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Preface

This document contains lecture notes associated with the lectures given in the
course SSY130 - Applied Signal Processing. Each of the 14 chapters in the
document cover the material presented in the lectures in the course. The pre-
sentation of the material assumes basic knowledge of mathematical analysis,
random variables, linear algebra, Fourier analysis and signals and systems.

The ordering of the material in the lectures is highly influenced by the two
design projects which is part och the course. The scheduling of the lecture
material is designed to be in sync with the project work.

Gothenburg, November 3, 2020

Tomas McKelvey
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Chapter 1

Introduction and
continuous time signals and
systems

Introduction to the DSP subject

DSP means digital signal processing or digital signal processors. The former
refers to the processing techniques and mathematical algorithms while the latter
refers to specific electric hardware dedicated to signal processing.

Signals are everywhere around us:

• Electric: Voltages, currents and electromagnetic fields

• Acoustic: Sound waves in air and water

• Mechanic: Vibrations, angular motion, velocities, forces, moments and
pressures

• Thermic: Temperatures

All signal above are continuous in time or in space (or both). Sampling of
such signals enables algorithmic processing in a computer. The availability and
rapid development of low-cost, low-power digital circuits, processors and large
digital memory has lead to an enormous development of applications where DSP
is an integral part. Examples are:

• Speech-Audio-Music-Video-Multimedia: noise-reduction, coding, compres-
sion, enhancement (CD, MPEG, MP3, DVB, DAB,DVD,Blue-Ray)

• Radio, Mobile phones: modulation, transmission, coding (QPSK, OFDM)

• Radar, Sonar: filtering, target detection, tracking

• Control: servomechanisms, setpoint control and disturbance rejection

• Biomedical: biomedical signal analysis (ECG), imaging (CT, MRI), mon-
itoring, telemedicin, e-Health
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What is a DSP system

• Processing of signals: filtering, modulation etc. ⇒ Change the signal

• Analysis of signals: transforms (Fourier analysis), model based analysis
⇒ Extract features from the signal

• Detection and Classification: Take final decisions based on the signal

Common SP - Structure

Figure 1.1: Common signal processing structure.

Examples:

• Digital radio receiver

• Radar system tracking air-traffic

• Electrocardiography (ECG) analysis

How is DSP implemented

The basic building block is gate logic. The same as for all other digitally based
computing platforms. There exists different layers of abstraction:

• Desktop computers and software

• Dedicated signal processing processors and software

• Embedded processors and software

• Application specific integrated circuits (ASIC)

• Field programmable gate arrays (FPGA)

Properties of DSP

• (-) Signal is always sampled and quantized ⇒non-exact representation

• (-) Analog to digital (AD) and digital to analog (DA) converters necessary
⇒cost and power consumption
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• (-) Limited bandwidth due to limits in clock frequency of the digital cir-
cuitry.

• (+) Control of accuracy and no aging ( no need calibrate a digital algo-
rithm!)

• (+) Very complex algorithms can be realized

• (+) High degree of flexibility (software + mass produced standardized
components)

• (+) Adaptivity - “on-line” changes are possible to incorporate

• (+) Very low-frequencies are easily handled
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A short review of Signals and Systems theory

Signal processing classically deals with exploiting the spectral content. The
reason for this is that the complex exponential e(γ+jω)t form a basis for all
solutions to linear dynamic systems. The Fourier and Laplace transforms are
then the natural tools for analysis.

Fourier transform (FT)

Consider a signal x(t) where the argument t denotes the signals dependency
on time and has unit seconds. For a signal x(t), the Fourier transform and its
inverse are defined1 as

X(ω) , FT[x(t)] ,
∫ ∞
−∞

x(t)e−jωt dt

x(t) = FT−1[X(ω)] ,
1

2π

∫ ∞
−∞

X(ω)ejωt dω

(1.1)

here j ,
√
−1 and where the argument ω denote frequency in unit radi-

ans/seconds and hence ω = 2πf where f denotes frequency with unit 1/seconds
(Hertz). Note that the Fourier transform is a linear operator and we have the
important property

FT[α1x1(t) + α2x2(t)] = α1FT[x1(t)] + α2FT[x2(t)] (1.2)

where α1 and α2 are real or complex scalar constants. The signal energy can
be expressed as (Parseval’s relation)

E =

∫ ∞
−∞
|x(t)|2 dt =

1

2π

∫ ∞
−∞
|X(ω)|2 dω (1.3)

This means that |X(ω)|2 illustrates how the energy in the signal is distributed
over the frequencies.

Using the theory of distributions simplifies the treatment of some infinite
energy signals, such as sinusoidal signals, when using the Fourier transform.
For such signals the classical FT does not exist. The Dirac delta function δ(t)
play a key role in the analysis. A Dirac delta function is implicitly defined
through the following relations where f(t) is a “well behaved” function.

δ(t) = 0, ∀t 6= 0∫ ∞
−∞

δ(t)f(t) dt = f(0)
(1.4)

A possible constructive way of defining the delta function is by considering the
function

dε(t) =

{
1/ε 0 ≤ t < ε

0 otherwise.
(1.5)

1We use the notation x , y/2 to define the symbol x to be equal to y/2. A simple equality
sign = denotes that the expression on the left hand side is equal to the right hand side and is
used in algebraic derivations.
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Time dom. Fourier dom.
Delay x(t− t0) e−jωt0X(ω)
Modulation ejω0tx(t) X(ω − ω0)
Differentiation d

dtx(t) jωX(ω)
Constant 1 2πδ(ω)
Delta fun. δ(t) 1
Convolution

∫∞
−∞ h(τ)x(t− τ) dτ H(ω)X(ω)

Table 1.1: Fourier transform properties where X(ω) = FT[x(t)]

Then in the limit we have
lim
ε→0

dε(t) = δ(t) (1.6)

Scaling the argument of a delta function with a real constant α > 0 yields the
following identity∫ ∞

−∞
f(t)δ(αt) dt = [t = τ/α] =

∫ ∞
−∞

f(τ/α)δ(τ)
dτ

α
=
f(0)

α
(1.7)

Some of the Fourier transform pairs are listed in Table 1.1.

Example 1 Let’s show the first relation in Table 1.1. Using the
definition we obtain

FT[x(t− t0)] =

∫ ∞
−∞

x(t− t0)e−jωt dt = [τ = t− t0]

=

∫ ∞
−∞

x(τ)e−jω(τ+t0) dτ

= e−jωt0
∫ ∞
−∞

x(τ)e−jωτ dτ

= e−jωt0X(ω)

(1.8)

�

Recall the Euler’s relations for complex numbers:

ejθ = cos θ + j sin θ

cos θ =
1

2
(ejθ + e−jθ) = Re(ejθ)

sin θ =
1

2j
(ejθ − e−jθ) = Im(ejθ)

(1.9)

The relations can also graphically be illustrated as shown in Figure 1.2.

Example 2 With the properties of Euler’s relations we obtain

FT[cos(ω0t)] =
1

2
FT[ejω0t + e−jωot] =

2π

2
(δ(ω − ω0) + δ(ω + ω0))

(1.10)
The energy of a real valued sinusoidal signal is consequently repre-
sented in the Fourier domain by two delta functions located at ±ω0.

�
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z = ejθ

Re z

Im z

1

cos θ

sin θ

Figure 1.2: Unit circle with vector z = ejθ = cos θ + j sin θ.
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Figure 1.3: Linear system with impulse response h(t)

Linear systems

Many signal processing operations, such as linear filtering, can be viewed as
the result of a linear system operating on the input signal x(t) and producing
an output signal y(t). Mathematically this operation is known as filtering or
convolution and is defined by

y(t) = x(t) ∗ h(t) ,
∫ ∞
−∞

h(τ)x(t− τ) dτ (1.11)

where h(τ) is the impulse response of the linear system, x(t) is the input signal
and y(t) us the resulting output signal. Note that

x(t) ∗ h(t) =

∫ ∞
−∞

h(τ)x(t− τ) dτ =

=

∫ ∞
−∞

x(τ)h(t− τ) dτ = h(t) ∗ x(t)

(1.12)

which means that the convolution operator is commutative (the order between
x and h is indifferent). Inspecting (1.11) we notice that the output at time t
is a weighted integration of the input signal where the weighting function is
given by the impulse response. If the impulse response is zero for all values of
τ < 0, then the output at time t only depends on past (and the present) values
of the input signal. Such a system is called causal. For an anti-causal system
the output depends only on the future values (and present) of the input while
in a non-causal system the output can depend on both future and past values
of the input.

As shown in Table 1.1 the convolution operation is particularly simple in the
Fourier domain since

Y (ω) = H(ω)X(ω) (1.13)
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The Fourier transform of the output of the linear dynamic system, which is a
complex function, can be written as the (complex) product between the Fourier
transforms of the input and impulse response respectively. Finally, we note that
filtering/convolution is a linear operation and hence,

h(t) ∗ (α1x1(t) + α2x2(t)) = α1(h(t) ∗ x1(t)) + α2(h(t) ∗ x2(t)). (1.14)

It is clear from the definition of convolution in (1.11) that if x1(t) = x(t − t0)
is the input signal then the output will be y1(t) = y(t − t0). This means that
the dynamic behaviour of the system is invariant with respect to the absolute
time, i.e. the impulse response function is unchanged. To highlight this property
we call such systems time invariant. Together with the linear property we get
linear time invariant (LTI) systems.

Complex exponential input

Consider the complex input signal x(t) = ejω0t. Then X(ω) = FT[x(t)] =
2πδ(ω − ω0). If the signal x(t) is filtered by a linear system with impulse
response h(t) we obtain

Y (ω) = H(ω)X(ω) = H(ω)2πδ(ω − ω0) ⇒

y(t) = FT−1[Y (ω)] =
1

2π

∫ ∞
−∞

H(ω)2πδ(ω − ω0)ejωt dω =

= H(ω0)ejω0t

(1.15)

where H(ω0) is a complex scalar which makes the output signal a scaled and
phase shifted version of the input signal. The complex function H(ω) is called
the transfer function or frequency function of the filter (linear system). The
magnitude and the phase of this function are known as amplitude and phase
functions of the filter

Amplitude function: A(ω) , |H(ω)|
Phase function: φ(ω) , ∠H(ω)

(1.16)

Note that both the amplitude and phase functions are real-valued. Hence we
can rewrite the output in (1.15) as

y(t) = A(ω0)ej(ω0t+φ(ω0)) (1.17)

Example 3 Assume H(ω) is the frequency function for a filter
with a real-valued impulse response. Let x(t) = A cos(ω0t + γ) be
the signal filtered through the linear filter. Since

x(t) =
A

2

[
ej(ω0t+γ) + e−j(ω0t+γ)

]
=
A

2

[
ejγejω0t + e−jγe−jω0t

]
(1.18)

we obtain

Y (ω) = H(ω)
2Aπ

2

[
ejγδ(ω − ω0) + e−jγδ(ω + ω0)

]
. (1.19)

Using the inverse FT gives the time domain expression for the output

y(t) = FT−1[Y (ω)] =
A

2

[
H(ω0)ej(ω0t+γ) +H(−ω0)e−j(ω0t+γ)

]
.

