TMA683 Tillämpad matematik Övningsuppgifter (boken FEM)

16 november 2020
This document contains the exercises from the compendium from M. Asadzadeh (23.08.2018).

1. Chapter 4

4.1 Prove that $V_{0}^{(q)}=\left\{v \in \mathcal{P}^{(q)}(0,1), v(0)=0\right\}$ is a subspace of $\mathcal{P}^{(q)}(0,1)$.
4.3 Consider the ODE

$$
\dot{u}(t)=u(t), \quad 0<t<1, \quad u(0)=1 .
$$

Compute its Galerkin approximation in $\mathcal{P}^{(q)}(0,1)$ for $q=1,2,3,4$.
4.4 Compute the stiffness matrix and load vector in a finite element approximation of the BVP

$$
-u^{\prime \prime}(x)=f(x), \quad 0<x<1, \quad u(0)=u(1)=0
$$

with $f(x)=x$ and $h=1 / 4$.
4.5 We want to find a solution approximation $U(x)$ to

$$
-u^{\prime \prime}(x)=1, \quad 0<x<1, \quad u(0)=u(1)=0
$$

using the ansatz $U(x)=A \sin (\pi x)+B \sin (2 \pi x)$.
(a) Calculate the exact solution $u(x)$.
(b) Write down the residual $R(x)=-U^{\prime \prime}(x)-1$.
(c) Use the orthogonality condition

$$
\int_{0}^{1} R(x) \sin (n \pi x) \mathrm{d} x=0, n=1,2
$$

to determine the constants A and B.
(d) Plot the error $e(x)=|u(x)-U(x)|$.
4.6 Consider the BVP

$$
-u^{\prime \prime}(x)+u(x)=x, \quad 0<x<1, \quad u(0)=u(1)=0
$$

(a) Verify that the exact solution to the above problem reads

$$
u(x)=x-\frac{\sinh (x)}{\sinh (1)}
$$

(b) Let $U(x)$ be a solution approximation defined by

$$
U(x)=A \sin (\pi x)+B \sin (2 \pi x)+C \sin (3 \pi x)
$$

where A, B, C are unknown constants. Compute the residual

$$
R(x)=-U^{\prime \prime}(x)+U(x)-x .
$$

(c) Use the orthogonality conditions

$$
\int_{0}^{1} R(x) \sin (n \pi x) \mathrm{d} x=0, n=1,2,3
$$

to determine the constants A, B, C.
4.7 Let $U(x)=\zeta_{0} \phi_{0}(x)+\zeta_{1} \phi_{1}(x)$ be a solution approximation to

$$
-u^{\prime \prime}(x)=x-1, \quad 0<x<\pi, \quad u^{\prime}(0)=u(\pi)=0
$$

where ζ_{0} and ζ_{1} are unknown coefficients and $\phi_{0}(x)=\cos \left(\frac{x}{2}\right), \phi_{1}(x)=\cos \left(\frac{3 x}{2}\right)$.
(a) Find the analytical solution $u(x)$.
(b) Define the residual $R(x)$.
(c) Compute the constants ζ_{0} and ζ_{1} using the orthogonality conditions

$$
\int_{0}^{\pi} R(x) \phi_{i}(x) \mathrm{d} x=0, i=0,1
$$

I.e. by projecting $R(x)$ onto the vector space spanned by $\phi_{0}(x)$ and $\phi_{1}(x)$.
4.8 Use the projection technique of the previous exercise to solve

$$
-u^{\prime \prime}(x)=0, \quad 0<x<\pi, \quad u(0)=0, u(\pi)=2
$$

with $U(x)=A \sin (x)+B \sin (2 x)+C \sin (3 x)+\frac{2}{\pi^{2}} x^{2}$ and using the test functions $\{\sin (x), \sin (2 x), \sin (3 x)\}$.

2. Chapter 5

5.1 Consider two real numbers $a<b$. By defintion of Lagranges polynomials, one has

$$
\lambda_{a}(x)=\frac{b-x}{b-a} \quad \text { and } \quad \lambda_{b}(x)=\frac{x-a}{b-a} .
$$

Show that

$$
\lambda_{a}(x)+\lambda_{b}(x)=1 \quad \text { and } \quad a \lambda_{a}(x)+b \lambda_{b}(x)=x .
$$

Give a geometric interpretation by plotting $\lambda_{a}(x), \lambda_{b}(x), \lambda_{a}(x)+\lambda_{b}(x)$ and $a \lambda_{a}(x), b \lambda_{b}(x), a \lambda_{a}(x)+$ $b \lambda_{b}(x)$.
5.2 Consider the following functions defined for $x \in[0,1]$:

$$
f(x)=x^{2} \quad \text { and } \quad g(x)=\sin (\pi x)
$$

Find their linear interpolants, denoted by $\Pi f \in \mathcal{P}(0,1)$, resp. $\Pi g \in \mathcal{P}(0,1)$. In the same figure, plot f and Πf, as well as g and Πg.
5.3 Determine the linear interpolant of the function, defined for $x \in[-\pi, \pi]$,

$$
f(x)=\frac{1}{\pi^{2}}(x-\pi)^{2}-\cos ^{2}\left(x-\frac{\pi}{2}\right)
$$

where the interval $[-\pi, \pi]$ is divided into 4 equal subintervals.
5.15 Prove that

$$
\int_{x_{0}}^{x_{1}} f^{\prime}\left(\frac{x_{0}+x_{1}}{2}\right)\left(x-\frac{x_{0}+x_{1}}{2}\right) \mathrm{d} x=0
$$

