TMAG683 Tillampad matematik

Ovningsuppgifter (boken FEM)
16 november 2020

This document contains the exercises from the compendium from M. Asadzadeh (23.08.2018).

1. CHAPTER 4

4.1 Prove that V% = {v € P@(0,1),v(0) = 0} is a subspace of P@(0,1).
4.3 Consider the ODE

w(t) =u(t), 0<t<l1, wu(0)=1L1

Compute its Galerkin approximation in P@(0,1) for ¢ = 1,2, 3, 4.
4.4 Compute the stiffness matrix and load vector in a finite element approximation of the
BVP
—u"(z) = f(z), O0<z<1l, w(0)=u(l)=0
with f(z) =z and h = 1/4.
4.5 We want to find a solution approximation U(z) to

—u"(z) =1, 0<z<1, wu0)=u(l)=0,

using the ansatz U(z) = Asin(rz) + Bsin(27nz).
(a) Calculate the exact solution u(x).
(b) Write down the residual R(z) = —U"(z) — 1.
(c) Use the orthogonality condition

1
/ R(z)sin(nrz)dr =0,n = 1,2
0

to determine the constants A and B.
(d) Plot the error e(x) = |u(x) — U(z)|.
4.6 Consider the BVP

—u"(x)+u(z) =2z, 0<z<l1l, wu0)=u(l)=0.

(a) Verify that the exact solution to the above problem reads

sinh(z)
sinh(1)

u(z) =x
(b) Let U(x) be a solution approximation defined by

U(x) = Asin(rx) + Bsin(2nz) 4+ C'sin(37z),
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where A, B, C' are unknown constants. Compute the residual

R(z) = =U"(z) + U(z) — .

(c) Use the orthogonality conditions
1
/ R(z)sin(nrz)de =0,n=1,2,3
0

to determine the constants A, B, C.
4.7 Let U(x) = (ooo(z) + (1¢1(x) be a solution approximation to
—u'(z)=2—-1, O0<zxz<m, u(0)=u(r)=0,
where ¢y and ¢; are unknown coefficients and ¢o(z) = cos(2), ¢1(x) = cos(2L).
(a) Find the analytical solution u(z).
(b) Define the residual R(z).

(¢) Compute the constants (o and (; using the orthogonality conditions

/O7r R(x)¢i(x)dz = 0,1 =0, 1.

Le. by projecting R(z) onto the vector space spanned by ¢o(x) and ¢;(x).

4.8 Use the projection technique of the previous exercise to solve
—u"(x)=0, O0<z<m, wu(0)=0u(r)=2,
with U(z) = Asin(z) + Bsin(2z) + Csin(3z) + 22? and using the test functions
{sin(z), sin(2z), sin(3z)}.
2. CHAPTER 5

5.1 Consider two real numbers a < b. By defintion of Lagranges polynomials, one has

b—=x T —a
d M\ = )
b—a an () b—a

Aa(z) =
Show that
Aa(z) + () =1 and  al,(z) + b\p(z) = 2.

Give a geometric interpretation by plotting A, (), Ap(x), Ao (2)+Xp(x) and a,(x), bAp(x), aX,(z)+
5.2 Consider the following functions defined for x € [0, 1]:

f(z) =2 and g(z) = sin(7z).

Find their linear interpolants, denoted by IIf € P(0,1), resp. [Ig € P(0,1). In the

same figure, plot f and IIf, as well as g and Ilg.
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5.3 Determine the linear interpolant of the function, defined for z € [—7, 7],

f(@) = Sla—nf —co(w =),

7

where the interval [—7, 7] is divided into 4 equal subintervals.

z1
/ P @ - 2 dr = 0.

5.15 Prove that

5.16 Prove that

1 To+x 1 x —i—a:
[ e = O - )| < 5 x| |/ LIRS
zo [z0,21]
1
< ﬁ(ml_xo) [g;fgf]\f ().

Hint: Use a Taylor expansion of f about v = %

3. CHAPTER 7

7.1 Consider the two-point BVP
—u"(z) = f(z), O0<z<1l, wu0)=u(l)=0.
Let V.= {v: ||v]| + ||'|| < oo, v(0) =v(1) = 0} where ||-|| denotes the Ly-norm.
(a) Use V to derive a variational formulation for the above BVP.

(b) Discuss why V' is valid as a vector space of test functions.

(c) Classify which of the following functions are admissible test functions:
sin(rz), 2, xln(z), " —1, z(l—x).

7.3 Consider the two-point BVP
—u"(z) =1, 0<z<1l, wu(0)=u(l)=0.
Let Ty, : zj = i,j =0,1,2,3,4 denote a partition of the interval 0 < z < 1 into four

subintervals of equal length h = 1/4. Let V}, be the corresponding space of continuous

piecewise liner functions vanishing at * = 0 and z = 1.
(a) Compute a finite element approximation U € V}, to the above BVP.

