Chapter 5: FEM for two-point BVP (summary)

November 20, 2020

Goal: We use the theoretical and practical tools from the previous sections to present and analyse various BVP.

- In order to get a FE approximation to the $\operatorname{BVP}(a>0$ and f are given)

$$
\left\{\begin{array}{l}
-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x) \text { for } x \in(0,1) \\
u(0)=0 \text { and } u(1)=0
\end{array}\right.
$$

we proceed as usual:

1. Define the test/trial space $V^{0}=\left\{v:[0,1] \rightarrow \mathbb{R}: v, v^{\prime} \in L^{2}(0,1), v(0)=v(1)=0\right\}$, multiply the DE with a test function $v \in V^{0}$, integrate over the domain $[0,1]$ and get the VF

$$
\text { Find } u \in V^{0} \quad \text { such that } \quad \int_{0}^{1} a(x) u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\int_{0}^{1} f(x) v(x) \mathrm{d} x \quad \forall v \in V^{0}
$$

2. Define the finite dimensional space $V_{h}^{0}=\left\{v:[0,1] \rightarrow \mathbb{R}: v\right.$ is cont. pw. linear on $\left.T_{h}, v(0)=v(1)=0\right\}$, where as usual T_{h} is a uniform partition with mesh $h=\frac{1}{m+1}$. Observe that $V_{h}^{0}=\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ with the hat functions φ_{j}.
The FE problem then reads

$$
\text { Find } U \in V_{h}^{0} \quad \text { such that } \quad \int_{0}^{1} a(x) U^{\prime}(x) \chi^{\prime}(x) \mathrm{d} x=\int_{0}^{1} f(x) \chi(x) \mathrm{d} x \quad \forall \chi \in V_{h}^{0}
$$

The above is also called $c G(1)$ FE (for linear continuous Galerkin FE).
3. Choosing $\chi=\varphi_{i}$, writing $U(x)=\sum_{j=1}^{m} \zeta_{j} \varphi_{j}(x)$, and inserting everything into the FE problem gives the following linear system of equations

$$
S \zeta=b
$$

where the $m \times m$ stiffness matrix S has entries $s_{i j}=\int_{0}^{1} a(x) \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x$ and the $m \times 1$ load vector b has entries $b_{i}=\int_{0}^{1} f(x) \varphi_{i}(x) \mathrm{d} x$. Formulas for these entries can be found in the book. Solving this system gives the vector ζ and in turns the numerical approximation U.

- The above needs minor adaptations when dealing with other BC. Let us for example derive a FE approximation for the following BVP

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+4 u(x)=0 \quad \text { for } \quad x \in(0,1) \\
u(0)=\alpha \quad \text { and } \quad u(1)=\beta
\end{array}\right.
$$

where $\alpha \neq 0$ and $\beta \neq 0$ are given real number. Such boundary conditions are called non-homogeneous Dirichlet boundary conditions.

The derivation of a numerical approximation for solutions to the above problem is given by

1. Define the trial space $V=\left\{v:[0,1] \rightarrow \mathbb{R}: v, v^{\prime} \in L^{2}(0,1), v(0)=\alpha, v(1)=\beta\right\}$ and the test space $V^{0}=\left\{v:[0,1] \rightarrow \mathbb{R}: v, v^{\prime} \in L^{2}(0,1), v(0)=v(1)=0\right\}$. Multiply the DE with a test function $v \in$ V^{0}, integrate over the domain $[0,1]$ and get the VF

$$
\text { Find } u \in V \quad \text { such that } \int_{0}^{1} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x+4 \int_{0}^{1} u(x) v(x) \mathrm{d} x=0 \quad \forall v \in V^{0}
$$

2. Next, define the finite dimensional spaces
$V_{h}=\left\{v:[0,1] \rightarrow \mathbb{R}: v\right.$ is cont. pw. linear on T_{h} and $\left.v(0)=\alpha, v(1)=\beta\right\}$ and $V_{h}^{0}=\left\{v:[0,1] \rightarrow \mathbb{R}: v\right.$ is cont. pw. linear on $\left.T_{h}, v(0)=v(1)=0\right\}$, where as before T_{h} is a uniform partition with mesh $h=\frac{1}{m+1}$. Observe that $V_{h}=\operatorname{span}\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{m}, \varphi_{m+1}\right) \subset V$ and $V_{h}^{0}=\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}\right) \subset V^{0}$ with the hat functions φ_{j}.
The FE problem then reads

$$
\text { Find } U \in V_{h} \quad \text { such that } \quad \int_{0}^{1} U^{\prime}(x) \chi^{\prime}(x) \mathrm{d} x+4 \int_{0}^{1} U(x) \chi(x) \mathrm{d} x \quad \forall \chi \in V_{h}^{0}
$$

3. Choosing $\chi=\varphi_{i}$, writing $U(x)=\sum_{j=0}^{m+1} \zeta_{j} \varphi_{j}(x)$ with $\zeta_{0}=\alpha$ and $\zeta_{m+1}=\beta$ (due to the BC), and inserting everything into the FE problem gives the following linear system of equations

$$
(S+4 M) \zeta=b
$$

where the $m \times m$ stiffness matrix S has entries $s_{i j}=\int_{0}^{1} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x$, the $m \times m$ mass matrix M has entries $m_{i j}=\int_{0}^{1} \varphi_{i}(x) \varphi_{j}(x) \mathrm{d} x$, and the $m \times 1$ vector b has entries $b_{i}=-\alpha\left(\varphi_{0}^{\prime}, \varphi_{i}^{\prime}\right)_{L^{2}}-$ $\beta\left(\varphi_{m+1}^{\prime}, \varphi_{i}^{\prime}\right)_{L^{2}}-4 \alpha\left(\varphi_{0}, \varphi_{i}\right)_{L^{2}}-4 \beta\left(\varphi_{m+1}, \varphi_{i}^{\prime}\right)_{L^{2}}$. Solving this system gives the vector ζ and in turns the numerical approximation U.

