
TMA683 Tillämpad matematik
Övningsuppgifter (boken FEM)

16 november 2020

This document contains the exercises from the compendium from M. Asadzadeh (23.08.2018).

1. Chapter 4

4.1 Prove that V
(q)
0 = {v ∈ P (q)(0, 1), v(0) = 0} is a subspace of P(q)(0, 1).

4.3 Consider the ODE

u̇(t) = u(t), 0 < t < 1, u(0) = 1.

Compute its Galerkin approximation in P(q)(0, 1) for q = 1, 2, 3, 4.
4.4 Compute the stiffness matrix and load vector in a finite element approximation of the

BVP
−u′′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0

with f(x) = x and h = 1/4.
4.5 We want to find a solution approximation U(x) to

−u′′(x) = 1, 0 < x < 1, u(0) = u(1) = 0,

using the ansatz U(x) = A sin(πx) +B sin(2πx).
(a) Calculate the exact solution u(x).
(b) Write down the residual R(x) = −U ′′(x)− 1.
(c) Use the orthogonality condition∫ 1

0

R(x) sin(nπx) dx = 0, n = 1, 2

to determine the constants A and B.
(d) Plot the error e(x) = |u(x)− U(x)|.

4.6 Consider the BVP

−u′′(x) + u(x) = x, 0 < x < 1, u(0) = u(1) = 0.

(a) Verify that the exact solution to the above problem reads

u(x) = x− sinh(x)

sinh(1)
.

(b) Let U(x) be a solution approximation defined by

U(x) = A sin(πx) +B sin(2πx) + C sin(3πx),
1
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where A,B,C are unknown constants. Compute the residual

R(x) = −U ′′(x) + U(x)− x.

(c) Use the orthogonality conditions∫ 1

0

R(x) sin(nπx) dx = 0, n = 1, 2, 3

to determine the constants A,B,C.
4.7 Let U(x) = ζ0ϕ0(x) + ζ1ϕ1(x) be a solution approximation to

−u′′(x) = x− 1, 0 < x < π, u′(0) = u(π) = 0,

where ζ0 and ζ1 are unknown coefficients and ϕ0(x) = cos(x
2
), ϕ1(x) = cos(3x

2
).

(a) Find the analytical solution u(x).
(b) Define the residual R(x).
(c) Compute the constants ζ0 and ζ1 using the orthogonality conditions∫ π

0

R(x)ϕi(x) dx = 0, i = 0, 1.

I.e. by projecting R(x) onto the vector space spanned by ϕ0(x) and ϕ1(x).
4.8 Use the projection technique of the previous exercise to solve

−u′′(x) = 0, 0 < x < π, u(0) = 0, u(π) = 2,

with U(x) = A sin(x) + B sin(2x) + C sin(3x) + 2
π2x

2 and using the test functions
{sin(x), sin(2x), sin(3x)}.

2. Chapter 5

5.1 Consider two real numbers a < b. By defintion of Lagranges polynomials, one has

λa(x) =
b− x

b− a
and λb(x) =

x− a

b− a
.

Show that
λa(x) + λb(x) = 1 and aλa(x) + bλb(x) = x.

Give a geometric interpretation by plotting λa(x), λb(x), λa(x)+λb(x) and aλa(x), bλb(x), aλa(x)+

bλb(x).
5.2 Consider the following functions defined for x ∈ [0, 1]:

f(x) = x2 and g(x) = sin(πx).

Find their linear interpolants, denoted by Πf ∈ P(0, 1), resp. Πg ∈ P(0, 1). In the
same figure, plot f and Πf , as well as g and Πg.
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5.3 Determine the linear interpolant of the function, defined for x ∈ [−π, π],

f(x) =
1

π2
(x− π)2 − cos2(x− π

2
),

where the interval [−π, π] is divided into 4 equal subintervals.
5.15 Prove that ∫ x1

x0

f ′(
x0 + x1

2
)(x− x0 + x1

2
) dx = 0.

5.16 Prove that∣∣∣∣∫ x1

x0

f(x) dx− f(
x0 + x1

2
)(x1 − x0)

∣∣∣∣ ≤ 1

2
max
[x0,x1]

|f ′′(x)|
∫ x1

x0

(x− x0 + x1

2
)2 dx

≤ 1

24
(x1 − x0)

3 max
[x0,x1]

|f ′′(x)|.

Hint: Use a Taylor expansion of f about x = x0+x1

2
.

3. Chapter 7

7.1 Consider the two-point BVP

−u′′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0.

Let V = {v : ∥v∥+ ∥v′∥ < ∞, v(0) = v(1) = 0} where ∥·∥ denotes the L2-norm.
(a) Use V to derive a variational formulation for the above BVP.
(b) Discuss why V is valid as a vector space of test functions.
(c) Classify which of the following functions are admissible test functions:

sin(πx), x2, x ln(x), ex − 1, x(1− x).

7.3 Consider the two-point BVP

−u′′(x) = 1, 0 < x < 1, u(0) = u(1) = 0.

Let Th : xj =
j
4
, j = 0, 1, 2, 3, 4 denote a partition of the interval 0 < x < 1 into four

subintervals of equal length h = 1/4. Let Vh be the corresponding space of continuous
piecewise liner functions vanishing at x = 0 and x = 1.
(a) Compute a finite element approximation U ∈ Vh to the above BVP.
(b) Prove that U ∈ Vh is unique.