(b) Prove that U € V}, is unique.
7.5 Consider the two-point BVP, for x € I = (0,1):

—(a(z)d' ()" = f(x)
w(0) =0, a(l)u'(1) = g1,

where a is a positive function and ¢g; a constant.
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(a) Derive the variational formulation of the above problem.
(b) Discuss how the boundary conditions are implemented.
7.6 Consider the two-point BVP, for x € I = (0, 1),

—u"(z) =0
uw(0) =0,4'(1) = 7.

Divide the interval I into two subintervals of length h = % Let V}, be the corresponding
space of continuous piecewise linear functions vanishing at x = 0.
(a) Formulate a finite element method for the above problem.
(b) Calculate by hand the finite element approximation U € V}, to the above BVP.
(¢) Study how the boundary condition at z = 1 is approximated.
7.7 Consider the two-point BVP

—u"(z) =0, O0<z<l, u(0)=5u(l)=0.

Let Ty @ z; = %,j =0,1,...,N,h = 1/N denote a uniform partition of the interval
0 < x < 1 into N subintervals. Let V} be the corresponding space of continuous
piecewise linear functions.

(a) Use Vj,, with N = 3, and formulate a finite element method for the above problem.
(b) Compute the finite element approximation U € V}, assuming N = 3.

7.8 Consider the problem of finding a solution approximation to
—u"(z)=1, 0<z<1l, «(0)=4(1)=0.

Let 7, be a partition of the interval 0 < x < 1 into two subintervals of equal length
h = % Let V}, be the corresponding space of continuous piecewise linear functions.
(a) Can you find an exact solution to the above problem by integrating twice?

(b) Compute a finite element approximation U € V}, to u if possible.

7.11 Consider the finite element method applied to
—u"(z) =0, 0<z<l1l, u(0)=au(1)=240,

where o and [ are given constants. Assume that the interval [0,1] is divided into
three subintervals of equal length A = 1/3 and that {¢, };’:0 is a nodal basis of V},, the
corresponding space of continuous piecewise linear functions.

(a) Verify that the ansatz

U(x) = apo(x) + Cupr () + oo () + Gaps(),
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yields the following system of equations

a
-1 2 -1 0 ¢ 0
(1) “lo -1 2 -1 ; =10
0 0 -1 1 2 3
G3

(b) If @« =2 and 8 = 3 show that (1) can be reduced to
(2 o) ([ 2h1

l-r 2 e =] o

0 -1 1/ \g 3

(c) Solve the above system of equation to find U(z).

7.13 Consider the following eigenvalue problem
—au"(z) +bu(z) =0, 0<z<1, u(0)=1d(1)=0,

where a,b > 0 are constants. Let 7, : 0 = 29 < 21 < ... < xy = 1, be a non-
uniform partition of the interval 0 < z <1 into N intervals of length h; = z; — x;_1,
1 = 1,2,...,N. Let V, be the corresponding space of continuous piecewise linear
functions. Compute the stiffness and mass matrices.

7.14 Show that the FEM with mesh size h for the problem

—u(z) =1 0<zr<l1
u(0) =7,4/(1) =0,

with U(z) = Teo(x) +Urpr(z) +. . .+ Unpm(2) leads to the linear system of equations
AU = b, where A € R™*(mtD) ] ¢ ROm+Dx1 ) ¢ Rm*1 are given by

-1 2 -1 0 7 h
~ -1 2 -1 ~ U - :
ot oo |vlic]
: h
0O 0 0 O 0 U, h/2
The above reduces to AU = b, with
2 -1 . h++
1|-1 2 01 8 “ o
A _ - - “ .. ’U _ E 7b _
h -1 2 -1 U h
0 O -1 2 " h/2
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4. CHAPTER 8
8.5a) Compute the solution of
ut) +a(t)u(t) =t*, 0<t<T, u(0)=1,
where a(t) = 4.
5. CHAPTER 9
9.7 Consider the inhomogeneous problem

ug(x,t) — ety (2, t) = f(z,t), 0<x<1,t>0

u(0,t) = uy(1,t) =0, t>0

uw(z,0) =up(x), 0<x<l.

Show that for the corresponding stationary problem, u; = 0, one has

1
< - .
el < 21151
9.13 Consider the wave equation
U (2, 1) — Uge(2,8) =0, z€RE>0
u(z,0) = ug(x), ze€R
ur(z,0) = vo(z), =z €R.

Plot the graph of u(z,2) in the following cases:

(a) vg = 0 and
1, <0
uo(x) =
0, x>0.
(b) ug =0 and
-1, —-1<x<0
vo(z) = 1, O<z<l1
0, |z|>1
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