(1.20)
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Since the impulse response is real-valued |H(ω0| = |H(−ω0)| and
argH(ω) = − argH(−ω). With this we can simplify the output
expresson to

y(t) = |H(ω0)|A cos(ω0t+ γ + argH(ω0)) (1.21)

�

An alternative derivation of the result in (1.15) can be obtained by directly
considering the convolution equation

y(t) =

∫ ∞
−∞

h(τ)ejω0(t−τ) dτ =

∫ ∞
−∞

h(τ)e−jω0τ dτejω0t = H(ω0)ejω0t (1.22)
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Chapter 2

Discrete time systems and
sampling

Discrete time systems

Using clocked digital circuits for processing requires analysis of sampled data
also called discrete time signals. A discrete time signal is a collection of values
{x(n)} defined for integer indices n = 0,±1,±2, . . .. A discrete time signal
is often the result of sampling a continuous time signal xc(t) at regular time
intervals

x(n) , xc(n∆t), n = 0,±1,±2, . . . (2.1)

where ∆t is the sampling interval. Notation wise we make no distinction between
continuous time signals and discrete time signals but use the convention that
a continuous time signal have a real valued argument t or τ while the discrete
time counterpart has the integer argument n, m or k.

Associated with the sampling period we also use several other definitions as
listed below:

sampling period ∆t [s]

sampling frequency: fs , 1
∆t [Hz=1/s]

sampling frequency: ωs , 2π
∆t [rad/s]

Nyquist frequency: fs
2 [Hz]

Often we use dimensionless normalized frequencies f/fs (or ω/ωs). Normalized
frequency 1 thus corresponds to the sampling frequency and 0.5 corresponds to
the Nyquist frequency.

Discrete time Fourier transform (DTFT)

For discrete time signals the Fourier analysis tool is called Discrete time Fourier
transform (DTFT) and is defined as

X(ω) = DTFT[x(n)] ,
∞∑

n=−∞
x(n)e−jωn∆t (2.2)
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where ω has unit radians per second. For integer values k we note that X(ω +
kωs) = X(ω) since

e−j(ω+kωs)n∆t = e−jωn∆t−j2πkn = e−jωn∆t (2.3)

where the last equality follows from the fact that adding multiples of 2π to
the argument (angle) of a complex number leaves the value unchanged. Conse-
quently, the DTFT is a periodic function with a period of ωs = 2πfs = 2π/∆t.

The inverse of the DTFT is given by the relation

x(n) = DTFT−1[X(ω)] =
1

ωs

∫ ωs

0

X(ω)ejωn∆t dω (2.4)

Since X(ω) and ejωn∆t are periodic functions with period ωs, the start of the
integration interval can be arbitrary as long as the length of the interval is ωs.
Common choices are [0, ωs] or [−ωs2 , ωs2 ].

Discrete time convolution Convolution between discrete time signals x(n)
and h(n) is defined as

y(n) =

∞∑
k=−∞

h(k)x(n− k) (2.5)

i.e. the output signal y(n) is a weighted sum of the input signal samples x(n)
where each sample is weighted by the signal h(n). If we consider y(n) as the
output from a discrete time filter we call h(n) the impulse response of the filter.
It can be shown that the DTFT of y(n) has the simle form

Y (ω) = H(ω)X(ω) (2.6)

where H(ω) and X(ω) are the DTFT of the input and impulse response respec-
tively. We can show this result by considering the inverse DTFT of Y (ω) and
use the fact that H(ω) =

∑∞
k=−∞ h(k)e−jωk∆t. This leads to,

y(n) =
1

ωs

∫ ωs

0

∞∑
k=−∞

h(k)e−jωk∆tX(ω)ejωn∆t dω =

=

∞∑
k=−∞

h(k)
1

ωs

∫ ωs

0

X(ω)ejω(n−k)∆t dω =

=

∞∑
k=−∞

h(k)x(n− k)

(2.7)

Hence we have established that discrete time convolution in the time domain is
equivalent to multiplication in the frequency domain:

y(n) =

∞∑
k=−∞

h(k)x(n− k) ⇔ Y (ω) = H(ω)X(ω) (2.8)

Sometimes the operator ∗ is used to denote convolution:

x(n) ∗ h(n) ,
∞∑

k=−∞

h(k)x(n− k) (2.9)
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Time dom. Fourier dom.
Delay x(n− k) e−j∆tωkX(ω)
Modulation ejω0∆tnx(n) X(ω − ω0)

Constant 1 ωsδ̃(ω) , ωs
∑∞
k=−∞ δ(ω + kωs)

Kronecker delta δn 1
Convolution

∑∞
k=−∞ h(k)x(n− k) H(ω)X(ω)

Frequency convolution x(n)w(n) 1
ωs

∫ ωs
0
X(λ)W (ω − λ) dλ

Table 2.1: DTFT transform pairs

Some useful DTFT transform pairs are summarized in Table 2.1. In the table
we denote by δn the Kronecker delta function

δn ,

{
1, n = 0

0, n 6= 0
(2.10)

which is the discrete time counterpart to the Dirac delta function. Note that the
convolution of the Kronecker delta function with the impulse response results
in the impulse response, i.e.

δn ∗ h(n) =

∞∑
k=−∞

δkh(n− k) = h(n). (2.11)

Parseval’s relation for a discrete time signal x(n) with finate energy is given
by

∞∑
n=−∞

|x(n)|2 =
1

ωs

∫ ωs

0

|X(ω)|2 dω (2.12)

The unit delay Let z−1 denote the unit delay operator with a behavior
defined by

z−1x(n) , x(n− 1). (2.13)

In digital circuits, this element is one of the basic building blocks and is also
one of the key operations in discrete time filtering (convolution). Employing
the DTFT of the delayed signal yields

DTFT[x(n− 1)] =

∞∑
n=−∞

x(n− 1)e−jωn∆t = [n′ = n− 1] =

=

∞∑
n′=−∞

x(n′)e−jωn
′∆te−jω∆t = e−jω∆tX(ω).

(2.14)

A one step time delay consequently rotates X(ω) an angle of −ω∆t radians
but leaves the magnitude unchanged. Using a natural extension of the notation
above we have

z−kx(n) = x(n− k) and DTFT[x(n− k)] = e−jωk∆tX(ω). (2.15)

Example 4 Consider the following linear operation defining the
output y(n) as

y(n) , αx(n) + βx(n− 1) (2.16)
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Transforming this relation with the DTFT yields

Y (ω) = (α+ βe−jω∆t)X(ω) = H(ω)X(ω) (2.17)

Analogous to the continuous time filtering, we can interpret H(ω)
as the frequency function of the discrete time filtering operation.

Clearly with the definition

h(n) =


α, n = 0

β, n = 1

0, otherwise

(2.18)

we can write (2.16) as a convolution y(n) =
∑∞
k=−∞ h(k)x(n − k)

and we conclude that h(n) in (2.18) is the impulse response of the
filter when we interpret the operation (2.16) as filtering the signal
x(n). �

Example 5 Consider the following linear recursive operation defin-
ing the output y(n) as a linear combination between the input and
past output

y(n) , −αy(n− 1) + βx(n) (2.19)

Transforming this relation with the DTFT yields (assuming |α| < 1
so stability is assured)

Y (ω) = −αe−jω∆tY (ω) + βX(ω) (2.20)

a rearrangement of the terms above then finally yields

Y (ω) =
β

1 + αe−jω∆t
X(ω) = H(ω)X(ω) (2.21)

�

A general difference equation In general a finite dimensional difference
equation can be expressed as

y(n) , −
na∑
k=1

aky(n− k) +

nb∑
k=0

bkx(n− k) (2.22)

and in the transform domain (again assuming stability)

Y (ω) =

∑nb
k=0 bke

−jω∆tk

1 +
∑na
k=1 ake

−jω∆tk
X(ω) = H(ω)X(ω) (2.23)

Here we notice that the frequency function is a rational function in the variable
e−jω∆t which is a characteristic for discrete time systems.

Z-transform, zeros and roots If we define z , ejω∆t we obtain

H(z) =

∑nb
k=0 bkz

−k

1 +
∑na
k=1 akz

−k =
b(z)

a(z)
(2.24)

where a(z) and b(z) are polynomials. The object H(z) is called the transfer
function of the linear system and is the Z-transform of the associated impulse
response. The solutions to a(z) = 0 are called poles and the solutions to b(z) = 0
are called zeros of the transfer function. If the system is causal and all poles
have magnitude strictly smaller than one, the system is stable.
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The impulse response If we return to the frequency function of the general
difference equation in (2.22) and use a series expansion (here we assume this is
allowed from a mathematical point of view) we obtain

H(ω) =

∑nb
k=0 bke

−jωk∆t

1 +
∑na
k=1 ake

−jωk∆t
=

∞∑
k=0

h(k)e−jωk∆t (2.25)

where obviously h(k) is the impulse response of the linear filter.

Sampling and Reconstruction

A full signal processing chain can be described as sampling a continuous time
signal, processing the sampled signal and finally reconstruct a continuous signal
from the sampled version. In order to be able to analyse a full digital signal
processing chain it is useful to describe the sampling and reconstruction oper-
ations using a common language. Here we focus on using the Fourier analysis
tool and we hence need to connect the continuous time Fourier transform with
the Discrete time Fourier transform. This will enable a full FT description in-
cluding effects of sampling, filtering (in the discrete time) and reconstruction
back to a continuous time signal.