7.5 Consider the two-point BVP, for x ∈ I = (0, 1):

−(a(x)u′(x))′ = f(x)

u(0) = 0, a(1)u′(1) = g1,

where a is a positive function and g1 a constant.
3
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(a) Derive the variational formulation of the above problem.
(b) Discuss how the boundary conditions are implemented.

7.6 Consider the two-point BVP, for x ∈ I = (0, 1),

−u′′(x) = 0

u(0) = 0, u′(1) = 7.

Divide the interval I into two subintervals of length h = 1
2
. Let Vh be the corresponding

space of continuous piecewise linear functions vanishing at x = 0.
(a) Formulate a finite element method for the above problem.
(b) Calculate by hand the finite element approximation U ∈ Vh to the above BVP.
(c) Study how the boundary condition at x = 1 is approximated.

7.7 Consider the two-point BVP

−u′′(x) = 0, 0 < x < 1, u′(0) = 5, u(1) = 0.

Let Th : xj = j
N
, j = 0, 1, . . . , N, h = 1/N denote a uniform partition of the interval

0 < x < 1 into N subintervals. Let Vh be the corresponding space of continuous
piecewise linear functions.
(a) Use Vh, with N = 3, and formulate a finite element method for the above problem.
(b) Compute the finite element approximation U ∈ Vh assuming N = 3.

7.8 Consider the problem of finding a solution approximation to

−u′′(x) = 1, 0 < x < 1, u′(0) = u′(1) = 0.

Let Th be a partition of the interval 0 < x < 1 into two subintervals of equal length
h = 1

2
. Let Vh be the corresponding space of continuous piecewise linear functions.

(a) Can you find an exact solution to the above problem by integrating twice?
(b) Compute a finite element approximation U ∈ Vh to u if possible.

7.11 Consider the finite element method applied to

−u′′(x) = 0, 0 < x < 1, u(0) = α, u′(1) = β,

where α and β are given constants. Assume that the interval [0, 1] is divided into
three subintervals of equal length h = 1/3 and that {φj}3j=0 is a nodal basis of Vh, the
corresponding space of continuous piecewise linear functions.
(a) Verify that the ansatz

U(x) = αφ0(x) + ζ1φ1(x) + ζ2φ2(x) + ζ3φ3(x),
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yields the following system of equations

(1) 1

h

−1 2 −1 0

0 −1 2 −1

0 0 −1 1



α

ζ1

ζ2

ζ3

 =

0

0

β

 .

(b) If α = 2 and β = 3 show that (1) can be reduced to

1

h

 2 −1 0

−1 2 −1

0 −1 1


ζ1

ζ2

ζ3

 =

2h−1

0

3

 .

(c) Solve the above system of equation to find U(x).
7.13 Consider the following eigenvalue problem

−au′′(x) + bu(x) = 0, 0 ≤ x ≤ 1, u(0) = u′(1) = 0,

where a, b > 0 are constants. Let Th : 0 = x0 < x1 < . . . < xN = 1, be a non-
uniform partition of the interval 0 ≤ x ≤ 1 into N intervals of length hi = xi − xi−1,
i = 1, 2, . . . , N . Let Vh be the corresponding space of continuous piecewise linear
functions. Compute the stiffness and mass matrices.

7.14 Show that the FEM with mesh size h for the problem−u′′(x) = 1 0 < x < 1

u(0) = 7, u′(1) = 0,

with U(x) = 7φ0(x)+U1φ1(x)+ . . .+Umφm(x) leads to the linear system of equations
ÃŨ = b̃, where Ã ∈ Rm×(m+1), Ũ ∈ R(m+1)×1, b̃ ∈ Rm×1 are given by

Ã =
1

h


−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0

 , Ũ =


7

U1

...
Um

 , b̃ =


h
...
h

h/2

 .

The above reduces to AU = b, with

A =
1

h


2 −1 0 . . . 0

−1 2 −1 . . . 0

. . . . . . −1 2 −1

0 0 . . . −1 2

 , U =


U1

...
Um

 , b =


h+ 7

h
...
h

h/2

 .
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4. Chapter 8

8.5a) Compute the solution of

u̇(t) + a(t)u(t) = t2, 0 < t < T, u(0) = 1,

where a(t) = 4.

5. Chapter 9

9.7 Consider the inhomogeneous problem
ut(x, t)− εuxx(x, t) = f(x, t), 0 < x < 1, t > 0

u(0, t) = ux(1, t) = 0, t > 0

u(x, 0) = u0(x), 0 < x < 1.

Show that for the corresponding stationary problem, ut = 0, one has

∥ux∥ ≤ 1

ε
∥f∥ .

9.13 Consider the wave equation
utt(x, t)− uxx(x, t) = 0, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R

ut(x, 0) = v0(x), x ∈ R.

Plot the graph of u(x, 2) in the following cases:
(a) v0 = 0 and

u0(x) =

1, x < 0

0, x > 0.

(b) u0 = 0 and

v0(x) =


−1, −1 < x < 0

1, 0 < x < 1

0, |x| > 1.
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