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Chapter 5: FEM for two-point BVP (summary)

November 20, 2020

Goal: We use the theoretical and practical tools from the previous sections to present and analyse
various BVP.

» In order to get a FE approximation to the BVP (a > 0 and f are given)

—(ax)u'(x))' = f(x) for x€(0,1)
u0)=0 and u(1)=0

we proceed as usual:

1. Define the test/trial space V° = {v: [0,1] = R: v,v' € [?(0,1), v(0) = v(1) = 0}, multiply the DE
with a test function v € V9, integrate over the domain [0, 1] and get the VF

1 1
Findue V® such that f a(x)u' (x)v' (x)dx = f f@vx)dx VveVo
0 0

2. Define the finite dimensional space V,S ={v:[0,1]1 —R: vis cont. pw. linear on Ty, v(0) = v(1) = 0},

where as usual T}, is a uniform partition with mesh / = mL Observe that V;(l) =span(gi,...,Pm)

+1
with the hat functions ¢;.
The FE problem then reads

1

1
FindU e V) such that fa(x)U’(x)x'(x)dx:f f@yxdx VyeV).
0 0

The above is also called ¢G(1) FE (for linear continuous Galerkin FE).

m
3. Choosing y = ¢;, writing U(x) = Z (j9;j(x), and inserting everything into the FE problem
j=1
gives the following linear system of equations
SC=bh,
1
where the m x m stiffness matrix S has entries s; i= / a(x)(p’l.(x)(p;. (x)dx and the m x 1 load
0
1
vector b has entries b; = f f(x);(x)dx. Formulas for these entries can be found in the book.
0
Solving this system gives the vector ¢ and in turns the numerical approximation U.

» The above needs minor adaptations when dealing with other BC. Let us for example derive a FE
approximation for the following BVP

—-u"(x)+4u(x)=0 for x€(0,1)
u(0)=a and u(l)=4,

where a # 0 and 8 # 0 are given real number. Such boundary conditions are called non-homogeneous

Dirichlet boundary conditions.

The derivation of a numerical approximation for solutions to the above problem is given by
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1. Define the trial space V = {1/: 0,11 = R: v,v' €%(0,1),v(0) = a,v(l) = ,B} and the test space
VO ={v:[0,11>R: v,v' € [?(0,1),v(0) = v(1) =0}. Multiply the DE with a test function v €
VY, integrate over the domain [0, 1] and get the VF

1 1
Findue V such that [u'(x)v'(x)dx+4f uxvx)dx=0 VYveVO,
0 0

2. Next, define the finite dimensional spaces
Vi ={v: 10,11 = R: vis cont. pw. linear on Tj, andv(0) = a, v(1) = #} and
V}? = {v: [0,1] = R: vis cont. pw. linear on Ty, v(0) = v(1) = 0}, where as before T}, is a uni-
1

form partition with mesh h = . Observe that Vj, = span(@o, 91,...,9m,@m+1) < V and

V}? =span(gy,...,m) € V0 with the hat functions Qj.
The FE problem then reads

1 1
FindU € Vj, such that f U'(x)y (x)dx+4 f Ux)y(xdx YyeVy.
0 0

m+1
3. Choosing y = ¢;, writing U(x) = Z (jj(x) with (o = a and {41 = B (due to the BC), and
j=0
inserting everything into the FE problem gives the following linear system of equations

(S+4M)( = b,

1
where the m x m stiffness matrix S has entries s;; = [ @;(X)¢;(x) dx, the m x m mass matrix
0

1
M has entries m;; = /0 ®i(x)@;(x)dx, and the m x 1 vector b has entries b; = —a(@g, ¢}) 2 —
B, 12 — 4a(@o, 9i) 2 — 4P(@m+1, ;)12 Solving this system gives the vector { and in

turns the numerical approximation U.

 Let us finally consider the problem of finding a numerical approximation of solutions to the BVP

—au'(x)+bu'(x)=r for xe€(0,1)
w0 =0 and u'(1)=p,
where f# 0, a,b > 0, and r are given real number. One has a homogeneous Dirichlet boundary
conditions for x = 0 and non-homogeneous Neumann boundary conditions for x = 1.
For ease of presentation we take a = b = r = 1 and derive a FE approximation as follows
1. Define the space V = {v: [0,1] = R: v,v' € L*(0,1), v(0) = 0}. Multiply the DE with a test func-
tion v € V, integrate over the domain [0, 1] and get the VF

1
Findue V such that (u',v’)Lz+(u',v)Lz:f v(x)dx+pv(l) VveV.
0

2. Next, define the finite dimensional space V, = {v: [0,1] = R: viscont. pw. linear on T}, v(0) = 0},

where as before T}, is a uniform partition with mesh h = —L—.

Observe that Vj, = span(¢gy,...,¢@m, @m+1) < V, with the hat functions ¢ ;.
The FE problem then reads

1
FindU € V}, such that (U’,X')Lz+(U',)()Lz=f yxX)dx+By(1) VYveV,.
0

2
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m+1

3. Choosing y = ¢;, writing U(x) = Z (j@;j(x), observing that ¢, is a half hat function, and
j=1

inserting everything into the FE problem gives the following linear system of equations

(S+C) =h,

1
where the (m +1) x (m + 1) stiffness matrix S has entries s;; = f @; ()¢ (x) dx, the (m +1) x
0

1
(m + 1) convection matrix C has entries ¢;; = f (p’j(x)(pi(x) dx, and the (m+1) x 1 vector b
0

1
has entries b; = f @i(x)dx + Be;(1). Detailed formulas for these entries can be found in the

book. Solving this system gives the vector ¢ and in turns the numerical approximation U.

e Let f: (0,1) — R be bounded and continuous. Then, the BVP

—u'"(x)=f(x) for x€e(0,1)
u(0)=0 and u(1)=0

is equivalent to the VF

Find ue€?0,1)nV°® suchthat (u,v")201) = (f, )20, forall veVP.

e Poincaré inequality reads: Let L > 0 and consider the open interval Q = (0,L). Assume that u €
H&(Q) ={v: Q—R: v,V € [2(Q), v(0) = v(L) = 0}. Then, one has

lullzz) = CL “ u’”LZ(Q) :

e Apriori error estimate in the energy norm. Let f: (0,1) — R be bounded and continuous. Consider
the BVP

-u"(x)=f(x) for x€(0,1)
u(0) =0 and wu(l)=0.

Denote by U the solution to the corresponding FE problem (cG(1) FE). Assume that u € €2(0,1).
Then, there exists a C > 0 such that

lu-Ulg=<Ch| uN”LZ(O,l)’

where |vlg = Vv, V) = \/(V/, V") 12(9,1) denotes the energy norm.

Further resources:

e www.simscale.com
o wiki

o wiki

¢ cs.uchicago.edu

s youtube
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https://www.simscale.com/docs/simwiki/numerics-background/what-are-boundary-conditions/
https://en.wikipedia.org/wiki/Galerkin_method#Galerkin_orthogonality
https://en.wikipedia.org/wiki/Poincar%C3%A9_inequality
http://people.cs.uchicago.edu/~ridg/autoscicomp/chapzero.pdf
https://www.youtube.com/watch?v=LEGPIfBf05Q&ab_channel=PGE383AdvancedGeomechanics