Sampling As previously indicated sampling can be described simply as

xd(n) = x(n∆t) (2.26)

where ∆t is the period time of the sampling operation. It is not possible to
employ FT analysis of the discrete time signal xd since it is not defined for
all times t. Instead we model this signal with a continuous time signal xc(t)
with the same information as xd(n). We accomplish this by using Dirac delta
functions

xc(t) ,
∞∑

n=−∞
δ(t− n∆t)x(t) (2.27)

Clearly xc(t) is zero except at the samling times, where the delta function is
scaled with the value of the continuous time signal at that time instance. Now
employing the FT of xc(t) yields

Xc(ω) =

∫ ∞
−∞

xc(t)e
−jωt dt =

∫ ∞
−∞

∞∑
n=−∞

δ(t− n∆t)x(t)e−jωt dt

= . . . =

∞∑
n=−∞

x(n∆t)e−jωn∆t =

∞∑
n=−∞

xd(n)e−jωn∆t

(2.28)

which we recognize as the DTFT of xd(n). In summary we have the identity

FT[xc(t)] = DTFT[xd(n)]. (2.29)

To get the full picture we also need to express Xc(ω) (and thus also Xd(ω)) in
terms of X(ω). Start by expressing x(t) exactly at the sampling time instances
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using the inverse FT:

xd(n) = x(n∆t) =

∫ ∞
−∞

X(ω)ejωn∆t dω

2π

=

∞∑
k=−∞

∫ (k+1)ωs

kωs

X(ω)ejωn∆t dω

2π

= [Variable change: ω = ω′ + kωs]

=

∞∑
k=−∞

∫ ωs

0

X(ω′ + kωs)e
j(ω′+kωs)n∆t dω

′

2π

=
1

ωs

∫ ωs

0

1

∆t

∞∑
k=−∞

X(ω′ + kωs)︸ ︷︷ ︸
Xd(ω′)

ejω
′n∆t dω′

(2.30)

where we recognize the last expression to be the inverse DTFT of the signal
xd(n). In (2.30) we have shown

Xd(ω) = Xc(ω) =
1

∆t

∞∑
k=−∞

X(ω + kωs) (2.31)

which tell us that the transform of the sampled signal is formed from the sum-
mation of an infinite number of segements of the Fourier transform of x(t), each
with a length ωs.
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Chapter 3

Signal reconstruction

Ideal reconstruction of band-limited signals

The operation to convert a discrete time signal to a continuous time signal is
known as reconstruction. Assume that a continuous signal x(t) is band-limited
such that X(ω) = 0 for all |ω| > ωs/2. Then the continuous signal x(t) can be
perfectly recovered from the discrete time samples xd(n) = x(n∆t). To see this
consider the following derivation based on inverse FT of X(ω).

x(t) =
1

2π

∫ ∞
−∞

X(ω)ejωt dω =
1

2π

∫ ωs
2

−ωs2
X(ω)ejωt dω = [Xd(ω) =

1

∆t
X(ω)]

=
∆t

2π

∫ ωs
2

−ωs2
Xd(ω)ejωt dω =

∆t

2π

∫ ωs
2

−ωs2

( ∞∑
n=−∞

xd(n)e−jω∆tn

)
ejωt dω

=
∆t

2π

∞∑
n=−∞

xd(n)

∫ ωs
2

−ωs2
ejω(t−∆tn) dω

=
∆t

2π

∞∑
n=−∞

xd(n)

(
ej

π
∆t (t−∆tn) − e−j π∆t (t−∆tn)

j(t−∆tn)

)

=
∆t

π

∞∑
n=−∞

xd(n)

(
sin( π

∆t (t−∆tn))

(t−∆tn)

)
=

∞∑
n=−∞

xd(n)

(
sin( π

∆t (t−∆tn))
π

∆t (t−∆tn)

)
(3.1)

It is easy to verify that for all t and n such that t = ∆tn we have x(t) = xd(n).
The continuous reconstructed signal x(t), as expected, interpolates xd(n) at the
sampling instances. This result is well known and is expressed in the following
theorem.

Theorem 1. Nyquist sampling: Assume xd(n) = x(∆tn). If ∀|ω| ≥ ωs
2 ,

X(ω) ≡ 0 then Xd(ω) = 1
∆tX(ω) and x(t) can be reconstructed from xd(n)

according to

x(t) =

∞∑
n=−∞

xd(n)

(
sin(ωs2 (t−∆tn))

ωs
2 (t−∆tn)

)
. (3.2)

The ideal reconstruction of the continuous signal x(t) can be explicitly ex-
pressed in terms of the samples of the discrete time signal.
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We can also describe the reconstruction as the result of a convolution/filtering
of the mathematical continuous time representation of the sampled signal. To
see this we start from the identity

xd(n) =

∫ ∞
−∞

xd(n)δ(∆tn− τ) dτ (3.3)

and insert this into (3.2) to obtain

x(t) =

∞∑
n=−∞

∫ ∞
−∞

xd(n)δ(∆tn− τ) dτ

(
sin(ωs2 (t−∆tn))

ωs
2 (t−∆tn)

)
(3.4)

By shifting the order of the sum and integration and noting that the integrand
is zero whenever τ 6= ∆tn we obtain

x(t) =

∫ ∞
−∞

∞∑
n=−∞

xd(n)δ(∆tn− τ)︸ ︷︷ ︸
,xc(τ)

(
sin(ωs2 (t− τ))

ωs
2 (t− τ)

)
︸ ︷︷ ︸

,hIdeal(t−τ)

dτ

=

∫ ∞
−∞

hIdeal(τ)xc(t− τ) dτ

(3.5)

which illustrates that the ideal reconstruction is a filtering operation where the
discrete time signal is represented by the infinite sum of scaled delta pulses.

In the derivation found in (3.1) we implicitly showed that the frequency
function of hIdeal(τ) is

HIdeal(ω) =

{
∆t |ω| < ωs

2

0 otherwise

which of course is expected.
Note that the ideal reconstruction is non-causal. To reconstruct the signal

x(t) at time t, knowledge of all discrete time samples, i.e. both past as well
as future samples of the signal is required. The ideal reconstruction hence has
limited applicability in practice and brings us into the next topic of a more
realistic way of how to approximately reconstruct the signal in a causal way.

ZOH Reconstruction

Ideal reconstruction, as illustrated above, is not practically possible as it requires
non-causal filtering. Zero-order hold (ZOH) reconstruction is however easy to
implement in electronic circuits and we will focus the analysis to this case. A
ZOH reconstruction circuit provides a continuous time output signal y(t) based
on a discrete time signal yd(n) according to

y(t) , yd(n), n∆t ≤ t < (n+ 1)∆t. (3.6)

Hence, the continuous time signal y(t) will be piecewise constant with levels
given by the values of the discrete time signal. Practically, such signal a is
generated by a digital to analog converter (DAC) which is periodically updated
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with the value yd(n). The ZOH operation can mathematically be modeled as
filtering the continuous time representation of the discrete time signal

yc(t) =

∞∑
n=−∞

yd(n)δ(t− n∆t) (3.7)

through a linear filter with impulse response

hZOH(t) =

{
1 0 ≤ t < ∆t

0 otherwise
(3.8)

since∫ ∞
−∞

hZOH(τ)yc(t− τ) dτ =

∫ ∆t

0

∞∑
n=−∞

yd(n)δ(t− τ − n∆t) dτ = y(t). (3.9)

The impulse response of the ZOH filter has the frequency function

HZOH(ω) = FT [hZOH(t)] = ∆te−j
ω∆t

2
sin(ω∆t

2 )
ω∆t

2

= ∆te−jπ
ω
ωs

sin(π ω
ωs

)

π ω
ωs

.

(3.10)

We notice that since limx→0 sin(x)/x = 1 (assuming argument to sin is radians)
we obtain at zero frequency

HZOH(0) = ∆t (3.11)

and the frequency function is zero for all ω = kωs, k = ±1,±2, . . .. We can
compare this frequency function with the ideal one given by

FT [hIdeal(t)] = HIdeal(ω) =

{
∆t |ω| < ωs

2

0 otherwise
(3.12)

where hIdeal(t) is given by (3.5). In Figure 3.1 the magnitude of the ZOH and
ideal frequency functions are shown. The Fourier transform of the continuous
time output is thus given by

Y (ω) = HZOH(ω)Yd(ω). (3.13)

The full system

Now we are ready to present a Fourier domain description of the entire process-
ing chain; sampling, digital processing and reconstruction. As each step can be
represented with a frequency function in the Fourier domain, the total effect is
the product of the individual frequency functions. Hence the FT of the output,
after the reconstruction is described by

Y (ω) = HZOH(ω)P (ω)

[
1

∆t

∞∑
k=−∞

X(ω + ωsk)

]
︸ ︷︷ ︸

Xc(ω)=Xd(ω)

(3.14)
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Figure 3.1: Magnitude plot of the frequency function for ZOH reconstruction
and ideal reconstruction.

where P (ω) represent a discrete time linear filtering operation.
Both P (ω) as well as Xd(ω) are periodic with a period of ωs and HZOH(ω)

is also non-zero for |ω| > ωs/2. Hence Y (ω) will also have energy beyond
the Nyquist frequency when ZOH reconstruction is employed. Those parts can
be regarded as distortions originating from the non-ideal reconstruction. A so
called reconstruction filter of low-pass type can be used after the ZOH circuit
to mitigate this effect. If instead ideal reconstruction is used (in theory since it
cannot practically be realized) the reconstructed signal will be bandlimited to
the frequency region |ω| < ωs/2 due to the ideal low pass shape of HIdeal(ω).

Aliasing distortion occur at the sampling step if not X(ω) ≡ 0 for |ω| > ωs/2.
The effect is reduced by attaching a low-pass filter prior to the sampling circuit.
Such a filter is called an anti-aliasing filter (AAF). We will later return to
the sampling and reconstruction cases when we discuss oversampled system
architectures.

Example: Consider a continuous time signal x(t) with a Fourier transform

given by X(ω) = e−γ( ωωs )2

. The signal is first sampled with sampling frequency
ωs to yield x(n). The signal is not processed any further so we set y(n) , x(n).
A continuous time signal y(t) is reconstructed from the samples y(n) using
a ZOH circuit. In Figure 3.2 and Figure 3.3 the magnitude of the Fourier
transforms for the different signals involved are shown for γ = 32 and γ = 4
respectively. The vertical dashed lines indicate integer multiples of the sampling
frequency. When γ = 32 the original signal basically satisfy the Nyquist criterion
and we notice that most of the distortions (the difference between the red and the
green signals) is due to the ZOH reconstruction. When γ = 4 the original signal
has significant energy beyond half the sampling frequency and the sampled
signal is distorted by aliasing. This also leads to larger levels of high frequency
distortions in the reconstructed signal.
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Figure 3.2: Magnitude of Fourier transforms for signals in the reconstruction
example when γ = 32.
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Figure 3.3: Magnitude of Fourier transforms for signals in the reconstruction
example when γ = 4.
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Example 6 In this example we consider a case including sampling,
digital filtering and reconstruction using the ZOH method. The
original continuous time signal is given by

x(n) = A cos(2πf0t) =
A

2
(ej2πf0t + e−j2πf0t)

where f0 = 22 kHz. The signal is sampled with a sampling frequency
of fs = 20 kHz. The sampled signal is filtered through a discrete
time filter with impulse response given by

h(n) =

{
0.8n, n ≥ 0

0 n < 0

and the resulting output is then fed to the ZOH reconstruction cir-
cuit. The problem to solve is to derive an expression for the recon-
structed signal y(n) in the time domain.