5.16 Prove that

$$
\begin{aligned}
\left|\int_{x_{0}}^{x_{1}} f(x) \mathrm{d} x-f\left(\frac{x_{0}+x_{1}}{2}\right)\left(x_{1}-x_{0}\right)\right| & \leq \frac{1}{2} \max _{\left[x_{0}, x_{1}\right]}\left|f^{\prime \prime}(x)\right| \int_{x_{0}}^{x_{1}}\left(x-\frac{x_{0}+x_{1}}{2}\right)^{2} \mathrm{~d} x \\
& \leq \frac{1}{24}\left(x_{1}-x_{0}\right)^{3} \max _{\left[x_{0}, x_{1}\right]}\left|f^{\prime \prime}(x)\right|
\end{aligned}
$$

Hint: Use a Taylor expansion of f about $x=\frac{x_{0}+x_{1}}{2}$.

3. Chapter 7

7.1 Consider the two-point BVP

$$
-u^{\prime \prime}(x)=f(x), \quad 0<x<1, \quad u(0)=u(1)=0
$$

Let $V=\left\{v:\|v\|+\left\|v^{\prime}\right\|<\infty, v(0)=v(1)=0\right\}$ where $\|\cdot\|$ denotes the L_{2}-norm.
(a) Use V to derive a variational formulation for the above BVP.
(b) Discuss why V is valid as a vector space of test functions.
(c) Classify which of the following functions are admissible test functions:

$$
\sin (\pi x), \quad x^{2}, \quad x \ln (x), \quad \mathrm{e}^{x}-1, \quad x(1-x)
$$

7.3 Consider the two-point BVP

$$
-u^{\prime \prime}(x)=1, \quad 0<x<1, \quad u(0)=u(1)=0
$$

Let $\mathcal{T}_{h}: x_{j}=\frac{j}{4}, j=0,1,2,3,4$ denote a partition of the interval $0<x<1$ into four subintervals of equal length $h=1 / 4$. Let V_{h} be the corresponding space of continuous piecewise liner functions vanishing at $x=0$ and $x=1$.
(a) Compute a finite element approximation $U \in V_{h}$ to the above BVP.
(b) Prove that $U \in V_{h}$ is unique.
7.5 Consider the two-point BVP, for $x \in I=(0,1)$:

$$
\begin{aligned}
& -\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x) \\
u(0)= & 0, \quad a(1) u^{\prime}(1)=g_{1},
\end{aligned}
$$

where a is a positive function and g_{1} a constant.
(a) Derive the variational formulation of the above problem.
(b) Discuss how the boundary conditions are implemented.
7.6 Consider the two-point BVP, for $x \in I=(0,1)$,

$$
\begin{array}{r}
-u^{\prime \prime}(x)=0 \\
u(0)=0, u^{\prime}(1)=7 .
\end{array}
$$

Divide the interval I into two subintervals of length $h=\frac{1}{2}$. Let V_{h} be the corresponding space of continuous piecewise linear functions vanishing at $x=0$.
(a) Formulate a finite element method for the above problem.
(b) Calculate by hand the finite element approximation $U \in V_{h}$ to the above BVP.
(c) Study how the boundary condition at $x=1$ is approximated.
7.7 Consider the two-point BVP

$$
-u^{\prime \prime}(x)=0, \quad 0<x<1, \quad u^{\prime}(0)=5, u(1)=0 .
$$

Let $\mathcal{T}_{h}: x_{j}=\frac{j}{N}, j=0,1, \ldots, N, h=1 / N$ denote a uniform partition of the interval $0<x<1$ into N subintervals. Let V_{h} be the corresponding space of continuous piecewise linear functions.
(a) Use V_{h}, with $N=3$, and formulate a finite element method for the above problem.
(b) Compute the finite element approximation $U \in V_{h}$ assuming $N=3$.
7.8 Consider the problem of finding a solution approximation to

$$
-u^{\prime \prime}(x)=1, \quad 0<x<1, \quad u^{\prime}(0)=u^{\prime}(1)=0
$$

Let \mathcal{T}_{h} be a partition of the interval $0<x<1$ into two subintervals of equal length $h=\frac{1}{2}$. Let V_{h} be the corresponding space of continuous piecewise linear functions.
(a) Can you find an exact solution to the above problem by integrating twice?
(b) Compute a finite element approximation $U \in V_{h}$ to u if possible.
7.11 Consider the finite element method applied to

