We will stay in the easiest situations.)

Further resources:

• https://sv.wikipedia.org/wiki/Linj%C3%A4rt_rum
• https://sv.wikipedia.org/wiki/Inre_produktrum
• https://sv.wikipedia.org/wiki/Lp-rum
• https://sv.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_olikhet
• https://people.math.carleton.ca/~kcheung/math/notes/MATH1107/wk09/09_basis_and_
dimension.html

• https://brilliant.org/wiki/bases/
• https://web.auburn.edu/holmerr/2660/Textbook/innerproduct-print.pdf
• https://terrytao.files.wordpress.com/2008/03/function_spaces1.pdf
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