Solution: Since the sinusoidal signal is equivalently represented by
the summation of two complex exponentials we directly see that

X(ω) = FT[x(t)] = πA(δ(ω − ω0) + δ(ω + ω0))

where ω0 = 2πf0. After the sampling the DTFT of the resulting
discrete time signal xd(n) is given by

Xd(ω) =
1

∆t

∞∑
k=−∞

X(ω + ωsk)

=
πA

∆t
(δ̃(ω − ω1) + δ̃(ω + ω1))

where ω1 = 2π(f0−fs) = 2π(22−20) = 2π2 . Hence, due to aliasing,
the 22 kHz signal now appear as a discrete time cosine signal with
frequency 2 kHz. Using the inverse DTFT we obtain

xd(n) =
∆t

2π

∫ ωs

0

πA

∆t
(δ̃(ω − ω1) + δ̃(ω + ω1))ejω∆tn dω

= A cos(ω1∆tn)

�

The discrete time signal is then filtered through the filter given by the impulse
response h(n). It is easiest to evaluate the result of the filtering in the frequency
domain. The DTFT of the filter is

H(ω) =

∞∑
n=0

h(n)e−jω∆tn =

∞∑
n=0

0.8ne−jω∆tn =
1

1− 0.8e−jω∆t

where the last equality follows from the property of infinite geometric series.
Note also that H(−ω) = H(ω), i.e. for this filter the frequency function for neg-
ative frequencies is the complex conjugate of the frequency function for positive
frequencies. Now we have

Yd(ω) = H(ω)Xd(ω) = H(ω)
πA

∆t
(δ̃(ω − ω1) + δ̃(ω + ω1))
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Using the IDFT on Yd(ω) we obtain

yd(n) =
A

2

(
H(ω1)ejω1∆tn +H(−ω1)e−jω1∆tn

)
Denote by AH , |H(ω1)| and φH , ∠H(ω1). We can rewrite yd as

yd(n) =
AAH

2

(
ej(ω1∆tn+φH) + e−j(ω1∆tn+φH)

)
= AAH cos(ω1∆tn+ φH)

and

Yd(ω) =
πAAH

∆t
(ejφH δ̃(ω − ω1) + e−jφH δ̃(ω + ω1)) (3.15)

A carful look at (3.15) reveals that we have delta functions located at ω1 + kωs
scaled with ejφH and delta functions located at −ω1 + kωs scaled with e−jφH

for all integer values k. Alternatively, for all positive frequencies we have delta
functions at (ω1 +k′ωs) scaled with ejφh and at (ωs−ω1 +k′ωs) scaled with e−jφ

for non-negative integer values of k′, i.e. k = 0, 1, 2, . . .. At the corresponding
negative frequencies the scaling of the delta functions are conjugated. Thus we
can reformulate (3.15) into

Yd(ω) =
πAAH

∆t

∞∑
k=0

(
ejφH δ(ω − ω1 − kωs) + e−jφH δ(ω + ω1 + kωs)

)
+

+
πAAH

∆t

∞∑
k=0

(
e−jφH δ(ω − ω2 − kωs) + ejφH δ(ω + ω2 + kωs)

) (3.16)

where ω2 , ωs − ω1 = 2π18.
The ZOH reconstruction can be interpreted as continuous time filtering the

discrete time signal through the ZOH filter. In the Fourier domain we obtain

Y (ω) = HZOH(ω)Yd(ω) = ∆te−jπ
ω
ωs

sin(π ω
ωs

)

π ω
ωs

Yd(ω)

Applying the IFT we obtain the time-domain expression. For each k in (3.16)
we obtain two cosine terms. The first term yields

1

2π

∫ ∞
−∞

∆te−jπ
ω
ωs

sin(π ω
ωs

)

π ω
ωs

πAAH
∆t

(
ejφH δ(ω − ω1 − kωs) + e−jφH δ(ω + ω1 + kωs)

)
ejωt dω

=
sin(π ω1+kωs

ωs
)

π ω1+kωs
ωs

AAH cos((ω1 + kωs)t+ φH − πω1/ωs − kπ)

(3.17)
similarly the second term results in

1

2π

∫ ∞
−∞

∆te−jπ
ω
ωs

sin(π ω
ωs

)

π ω
ωs

πAAH
∆t

(
e−jφH δ(ω − ω2 − kωs) + ejφH δ(ω + ω2 + kωs)

)
ejωt dω

=
sin(π ω2+kωs

ωs
)

π ω2+kωs
ωs

AAH cos((ω2 + kωs)t− φH − πω2/ωs − kπ)

(3.18)
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Putting it all together yields the time domain expression for the output of the
ZOH circuit as

y(t) = AAH

∞∑
k=0

(
sin(π ω1+kωs

ωs
)

π ω1+kωs
ωs

cos((ω1 + kωs)t+ φH − πω1/ωs − kπ)+

sin(π ω2+kωs
ωs

)

π ω2+kωs
ωs

cos((ω2 + kωs)t− φH − πω2/ωs − kπ)

)
(3.19)

In summary the ZOH leads to a signal which contain an infinite number of
cosine terms with increasing frequencies. The amplitude for these components
are decreasing with increasing frequencies as the magnitude of the side lobes of
the sinc function sin(x)/x decreases with increasing values of x.
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Chapter 4

Frequency analysis,
Periodogram and DFT

Frequency analysis refer to techniques to obtain estimates of the DTFT for a
measured discrete time signal. Since the definition of the DTFT involves an
infinite number of samples of the signal x(n) it is not in practice possible to
determine the exact DTFT. What can be done practically is to analyze a finite
number of samples and then interpret the results in comparison with the DTFT.

To carry the analysis over to a practically setting we will work with a window
of the data, i.e. a finite number of samples at indices n = 0, 1, . . . , N − 1.
Mathematically this can be described as

x̂(n) , rN (n)x(n), ∀n (4.1)

and the window function is defined as

rN (n) =

{
1 n = 0, . . . , N − 1

0 otherwise
(4.2)

The question that arises is how is X̂(ω) related to X(ω)? Before establishing
the relation we recall the dual result of convolution involving the point-wise
multiplication of two discrete time signals. We have the result:

y(n) = x(n)w(n) ⇔ Y (ω) =
1

ωs

∫ ωs

0

X(λ)W (ω − λ) dλ (4.3)

A multiplication in the time domain is equal to a frequency domain convolution.
Clearly (using the rules of a finite geometric series) the DTFT of the window
function defined in (4.2) is

RN (ω) =

∞∑
n=−∞

rN (n)e−jω∆tn =

N−1∑
n=0

e−jω∆tn =

=
1− e−jω∆tN

1− e−jω∆t
= e−j

N−1
2 ω∆t sin(Nω∆t

2 )

sin(ω∆t
2 )

(4.4)

We note that RN (0) = N and RN (ω) = 0 for ω = ±ωs/N,±2ωs/N,±3ωs/N, . . ..
Since it is a DTFT, it is also periodic with a period ωs. In Figure 4.1 the DTFT
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of the rectangular window function, RN (ω), is plotted for N = 10, 20, 40. The
magnitude peak around 0 is called the main lobe and has a width inversely
proportional to N . The smaller peaks are called side lobes and decreases in size
as frequency increases up to the Nyquist frequency. The DTFT of a windowed
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Figure 4.1: The discrete time Fourier transform of the rectangular window
function for N = 10, 20, 40.

signal is then

x̂(n) = x(n)rN (n) ⇔ X̂(ω) =
1

ωs

∫ ωs

0

X(λ)RN (ω − λ) dλ. (4.5)

If N is very large (N →∞) we can argue that RN (ω) ≈ 2πδ̃(ω). In such a case
we obtain

X̂(ω) =
1

ωs

∫ ωs/2

−ωs/2
X(λ)2πδ(ω − λ) dλ = X(ω) (4.6)

which of course is the expected result.

Example Consider a discrete time signal x(n) , ejω0n and ∆t = 1 (⇒ ωs =
2π) with DTFT X(ω) = 2πδ̃(ω − ω0). Assume N samples are available. The
DTFT of this rectangularly windowed signal is the frequency convolution of
X(ω) and RN (ω)

X̂(ω) =
1

2π

∫ 2π

0

X(ω − λ)RN (λ) dλ =

=
1

2π

∫ 2π

0

2πδ̃(ω − ω0 − λ)RN (λ) dλ = RN (ω − ω0)

(4.7)

Figure 4.2 illustrate the result when ω0 = 0.2ωs. The magnitude of the DTFT is
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Figure 4.2: Periodogram based on N = 10 samples of the signal x(n) = ej0.2ωsn

called the periodogram of the signal. Clearly the periodogram is centered around
ω0. However the periodogram is also non-zero for other large frequency intervals.
This is due to the leakage effect where the energy leaks out to neighboring
frequencies. A simple way to estimate the frequency of a complex sinusoidal
signal is thus to find the location of the largest peak of the periodogram. Recall
that the other peaks outside the interval [0, 1] of relative frequencies are due to
the periodic character of the DTFT. If the signal contain more than one complex
exponential the resulting windowed DTFT will be equal to the summation of
the windowed DTFT of each component. Hence, if frequencies are spaced far
apart, in comparison with the size of N , we can expect to see two peaks located
close to the correct frequencies. However, in general, a bias in the peak location
will exist due to the leakage effects.
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Discrete Fourier Transform (DFT)

If we “sample” the rectangularly windowed DTFT at equidistantly spaced fre-
quencies ωk∆t = 2πk

N we obtain the transform known as the Discrete Fourier
Transform (DFT)1:

DFT: X(k) , X̂(
2πk

N∆t
) =

N−1∑
n=0

x(n)e−j
2πkn
N

IDFT: x(n) =
1

N

N−1∑
k=0

X(k)ej
2πkn
N

(4.8)

Note that X(k) is N -periodic, i.e. X(k + N) = X(k). Also if we use the
IDFT formulation we notice that x(n + N) = x(n), i.e. if we use the IDFT
relation then x(n) is periodically repeated outside the interval [0, N − 1]. The
DFT and IDFT are calculated in Matlab using the commands X=fft(x); and
x=ifft(X);. The acronym FFT stands for the Fast Fourier Transform which is
an efficient computational approach to calculate the DFT and IDFT. Later we
will return to this technique.

The IDFT formula in (4.8) is the complex Fourier series expansion of a
general N -periodic discrete time signal where X(k)/N can be regarded as the
weights of the Fourier series expansion.

We will now discuss three cases where the character of x(n) outside the
interval n = 0, N − 1 defines the different cases. For simplicity we assume
∆t = 1.

Case1: x(n) is N-periodic This case we have discussed above when intro-
ducing the DFT. Here the signal is given by

x(n) =
1

N

N−1∑
k=0

X(k)ej
2πkn
N , n = 0,±1,±2, . . . (4.9)

where X(k) can be derived from the DFT based on one period of the discrete
time signal x(n). In this case the DTFT will be a sum of Dirac delta functions,
scaled by X(k)

X(ω) =
1

N

N−1∑
k=0

X(k)2πδ(ω − 2πk

N
) ω ∈ [0, 2π], (4.10)

and periodically repeated outside which gives the alternative representation
(valid for all ω)

X(ω) =
1

N

N−1∑
k=0

X(k)2πδ̃(ω − 2πk

N
). (4.11)

Case 2: x(n) is zero outside If x(n) is zero outside the observation interval
we have full knowledge of the entire signal and hence

X(ω) =

∞∑
n=−∞

x(n)e−jωn =

N−1∑
n=0

x(n)e−jωn (4.12)

1Here the integer index k indicates that symbol X(k) denotes the DFT.