- Let us finally consider the problem of finding a numerical approximation of solutions to the BVP

$$
\left\{\begin{array}{l}
-a u^{\prime \prime}(x)+b u^{\prime}(x)=r \quad \text { for } \quad x \in(0,1) \\
u(0)=0 \text { and } u^{\prime}(1)=\beta
\end{array}\right.
$$

where $\beta \neq 0, a, b>0$, and r are given real number. One has a homogeneous Dirichlet boundary conditions for $x=0$ and non-homogeneous Neumann boundary conditions for $x=1$.

For ease of presentation we take $a=b=r=1$ and derive a FE approximation as follows

1. Define the space $V=\left\{v:[0,1] \rightarrow \mathbb{R}: v, v^{\prime} \in L^{2}(0,1), v(0)=0\right\}$. Multiply the DE with a test function $v \in V$, integrate over the domain $[0,1]$ and get the VF

$$
\text { Find } u \in V \quad \text { such that } \quad\left(u^{\prime}, v^{\prime}\right)_{L^{2}}+\left(u^{\prime}, v\right)_{L^{2}}=\int_{0}^{1} v(x) \mathrm{d} x+\beta v(1) \quad \forall v \in V
$$

2. Next, define the finite dimensional space $V_{h}=\left\{v:[0,1] \rightarrow \mathbb{R}: v\right.$ is cont. pw. linear on $\left.T_{h}, v(0)=0\right\}$, where as before T_{h} is a uniform partition with mesh $h=\frac{1}{m+1}$.
Observe that $V_{h}=\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}, \varphi_{m+1}\right) \subset V$, with the hat functions φ_{j}.
The FE problem then reads
Find $U \in V_{h} \quad$ such that $\quad\left(U^{\prime}, \chi^{\prime}\right)_{L^{2}}+\left(U^{\prime}, \chi\right)_{L^{2}}=\int_{0}^{1} \chi(x) \mathrm{d} x+\beta \chi(1) \quad \forall v \in V_{h}$.
3. Choosing $\chi=\varphi_{i}$, writing $U(x)=\sum_{j=1}^{m+1} \zeta_{j} \varphi_{j}(x)$, observing that φ_{m+1} is a half hat function, and inserting everything into the FE problem gives the following linear system of equations

$$
(S+C) \zeta=b
$$

where the $(m+1) \times(m+1)$ stiffness matrix S has entries $s_{i j}=\int_{0}^{1} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x$, the $(m+1) \times$ $(m+1)$ convection matrix C has entries $c_{i j}=\int_{0}^{1} \varphi_{j}^{\prime}(x) \varphi_{i}(x) \mathrm{d} x$, and the $(m+1) \times 1$ vector b has entries $b_{i}=\int_{0}^{1} \varphi_{i}(x) \mathrm{d} x+\beta \varphi_{i}(1)$. Detailed formulas for these entries can be found in the book. Solving this system gives the vector ζ and in turns the numerical approximation U.

- Let $f:(0,1) \rightarrow \mathbb{R}$ be bounded and continuous. Then, the BVP

$$
\begin{cases}-u^{\prime \prime}(x)=f(x) & \text { for } \quad x \in(0,1) \\ u(0)=0 & \text { and } \\ u(1)=0\end{cases}
$$

is equivalent to the VF

$$
\text { Find } \quad u \in \mathscr{C}^{2}(0,1) \cap V^{0} \quad \text { such that } \quad\left(u^{\prime}, v^{\prime}\right)_{L^{2}(0,1)}=(f, v)_{L^{2}(0,1)} \text { for all } \quad v \in V^{0}
$$

- Poincaré inequality reads: Let $L>0$ and consider the open interval $\Omega=(0, L)$. Assume that $u \in$ $H_{0}^{1}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R}: v, v^{\prime} \in L^{2}(\Omega), v(0)=v(L)=0\right\}$. Then, one has

$$
\|u\|_{L^{2}(\Omega)} \leq C_{L}\left\|u^{\prime}\right\|_{L^{2}(\Omega)}
$$

- A priori error estimate in the energy norm. Let $f:(0,1) \rightarrow \mathbb{R}$ be bounded and continuous. Consider the BVP

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x) \quad \text { for } x \in(0,1) \\
u(0)=0 \text { and } u(1)=0
\end{array}\right.
$$

Denote by U the solution to the corresponding FE problem (cG(1) FE). Assume that $u \in \mathscr{C}^{2}(0,1)$. Then, there exists a $C>0$ such that

$$
\|u-U\|_{E} \leq C h\left\|u^{\prime \prime}\right\|_{L^{2}(0,1)}
$$

where $\|v\|_{E}=\sqrt{(v, v)_{E}}=\sqrt{\left(v^{\prime}, \nu^{\prime}\right)_{L^{2}(0,1)}}$ denotes the energy norm.

Further resources:

- www.simscale.com
- wiki
- wiki
- cs.uchicago.edu
- youtube