$$
-u^{\prime \prime}(x)=0, \quad 0<x<1, \quad u(0)=\alpha, u^{\prime}(1)=\beta
$$

where α and β are given constants. Assume that the interval $[0,1]$ is divided into three subintervals of equal length $h=1 / 3$ and that $\left\{\varphi_{j}\right\}_{j=0}^{3}$ is a nodal basis of V_{h}, the corresponding space of continuous piecewise linear functions.
(a) Verify that the ansatz

$$
U(x)=\alpha \varphi_{0}(x)+\zeta_{1} \varphi_{1}(x)+\zeta_{2} \varphi_{2}(x)+\zeta_{3} \varphi_{3}(x)
$$

yields the following system of equations

$$
\frac{1}{h}\left(\begin{array}{cccc}
-1 & 2 & -1 & 0 \tag{1}\\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\zeta_{1} \\
\zeta_{2} \\
\zeta_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
\beta
\end{array}\right)
$$

(b) If $\alpha=2$ and $\beta=3$ show that (1) can be reduced to

$$
\frac{1}{h}\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
\zeta_{1} \\
\zeta_{2} \\
\zeta_{3}
\end{array}\right)=\left(\begin{array}{c}
2 h^{-1} \\
0 \\
3
\end{array}\right)
$$

(c) Solve the above system of equation to find $U(x)$.
7.13 Consider the following eigenvalue problem

$$
-a u^{\prime \prime}(x)+b u(x)=0, \quad 0 \leq x \leq 1, \quad u(0)=u^{\prime}(1)=0
$$

where $a, b>0$ are constants. Let $\mathcal{T}_{h}: 0=x_{0}<x_{1}<\ldots<x_{N}=1$, be a nonuniform partition of the interval $0 \leq x \leq 1$ into N intervals of length $h_{i}=x_{i}-x_{i-1}$, $i=1,2, \ldots, N$. Let V_{h} be the corresponding space of continuous piecewise linear functions. Compute the stiffness and mass matrices.
7.14 Show that the FEM with mesh size h for the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=1 \\
u(0)=7, u^{\prime}(1)=0
\end{array}\right.
$$

with $U(x)=7 \varphi_{0}(x)+U_{1} \varphi_{1}(x)+\ldots+U_{m} \varphi_{m}(x)$ leads to the linear system of equations $\tilde{A} \tilde{U}=\tilde{b}$, where $\tilde{A} \in \mathbb{R}^{m \times(m+1)}, \tilde{U} \in \mathbb{R}^{(m+1) \times 1}, \tilde{b} \in \mathbb{R}^{m \times 1}$ are given by

$$
\tilde{A}=\frac{1}{h}\left(\begin{array}{cccccc}
-1 & 2 & -1 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right), \tilde{U}=\left(\begin{array}{c}
7 \\
U_{1} \\
\vdots \\
U_{m}
\end{array}\right), \tilde{b}=\left(\begin{array}{c}
h \\
\vdots \\
h \\
h / 2
\end{array}\right) .
$$

The above reduces to $A U=b$, with

$$
A=\frac{1}{h}\left(\begin{array}{ccccc}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ldots & 0 \\
\ldots & \ldots & -1 & 2 & -1 \\
0 & 0 & \ldots & -1 & 2
\end{array}\right), U=\left(\begin{array}{c}
U_{1} \\
\vdots \\
U_{m}
\end{array}\right), b=\left(\begin{array}{c}
h+\frac{7}{h} \\
\vdots \\
h \\
h / 2
\end{array}\right) .
$$

4. Chapter 8

8.5a) Compute the solution of

$$
\dot{u}(t)+a(t) u(t)=t^{2}, \quad 0<t<T, \quad u(0)=1
$$

where $a(t)=4$.

5. Chapter 9

9.7 Consider the inhomogeneous problem

$$
\left\{\begin{array}{l}
u_{t}(x, t)-\varepsilon u_{x x}(x, t)=f(x, t), \quad 0<x<1, t>0 \\
u(0, t)=u_{x}(1, t)=0, \quad t>0 \\
u(x, 0)=u_{0}(x), \quad 0<x<1
\end{array}\right.
$$

Show that for the corresponding stationary problem, $u_{t}=0$, one has

$$
\left\|u_{x}\right\| \leq \frac{1}{\varepsilon}\|f\|
$$

9.13 Consider the wave equation

$$
\left\{\begin{array}{l}
u_{t t}(x, t)-u_{x x}(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=u_{0}(x), \quad x \in \mathbb{R} \\
u_{t}(x, 0)=v_{0}(x), \quad x \in \mathbb{R}
\end{array}\right.
$$

Plot the graph of $u(x, 2)$ in the following cases:
(a) $v_{0}=0$ and

$$
u_{0}(x)= \begin{cases}1, & x<0 \\ 0, & x>0\end{cases}
$$

(b) $u_{0}=0$ and

$$
v_{0}(x)= \begin{cases}-1, & -1<x<0 \\ 1, & 0<x<1 \\ 0, & |x|>1\end{cases}
$$