29



In this case a multiplication with the rectangular window will change nothing.
Calculating the DFT consequently means to calculate samples of the DTFT
X(ω) at the specific frequencies ωk = 2πk/N for k = 0, . . . , N − 1.

Case 3: x(n) arbitrary outside This is the only case of the three where
only partial knowledge of x(n) is available. Hence we can only expect partial
knowledge of the DTFT of the full signal. The analysis derived above then tell
us that

x̂(n) = x(n)rN (n) ⇔ X̂(ω) =
1

2π

∫ 2π

0

X(λ)RN (ω − λ) dλ. (4.13)

And again calculating the DFT will yield samples of X̂(ω). That is

X̂(ω)
∣∣∣
ω=2πk/N

= X(k). (4.14)

Zero padding

To calculate the DTFT for arbitrary frequencies i straight-forward. It is just to
implement the definition

X̂(ω) =

N−1∑
n=0

x(n)e−jωn. (4.15)

However, using an equidistantly spaced frequency grid the calculations can be
made more efficiently by employing the FFT algorithm.

Assume the (windowed) signal x̂(n) is of length N and we wish to calculate
the DTFT at a denser grid of frequencies, ωk = 2πk/NZ , k = 0, . . . , NZ − 1
where NZ > N . We obtain exactly this result if we define the NZ long zero
padded signal

x̂z(n) =

{
x̂(n), n = 0, . . . , N − 1

0 n = N, . . .NZ − 1
(4.16)

and calculate the DFT of this signal

X̂z(k) =

NZ−1∑
n=0

x̂z(n)e
−j 2πkn

NZ =

N−1∑
n=0

x̂(n)e
−j 2πkn

NZ , k = 0, . . . , NZ − 1

⇒ X̂(ω)
∣∣∣
ω= 2πk

NZ

= X̂z(k)

(4.17)

In summary adding zeros to the end of the sequence and calculate the DFT
will yield more sample of the same DTFT of the windowed signal. Figure 4.3
illustrates the effect for the signal x(n) = 1 for n = 0, . . . , 9 and zero otherwise.
In the top graph the magnitude of the DTFT of the signal is illustrated together
with the 10 point DFT. In the middle and bottom graphs the DTFT and the
DFT of the signal, when padded with zeros to a total length 30 and length 100
respectively, is shown. Notice that the DTFT is the same for all three cases.

The DFT with zero padding to a total length of Nz is calculated in Matlab
using the command X=fft(x,Nz);.
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Filtering using DFT - linear convolution

Given a finite length input signal x(n) of length N and a finite length impulse
response h(n) of length M the linear convolution (filtering) is given by

y(n) =

M−1∑
k=0

h(k)x(n− k), n = 0, 1, . . . , Ny − 1. (4.18)

where Ny = N+M−1. The output is a signal of length Ny and is zero otherwise.
We now seek a method to calculate the output based on the DFT. From DTFT
theory we know that (4.18) is equivalent with Y (ω) = H(ω)X(ω) for all values
of ω. Recall the Case 2, i.e. (4.12), from the DFT section. This case imply
that Y (ωk) = Y (k) where Y (k) is the DFT of length Ny. We also know that
given Y (k) the inverse DFT will yield y(n). Hence we need to calculate the
product of H(ω) and X(ω) at the frequencies ωk = 2πk

Ny
for k = 0, . . . , Ny − 1.

Since both N and M are less than Ny and both signals are zero outside their
respective interval we can zero pad both signals to obtain the length Ny and then
calculate the DFT of x(n) and h(n) to obtain the desired product X(k)H(k)
for k = 0, 1, . . . , Ny − 1. In Matlab this would look like

>> N = length(x);

>> M = length(h);

>> Ny = N+M-1;

>> X = fft(x,Ny);

>> H = fft(h,Ny);

>> Y = H.*X;

>> y = ifft(Y);

To make this execute fast Ny should be selected to be the nearest power of 2
that is larger or equal to N +M − 1.

Filtering using DFT - circular convolution

In this section we examine how the DFT can be used when the input signal to
the filter can be regarded as a periodic signal with period N . From signals and
systems theory we can thus express this signal using the Fourier series approach
and we have:

x(n) =
1

N

N−1∑
k=0

X(k)ej
2πkn
N , n = 0,±1,±2, . . . (4.19)

where X(k) is the DFT of one period of the input x(n), i.e. for n = 0, . . . , N−1.
Filtering this signal through the filter with frequency function H(ω) conse-
quently yields the output

y(n) =
1

N

N−1∑
k=0

H(ωk)X(k)ej
2πkn
N , n = 0,±1,±2, . . . (4.20)

where ωk = 2πk/N . If the filter has an impulse response which is shorter or
equal to N , H(ωk) is obtained by calculating the DFT of the impulse response
zero-padded to a length N .

In Matlab this can be formulated as (for the case when M ≤ N):
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>> N = length(x); % X assumed N-periodic

>> M = length(h);

>> if M>N, error(’Filter length to long!’); end;

>> X = fft(x,N);

>> H = fft(h,N);

>> Y = X.*H; % Circular convolution

>> y = ifft(Y);

If the impulse response is longer than N then the DTFT of h(t) can be
evaluated for the frequencies ωk = 2πk/N . Samples at these frequencies can
also be obtained by using DFT and a suitable length zero padding.

This technique is known as circular convolution. One reason for this become
clear if we write this operation as a linear transformation. Since x(n) is periodic
we can write the output of the linear convolution as a matrix vector product

y(0)
y(1)

...
y(N − 1)

 = Hc


x(0)
x(1)

...
x(N − 1)

 (4.21)

where the matrix Hc has the structure

Hc =


h(0) h(N − 1) h(N − 2) · · · h(1)
h(1) h(0) h(N − 1) · · · h(2)
h(2) h(1) h(0) · · · h(3)

...
...

...
...

...
h(N − 1) h(N − 2) h(N − 3) · · · h(0)

 . (4.22)

This square matrix is called a circulant matrix since each row (and column) is
a circularly shifted version of the previous one. The inverse of Hc is tightly
connected to the DFT of h(k). It is left as an exercise for the interested reader
to explore the details.
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Chapter 5

Equalization and FFT

Equalization Assume we have a finite signal x(n), n = 0, . . . , N − 1 which
we want to transmit to a receiver. The medium over which we send the signal,
which we call the channel, changes the signal by the way of a linear convolution
with an impulse response h(n). Let us assume that h(n) is of finite length M .
The output of the convolution, i.e. the signal at the receiver end is hence

y(n) =

M−1∑
k=0

h(k)u(n− k) (5.1)

clearly the received signal is of length N + M − 1 and is hence zero for n ≥
N +M −1 and n < 0. If the impulse response is known at the receiver we could
(in the noise free case) recover the transmitted signal x(n) by solving a system
of linear equations defined by (5.1). Alternatively we could solve for x using the
DFT representation of (5.1):

Y (k) = H(k)X(k), k = 0, . . . , N +M − 2 (5.2)

where the Y (k), H(k) and X(k) are the DFT of the signals y(n), h(n) and x(n)
respectively, each zero padded to the length N +M − 1. This is simpler as we
can solve for X(x) for each k simply by X(k) = Y (k)/H(k) without having to
solve a system of linear equations (which would involve a matrix inversion).

Equalization in OFDM In communication applications it is desired to re-
cover the transmitted signal in the receiver in order to determine the message
transmitted. This is known as equalization. The medium over which the signal
is transmitted normally changes the signal. In communication applications the
medium is often called the channel. Here we consider a medium which can be
modeled as a linear dynamical system with a frequency function H(ω) and im-
pulse response h(n). If we ignore effects of noise or model errors the received
signal can be modeled as

y(n) =

∞∑
k=0

h(k)x(n− k) (5.3)

where x(n) is the transmitted signal we wish to recover. If the transmitted
signal is periodic with period N we have

Y (k) = H(k)X(k), k = 0, . . . , N − 1 (5.4)
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where Y (k) and X(k) are the N -point DFT of x(n) and y(n) respectively. As a
consequence, if we know Y (k), we can recover the transmitted signal simply as

X(k) = Y (k)/H(k) (5.5)

provided that H(k) is non-zero for all k. This is in principle how the channel-
equalization is performed in The Orthogonal Frequency-Division Multiplex-
ing (OFDM) technique for information transmission. The advantage with the
OFDM technique compared to the method above is that we only need a DTFT
of length N which is much smaller than the required N +M − 1 in the method
above.

Filter transients and quasi-periodic signals

When filtering a signal through a filter with a finte impulse response (FIR) of
length M we can write the convolution equation as

y(n) =
M−1∑
k=0

h(k)x(n− k). (5.6)

Assume the input x(n) is zero for n < 0 and periodic with a period P for all
positive n. What character will the output y(n) have? Clearly x(n + mP ) =
x(n), for integers m,n ≥ 0. Thus, for n ≥M − 1 and m ≥ 0 the time index for
x in equation (5.6) is then always positive and we obtain

y(n+mP ) =

M−1∑
k=0

h(k)x(n+mP −k) =

M−1∑
k=0

h(k)x(n−k) = y(n), n ≥M −1.

(5.7)
Hence, from time index n = M−1 and onwards the output y(n) is also periodic.
For time indices n = 0 to M − 2 the output is in a transient phase when the
filter “fills up”. Let us define

x̃(n) = x(n+ n0), ỹ(n) = y(n+ n0), n = 0, . . . , P − 1 (5.8)

for any n0 ≥M − 1. Since for these time indices the filtering acts in a periodic
fashion we can regard it as a circular convolution, i.e.

Ỹ (k) = H(ωk)X̃(k), n = 0, . . . , P − 1 (5.9)

where ωk = 2πk/P , Ỹ (k) and X̃(k) is the P -points DFT of ỹ and x̃ respectively.
The OFDM technique is based on the properties presented above. The part

of the input signal x(n) from n = 0 to n ≥ M − 2 (and then followed by N
samples) is known as the cyclic-prefix or guard of the OFDM block and need
to be present to enable a recovery of the input as illustrated by (5.5).

Figure 5.1 illustrates the effect of filtering a quasi-periodic input (with a
period time of 5), through a filter of length 4. After a transient of 4 samples
(indices 0 to 3), the output is also periodic from sample 4 and onwards.
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Figure 5.1: Filtering results using a quasi-periodic input signal and a filter
length of M = 4.
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Fast Fourier Transform (FFT)

Calculating the DFT in a computationally efficient way is instrumental in many
signal processing applications. The Fast Fourier Transform (FFT) is a compu-
tational scheme for calculating the DFT which require less operations than a
direct application of the definition. The algorithm is based on a recursive view
of how to calculate the DFT and utilizing that the DFT is a periodic function.
In digital circuitry a multiplication requires far more operations than addition.
Hence, to discuss complexity, we will focus on the number of multiplications
required.

Consider the DFT:

X(k) =

N−1∑
n=0

x(n)W kn
N , k = 0, . . . , N − 1 and WN = e−j2π/N (5.10)

Assume N = 2p where p = log2(N) is an integer. Hence N is an even number
and we can divide the DFT into two separate sums where the first include all
the even time indices and the second one involve all the odd time indices.

X(k) =

N/2−1∑
n=0

x(2n)W k2n
N︸ ︷︷ ︸

Wkn
N/2

+

N/2−1∑
n=0

x(2n+ 1)W
k(2n+1)
N︸ ︷︷ ︸

Wk
NW

kn
N/2

=

N/2−1∑
n=0

x(2n)W kn
N/2︸ ︷︷ ︸

Xe(k)

+W k
N

N/2−1∑
n=0

x(2n+ 1)W kn
N/2︸ ︷︷ ︸

Xo(k)

= Xe(k) +W k
NXo(k)

(5.11)

We note that Xe(k) and Xo(k) are DFT of length N/2 and to determine X(k)
for all values of k (k = 0, . . . , N − 1) we need to evaluate Xe and Xo for all
these indices. However, since both of them are of length N/2 we can use the
periodic property of the DFT. Hence Xe and Xo only need to be evaluated for
k = 0, . . . , N/2− 1 and use the periodic property for k = N/2, . . . , N − 1. i.e.

X(k +N/2) = Xe(k) +W
k+N/2
N Xo(k)

= Xe(k)−W k
NXo(k), k = 0, . . . , N/2− 1

(5.12)

Also note that W
k+N/2
N = −W k

N which implies that we, for each k, only need
to derive the product W k

NXo(k) once and then use it both in (5.12) as well as
in (5.11). We can write the operations in (5.11) and (5.12) jointly as

X(k) = Xe(k) +W k
NXo(k)

X(k +N/2) = Xe(k)−W k
NXo(k), k = 0, . . . , N/2− 1

(5.13)

The calculations above are know as a “butterfly operation” since a graphical
representation has a butterfly geometry as illustrated in Figure 5.2.

In summary, to calculate X(k) for k = 0, . . . , N − 1 we need N/2 multi-
plications and the two DFTs of length N/2. Recursively we can use the same
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Figure 5.2: Graphical illustration of a butterfly operation.

Data length (N) DFT complexity (N2) FFT complexity (N/2 log2N)
8 64 12

64 4096 192
128 16384 448

1024 1048576 5120

Table 5.1: Complexity of FFT in comparison with direct calculation of DFT.

argument on the two sub sequences and keep going until N = 2. For this case
we obtain W2 = −1 and the DFT of x(0) and x(1) are

X(0) = x(0) + x(1)

X(1) = x(0)− x(1)
(5.14)

The total number of combination stages needed is log2N and in each of the
combining stages we need a total of N/2 number of complex multiplications.
The total complexity to calculate the DFT is thus (N/2) log2N . The illustrated
computational procedure is known as the Cooley-Tukey, radix 2, decimation in
time (DIT) FFT algorithm. If we compare this complexity with a brute force
application of the DFT equation we notice that for each k, N multiplications are
needed and hence, to calculate the DFT for all N a total of N2 multiplications
are required. Since the core computational unit involves a two point DFT
this algorithm is known as the Radix-2 FFT algorithm. Radix-4 and mixed
radix algorithms are extensions which can provide even further reduction in
computational effort needed. The efficiency of the FFT algorithm in comparison
with direct calculation of DFT is illustrated in Table 5.1. For a data sequence
length of 1024 samples the computational effort is 205 times less for the FFT
algorithm. The final assembly of the result for a N = 8 FFT is illustrated in
Figure 5.3.

Inverse Fast Fourier Transform (IFFT) The calculations involved to de-
termine the inverse DFT very much resembles the calculation of the DFT. Com-
paring the expressions for DFT and IDFT in (4.8) we note that the differences
are the scaling with the length of the sequence N and the complex exponential
is conjugated. It is straight forward to derive a fast inverse DFT algorithm
along the same lines as was done for the DFT algorithm.

Given that an implementation of the FFT algorithm exists we can actually
make it perform the inverse DFT by feeding it with a reversed sequence and
multiply each obtained time sample with 1

N e
−j2πn/N . To illustrate this the

following Matlab code shows how it is done:
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Figure 5.3: FFT calculation illustration. Data flow diagram for N = 8 illustrat-
ing the final step with Butterfly operations. (Source: Wikipedia)

N=128;

x = randn(N,1);

X = fft(x);

ix = 1/N*exp(-1i*2*pi*(0:N-1).’/N).*fft(X(end:-1:1));

norm(x-ix) % Check that the result is correct

We leave the derivation to the interested reader.

Overlap and add FFT We have up to now described a filtering case where
the input as well as the filter have finite lengths. In many applications it is
desired to filter an input of infinite length. This can also be achieved using the
FFT by considering the input as an (infinite) sum of finite length signals orga-
nized in blocks and then proceed with the technique above for each individual
block. Since the filtered output is longer (i.e. N +M − 1) than the input (N),
the output must be assembled with care by adding the tail of one block to the
beginning of the next block. This is method known as the overlap and add FFT
algorithm.
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Window effects

Before establishing the relation we recall the dual result of convolution involving
the point-wise multiplication of two discrete time signals. We have the result:

y(n) = x(n)w(n) ⇔ Y (ω) =
1

ωs

∫ ωs

0

X(λ)W (ω − λ) dλ (5.15)

A multiplication in the time domain is equal to a frequency domain convolution.
For the rectangular window (w(n) = rN (n)) we have

RN (ω) =

∞∑
n=−∞

rN (n)e−jω∆tn = e−j
N−1

2 ω∆t sin(Nω∆t
2 )

sin(ω∆t
2 )

(5.16)

As illustrated above, observing only a window of the signal leads to a fre-
quency domain convolution between the DTFT of the full signal and the win-
dow function. Previously we have simply used the rectangular window, defined
by (4.2). However, there exist many different window functions with varying
properties. In principle the different window functions yield different trade-offs
regarding the width of the main lobe and the size of the side lobes. Recall
that from a frequency resolution perspective the main lobe width should be
small and from an accuracy point of view the side lobe should also be small.
The properties of a few classical window functions are listed in Table 5.2. The
list is ordered by increasing main lobe width. By allowing an increased main
lobe width, and hence less resolution, the side lobe level can be significantly
decreased, which in turn will reduce the leakage effects. By having a uniform
side lobe level, as in the Dolph-Chebyshev window the peak level can be made
quite small (-60 dB). This is at the expense of having no roll-off, i.e. all side
lobes have equal level.

Window
-3dB bandwidth
[Hz]

Peak side-lobe level
[dB]

Side-lobe roll off
[dB/octave]

Rectangular 0.89
N∆t -13 -6

Hanning 1.4
N∆t -32 -18

Hamming 1.3
N∆t -43 -6

Dolph-Chebyshev 1.44
N∆t -60 0

Table 5.2: Window characteristics

Example: Consider a signal x(n) which is defined as

x(n) = sin(2πf0n) + sin(2πf1n) + 0.05 sin(2πf2n) (5.17)

where f0 = 0.135, f1 = 0.150 and f2 = 0.3. The signal thus contain 3 sinusoidal
signals. Two closely spaced with unit amplitude and a third sinusoid with a
small amplitude located further away. We perform a frequency analysis from 50
samples of the signal by using two alternative window functions:

1. Rectangular window

2. Chebyshev window
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The resulting DTFT (calculated in Matlab using DFT employing zero padding
to a total length of 10.000) are illustrated in Figure 5.4. The tradeoff between
narrow main lobe and small side lobe levels is clearly seen. Using the rectangular
window all three components are resolved. However, the third signal with a
small amplitude is almost hidden among the side lobes originating from the
large amplitude components. However since the Chebyshev window has small
side lobe levels now the small amplitude signal component is clearly visible but
on the other hand, since the main lobe is wide, the two closely spaced signal
components are not resolved anymore. The reason for the result can be seen
when comparing the DTFT of the two window functions, see Figure 5.5.
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Figure 5.4: Frequency analysis using DTFT.
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Chapter 6

FIR Filter Design

Filter design methods is a quite vast subject and we will here aim at present-
ing the basic ideas and illustrate fundamental trade-offs involved in the design
process. The intended application of the filter is always the starting point in
the design and normally involve both performance specifications and other con-
straints such as complexity in terms of memory space or available computational
speed.

Filter structures

Practically filtering can be performed using either a finite impulse response
(FIR) structure or within an infinite impulse response (IIR) structure. A FIR
filter is defined by a finite impulse response and we can write the filter output
directly as a convolution

y(n) =

M−1∑
k=0

h(k)x(n− k) (6.1)

where the impulse response of the filter, h(k), k = 0, . . . ,M − 1, are the coef-
ficients of the filter. We denote by M the length of the filter, i.e. the length of
the impulse response. The frequency function is given by the DTFT as

H(ω) =

M−1∑
n=0

h(n)e−jω∆tn. (6.2)

An IIR filter is an extension of the FIR case where also past outputs are
linearly combined to form the present filter output. An IIR filter is simply

y(n) = −
na∑
k=1

a(k)y(n− k) +

nb∑
k=0

b(k)x(n− k) (6.3)

where a(k) and b(k) are the filter coefficients. The frequency function of an IIR
filter is given as the fraction between to polynomials

H(ω) =

1 +
∑na
n=1 a(n)e−jωn−jω∆tn

::::::
.(6.4)
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Filter categories

Many signal processing algorithms results in operations which can be regarded
as linear filtering and are implemented as (6.1) or (6.3). The objective of the
processing algorithms is of course strongly dependent on the application and we
can roughly classify filter design into two main categories

• Frequency selective filters where the objective of the operations are to
enhance or suppress certain bands of the frequency content of the signal

• Time domain filters where the objective is defined in the time domain of-
ten as a signal matched filter or to minimize a time domain error function.

Frequency selective filters

δs

ωp ωs

!"##$%"&'( )*+,$%"&'(

-."&#/0+&$%"&'(|H(ω)|

ω

δp !"##$%"&'(./,,12(3'45((

δs )*+,$%"&'("62&7"0+&(3'45(

ωp

ωs

!"##$%"&'(2'82(9.2:;(

)*+,$%"&'(2'82(9.2:;(

1 + δp

1
1 − δp

Figure 6.1: Illustration of filter specifications for a frequency selective filter.

Often filters are designed to suppress certain frequency regions while other
regions are designed to let the signal pass more or less unaffected. Frequency
selective filters can be classified according to their behavior. Common types
are:

• Low-pass filter (LP)

• High-pass filter (HP)

• Band-bass filter (BP)

• Band-stop filter (BS)

Design specifications for frequency selective filters of low-pass type are illus-
trated in Figure 6.1. The specifications are given as specifications on how the
amplitude function of the filter should behave. An amplitude function of a
frequency selective filter can be divided into three regions; a pass-band region
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where the amplitude is close to 1, a stop-band region where the amplitude func-
tion is small to attenuate well and finally a transition region where the amplitude
function moves from the pass-band to the stop-band. The pass-band ripple δp
is a measure of how much the amplitude function deviates from the ideal 1 in
the pass-band region. The stop-band ripple δs measure the maximum filter gain
in the stop-band region. Finally, the pass-band and stop-band edge frequencies,
ωp and ωs respectively, define the end of the pass-band region and the start of
the stop-band region respectively. The difference ωs − ωp is the width of the
transition region. Obviously a good filter has small ripple and a narrow transi-
tion region. Note that for a given filter amplitude function you cannot derive
the filter specifications uniquely, i.e. the pass-band ripple size and location of
pass-band edge frequency are related via the amplitude function. Sometimes
the term crossover frequency is used to denote at what frequency the division
between the passband and transition region.

Ideal Filter

An ideal LP filter with pass-band edge frequency ωc can be described in the
Fourier domain as (assuming ∆t = 1 , ωs = 2π)

H(ω) =

{
1 |ω| < ωc

0 ωc < |ω| < ωs/2.
(6.5)

The impulse response is given by the inverse DTFT

h(n) =

{
2ωc
ωs

n = 0
2
ωs

sin(ωc∆tn)
∆tn n 6= 0

(6.6)

and is a sinc function. Key properties are: 1) the impulse response is infinitely
long and hence not possible to store in a computer 2) the impulse response is
non-causal since h(n) is non-zero also for n < 0. Filter design methods which
produce realizable filters overcome theses two issues in various ways.

Linear phase, even symmetric and odd symmetric filters

Assume a periodic signal with period P given by

x(n) =

P−1∑
k=0

X(k)ej2πkn/P=

P−1∑
k=0

X(k)ej
k
P ωs∆tn

::::::::::::::::::

(6.7)

is filtered through a linear filter with frequency function

H(ω) = Hr(ω)e−jωτ (6.8)

where Hr(ω) is a real function. The phase function φ(ω) = −ωτ of H(ω) is
linear in ω. Such filters are called linear-phase filters. The filtered output y(n)
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is then

y(n) =

P−1∑
k=0

X(k)Hr(
2πk

P
)ej2π(k(n−τ)/P )

y(n) =

P−1∑
k=0

X(k)Hr(
k

P
ωs)e

j kP ωs∆tne−j
k
P ωsτ

=

P−1∑
k=0

X(k)Hr(
k

P
ωs)e

j kP ωs(∆tn−τ)

(6.9)
which is a periodic signal where each component is scaled by the amplitude
function of the filter and delayed τ samples. Note here that τ here is real-valued
and hence does not necessarily correspond to an integer value.

:::::::
seconds.

:
If the

signal x(n) only have significant power in the frequency interval of the pass-band
(i.e. where Hr(ω) ≈ 1) the output will be a time delayed version of the input.
This means that such filters will preserve the pulse shapes.

Even symmetric filters Assume a real-valued finite length impulse response
of a filter is even symmetric, i.e.

h(−n) = h(n) n = 0, 1 . . . L. (6.10)

The frequency function of this filter is given by

H(ω) =

L∑
n=−L

h(n)e−jωn = h(0) +

L∑
n=1

h(n)(e−jωn + ejωn) = h(0) + 2

L∑
n=1

h(n) cos(ωn)

H(ω) =

L∑
n=−L

h(n)e−jω∆tn = h(0) +

L∑
n=1

h(n)(e−jω∆tn + ejω∆tn)

= h(0) + 2

L∑
n=1

h(n) cos(ω∆tn)

(6.11)
and is real valued. It has a phase function which takes the value 0 or π depending
on the sign of the real valued sum h(0) +

∑L
n=1 h(n) cos(ωn)

:::::::::::::::::::::::::
h(0) +

∑L
n=1 h(n) cos(ω∆tn).

If we now shift this filter to make it causal we obtain a FIR filter of length
M = 2L+ 1 with an impulse response h(n) = h(M − 1−n) (which is still often
called even symmetric). The frequency function of this filter is given by (6.8)
with τ = (M − 1)/2

:::::::::::::::
τ = ∆t(M − 1)/2

:
and the phase function is given by

φ(ω) = ∠H(ω) =

{
−ω∆tM−1

2 Hr(ω) > 0

−ω∆tM−1
2 + π Hr(ω) < 0

(6.12)

Odd symmetric filters Assume the real-valued finite length impulse re-
sponse of a filter is odd symmetric, i.e.

h(−n) = −h(n) n = 0, 1 . . . L (6.13)

which implies h(0) = 0. The frequency function of this filter is

H(ω) =

L∑
n=−L

h(n)e−jωn−jω∆tn
::::::

=

L∑
n=1

h(n)(e−jωn−jω∆tn
::::::

−ejωnjω∆tn
::::

) = −2j

L∑
n=1

h(n) sin(ω∆t
::
n)

(6.14)
which has a phase function which takes the value π/2 or −π/2 depending on

the sign of the real valued sum
∑L
n=1 h(n) sin(ωn)

:::::::::::::::::::

∑L
n=1 h(n) sin(ω∆tn). Note
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also that H(0) =
∑L
n=−L h(n) = 0 which mean that odd-symmetric filters are

not suitable for
:
as

:
LP-filters. The causal version of the length M = 2L + 1

odd symmetric filter is h(n) = −h(M − 1 − n). This filter will have the phase
response

φ(ω) = ∠H(ω) =

{
−ω∆tM−1

2 + π
2 Hr(ω) > 0

−ω∆tM−1
2 − π

2 Hr(ω) < 0
(6.15)

Imposing even or odd symmetry as a design contraint will lead to a linear phase
filter which in many applications is desirable. A symmetric FIR of length M
will consequently also delay the signal (M − 1)/2 samples

::::::::::::
corresponding

:::
to

::::::::::::
∆t(M − 1)/2

:::::::
seconds. Furthermore since half the filter coefficients are identical

(with a sign change for odd symmetry) only half the memory and half the
number of multiplications are needed in an implementation of such filters.

FIR design with the window method

The window design method is based on modifying the ideal impulse response,
e.g. (6.6), to make it both causal and finite. We start from a desired real
amplitude response of the filter HD(ω). We also assume HD(−ω) = HD(ω),
i.e. symmetric around frequency 0. From this we calculate M impulse response
coefficients by solving the inverse DTFT integral for n = 0,±1, . . . ,±(M−1)/2,
where we assume M is an odd valued integer.

hD(n) =
1

ωs

∫ ωs/2

−ωs/2
HD(ω)ejω∆tn dω

=
1

ωs

∫ ωs/2

−ωs/2
HD(ω)(cos(ω∆tn) + j sin(ω∆tn)) dω

=
1

ωs

∫ ωs/2

−ωs/2
HD(ω) cos(ω∆tn) dω

(6.16)

where the last identity follow from the odd symmetry of the sin function and
that HD(−ω) = HD(ω). This also implies that hD(−n) = hD(n), i.e. the
impulse response is also even symmetric.

The truncation of the impulse response involves a time domain multiplication
with a user selectable window function w(n). The truncated impulse response
is defined as

hT (n) = w(n)hD(n), n = 0,±1, . . . ,±(M − 1)/2 (6.17)

The impulse response in (6.16) is non-causal. Finally we make it causal by
time shifting it (M − 1)/2 samples leading to the final impulse response

h(n) = hT (n− (M − 1)/2), n = 0, . . . ,M − 1 (6.18)

The effect of the truncation of the ideal impulse response can be character-
ized in the frequency domain by the convolution integral

HT (ω) =
1

2π

1

ωs
::

∫
π
−π

ωs/2
−ωs/2
::::

Hd(λ)W (ω − λ) dλ (6.19)
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The time shift leads to a phase rotation and the final filter is given by

H(ω) = e−jω
M−1

2 −jω∆tM−1
2

::::::::
HT (ω) = e−jω

M−1
2

1

2π

1

ωs
::

∫
π
−π

ωs/2
−ωs/2
::::

Hd(λ)W (ω−λ) dλ

(6.20)
The choice of window function w(n) will influence the trade-off between the

width of the transition region and the level of ripple in the pass- and stop-bands.
The behavior is similar to the window effects in frequency analysis using DFT.
Increasing the attenuation in the stop-band leads to a larger transition region
and vice versa. When employing the window design method the pass-band and
stop-band ripple are always equal, i.e. δp = δs and the ideal crossover frequency
ωc is in the center of the transition region. Table 6.1 list some numbers regarding
how the width of the transition band and the stop-band attenuation varies with
window and filter length. Note that the size of the ripple is independent of the
filter length and is only determined from the window type.

Window’s name Trans band Peak 20 log10 δs
Rectangular 1/M -21 dB
Hamming 3.3/M -53 dB
Blackman 5.5/M -74 dB

Table 6.1: Window function influence on FIR filter designed with the window
method.

Example: We now employ the window design methodology to construct FIR
low pass filters of order M = 61 with a cut off frequency of 0.25 (relative to the
sampling frequency). Solving the integral (6.16)

::::
with

::::::
∆t = 1

:
yields

hD(n) =
1

2π

∫ π

−π
HD(ω) cos(ωn) dω =

1

2π

∫ 0.25·2π

−0.25·2π
cos(ωn) dω

=
sin(0.25 · 2πn)

πn

(6.21)

Delaying the impulse response with (M − 1)/2 = 30 and multiplying with a
window function w(n) yields

h(n) = w(n)
sin(0.25× 2π(n− 30))

π(n− 30)
, n = 0, . . . , 60. (6.22)

The Hamming window function is defined by

wH(n) = 0.54 + 0.46 cos
2πn

M
(6.23)

and the Blackman window by

wB(n) =

{
0.42− 0.5 cos 2πn

M−1 + 0.08 cos 4πn
M−1 , 0 ≤ n ≤ (M − 1)/2

wb(n) = wb(M − 1− n), (M + 1)/2 ≤ n < M
(6.24)

The three window functions are shown in Figure 6.2 and the magnitude of the
final FIR filters are illustrated in Figure 6.3
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Figure 6.2: Illustration of the Rectangular, Hamming and Blackman window
functions for M = 61.

Optimal FIR design methods

Since the frequency function of the filter is a linear function of the parameters
of the filter, i.e. the impulse response, several optimal methods can be used for
designing filteres based on minimizing a functional which incorporates the design
specification. Here we describe the Least-Squares method and the equiripple
design method.

FIR-LS The Least-Squares method minimizes the sum of the squared fre-
quency function deviation at a given set of Nspec specification frequencies {ωk}

min
h

Nspec∑
k=1

WK |HD(ωk)−H(ωk, h)|2 (6.25)

where HD(ωk) is the desired frequency response, H(ω,h) is the frequency re-
sponse of the designed filter and h = [ h(0),h(1),...,h(M−1) ] is the vector of filter
coefficients. The optional positive weights Wk can be used to shape the error to
better suit the specifications. The solution to (6.25) is easily obtained by solv-
ing the associated normal equations. In The Matlab command for the design
method is called firls.

FIR-PM The second design method focus on finding the filter solution which
minimizes the maximum deviation of the filter from the desired specification.
Formally the designed filter is the solution to the min-max problem

min
h

max
ω
|HD(ωk)−H(ωk, h)|2. (6.26)
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Figure 6.3: Illustration of the final FIR filters using the window design with
Rectangular, Hamming and Blackman windows and M = 61.

The solution can be found by employing the Remez exchange algorithm and will
deliver a filter where all the ripples in the approximation error have an equal
magnitude. The method is known as the Parks and McClellan filter design
algorithm published By Thomas Parks and James McClellan in 1972 and was
the result of a student project. In Matlab the command for the design method
is firpm.

Hence, if we desire to have a fixed phase π/2 in the passband we can obtain
this by enforcing the impulse response to be odd symmetric. For example,
filters which approximate the differentiation operator should have this property.
In Matlab command firpm which designes equi-ripple filters odd symmetric
impulse responses can be enforced by supplying the extra command argument
’differentiator’ (which also adds a weighting which makes the response more
accurate for low frequencies) .

Show FIR Example Design: firdesign examples.m
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Chapter 7

IIR filter design

IIR filter design with bilinear transformation

The frequency function of IIR filters is a fraction of two polynomials.

H(ω) =

1 +
∑na
n=1 a(n)e−jωn

∑nb
n=0 b(n)e−jω∆tn

1+
∑na
n=1 a(n)e−jω∆tn

::::::::::::::::

.(7.1)Hence, the frequency function

is not a linear function of the denominator polynomial coefficients a(n) which
make the filter design less straight forward as compared to the FIR case. How-
ever, analog filter design is well known and several standard designs are available.
Butterworth, Chebyshev and Elliptical filters are a few of the more common
ones. With use of the bilinear transformation these design methodologies can
be incorporated also when designing digital IIR filters.

Consider the following identity

s =
2(1− z−1)

1 + z−1
(7.2)

where s and z are complex variables. This is known as the bilinear transfor-
mation or Tustins transformation. The inverse of this transformation is easily
determined as

z =
2 + s

2− s (7.3)

Now we interpret z as the Z-transform variable and s as the Laplace variable. In
the discrete time domain we are interested in z values on the unit circle z = ejω

::::::::
z = ejω∆t

:
where the discrete time frequency ω is in rad/sample

:
s. In the Laplace

domain, s values on the imaginary axis (s = jΩ) is of importance. If H(s) is
the Laplace transform of a filter then H(jω) is the frequency function. The
transformation and its inverse are well defined for all s on the imaginary axis
where s = jΩ. Here Ω denotes the analog frequencies in rad/s.

The bilinear transformation ties the two frequency scales together as follows.
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Starting from (7.2) and letting z = ejω we obtain
::::::::
z = ejω∆t

:::
we

::::::
obtain

:

s = jΩ =
2(1− e−jω)

1 + e−jω
=

2(ejω/2 − e−jω/2)

ejω/2 + e−jω/2
= 2j

sin(ω/2)

cos(ω/2)
= 2j tan(ω/2)

s = jΩ =
2(1− e−jω∆t)

1 + e−jω∆t
=

2(ejω∆t/2 − e−jω∆t/2)

ejω∆t/2 + e−jω∆t/2

= 2j
sin(ω∆t/2)

cos(ω∆t/2)
= 2j tan(ω∆t/2)

(7.4)
and consequently the relation between the two frequency scales is given by

Ω = 2 tan(ω∆t
::
/2) (7.5)

From (7.5) we notice that ω = 0 implies Ω = 0 and for increasing ω the contin-
uous frequencies will also increase and as ω → π then Ω→∞. Hence the entire
continuous time frequency region Ω ∈ [0,∞) is mapped to the upper half of the
unit circle. The negative frequencies are mapped to the lower half of the unit
circle.

One of the important applications of the bilinear transformation is that it
provides a way of transforming a continuous time filter (transfer function) to a
discrete time one while still preserving a number of important properties.

The transformation is applied as follows. Start from a Laplace domain filter
Ha(s) which is a rational function in the free variable s. A rational transfer
function is the fraction of two polynomials. The bilinearly transformed discrete
time (Z-domain) transfer function Hd(z) is defined as

Hd(z) , Ha(s)|
s=

2(1−z−1)

1+z−1

(7.6)

Note that Hd(z) is also a rational transfer function. The Matlab command
bilinear performs the bilinear transformation.

The following nice properties can be identified:

• It is easy to verify that the number of poles of Hd(z) and Ha(s) coincide.
This means that the order of the filter is unchanged.

• If Ha(s) is a stable transfer function so is also Hd(z).

• The complex filter response, i.e. both magnitude and phase, coincides for
frequencies related by (7.5).

Ha(jΩ) = Hd(e
jωjω∆t

:::
) (7.7)

The last feature implies that the bilinear transformation preserves the type of
filter. If Ha(s) is a low-pass filter then Hd(z) defined by (7.6) is also a low-pass
filter etc.

The design technique is summarized here:

1. Start by identifying the discrete time frequencies describing the desired
edge frequencies. Use normalized frequencies in radians where ω = π
represents half the sampling frequency (ω = 2πf/fs).

2. Calculate the corresponding analog frequencies using Ω = 2 tan(ω/2)
:::::::::::::::
Ω = 2 tan(ω∆t/2).

3. Design an analog filter Ha(s) based on the specifications.
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Property IIR FIR
Flexible design techniques - +
Complexity v.s. stop-band attenuation + -
Linear phase - +
Robustness to filter coefficient truncation - +
Guaranteed stability - +

Table 7.1: Comparison of FIR and IIR filter properties

4. Use the bilinear transformation to obtain the final digital (Z-domain) filter.

Hd(z) , Ha(s)|
s=

2(1−z−1)

1+z−1

(7.8)

Example 7 Let us design an discrete time low pass filter based
on an continuous time first order Butterworth filter. The discrete
time filter should have a −3 dB reduction of the gain at normalized
frequency f/fs = 0.2.

A continuous time Butterworth filter has a frequency function

Ha(Ω) =
1

1 + jΩ/Ωc
(7.9)

and for Ω = Ωc the magnitude will be 1/
√

2 which corresponds to
−3 dB gain. Based on the discrete time specification we obtain
Ωc = 2 tan(0.2π) and the Laplace transform of the filter is

Ha(s) =
1

1 + s/Ωc
(7.10)

Finally the discrete time filter is obtained by the substitution in (7.8)
and we obtain

Hd(z) =
1

1 + 2(1−z−1)
1+z−1

1
Ωc

=
Ωc(1 + z−1)

Ωc + 2 + z−1(Ωc − 2)
(7.11)

which is a first order discrete time LP-filter. It is easy check that
the corresponding frequency function Hd(ω) is equal to 1/

√
2 for

ω = 2π0.2. �

Comparison of FIR and IIR filters

Table 7.1 compares how FIR and IIR filters perform regarding some filter prop-
erties.

Show IIR Example Design: firdesign examples.m
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Chapter 8

Multirate signal processing

Techniques which change the sample rate of a signal are known as Multirate
Signal Processing and are key tools to efficiently process signals. In principle,
the most efficient way, in terms of operations per second, is to use a sample
rate as low as possible. The bandwidth of the processed signal determines this
minimal rate. The key operations are

• up-sampling

• down-sampling

• filtering

which are combined to perform the desired operations.

Up-sampling The operation when the sample rate is increased by inserting
zeros between the original signal values is know as up-sampling. If the rate
change is L, the number of inserted zeros between the samples are L− 1. If the
original signal is x(n) the up-sampled signal xu(n) can be described by

xu(n) ,

{
x(n/L), n = 0,±, L,±2L, . . .

0, otherwise
(8.1)

For notational purposes we use the notation

xu(n) = ⇑L[x(n)] (8.2)

to denote a factor L up-sampler operator. Since all orignal signal samples
are retained in the up-sampled signal no information is lost in the operation.
If the original sampling frequency is ωs with corresponding sampling interval
∆t = 2π/ωs. The up-sampled signal have sampling frequency ωsu = Lωs and
sampling interval ∆tu = ∆t/L. The DTFT of the up-sampled signal can be

54



determined from the DTFT of the original signal as follows.

Xu(ω) =

∞∑
n=−∞

xu(n)e−jωn∆tu = [m = n/L and ∆tu = ∆t/L]

=

∞∑
m=−∞

x(m)e−jωLm∆t/L = [n = m]

=

∞∑
n=−∞

x(n)e−jωn∆t = X(ω)

(8.3)

where ω is un-normalized, i.e. rad/s. The DTFT of the up-sampled signal is
simply the DTFT of the original signal. The DTFT of the up-sampled signal,
in the frequency range between 0 and ωsu, contain the original DTFT and L−1
images of it. A low-pass type signal which is up-sampled will thus also contain
energy at frequencies higher than the Nyquist frequency (in Hz or rad/s) of the
original signal.

Down-sampling The method of reducing the sample rate by only including
a subset of the original signal samples is called down-sampling. A factor M
down-sampling is simply defined as

xd(n) , ⇓M [x(n)] , x(Mn), n = 0,±1,±2, . . . (8.4)

where xd(n) is the down-sampled signal associated with the new sample rate
ωsd = ωs/M assuming the original signal has sample frequency ωs. The down-
sampled signal has sampling interval ∆td = ∆tM .

Since only a subset of the original samples are retained in the produced
signal, down-sampling can (possibly) lead to loss of information or distortion
unless the bandwidth of the original signal is small enough. To see this let us
derive the DTFT of the down-sampled signal. Consider expressing the down-
sampled signal in terms of the inverse DTFT of the original signal:

xd(n) = x(nM) =
1

ωs

∫ ωs

0

X(ω)ejωnM∆t dω = [∆td = ∆tM ]

=
1

ωs

M−1∑
k=0

∫ ωs(k+1)/M

ωsk/M

X(ω)ejωn∆td dω = [ω = λ+ ωsk/M ]

=
1

ωs/M

∫ ωs/M

0

1

M

M−1∑
k=0

X

(
λ+

ωsk

M

)
︸ ︷︷ ︸

Xd(λ)

ejλn∆td dλ.

(8.5)

Since the last expression is the inverse DTFT of xd we have shown that

Xd(ω) =
1

M

M−1∑
k=0

X

(
ω +

ωsk

M

)
. (8.6)

From the expression above we note that aliasing (i.e. loss of information) can
occur if, for each value of ω more than one term in the summation (8.6) is
non-zero. Aliasing will always happen if the bandwidth of the original signal
(counting the full band [0 to ωs]) is larger than ωs/M .
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:::::
Ideal

::::
DT

:::::::::::::::
reconstruction

:::::::
Assume

:
a
::::
DT

::::::
signal

::::
x(n)

::::
has

::
a

::::::
DTFT

::::
such

:::::
that

X(ω) = 0, for
ωs
2M
≤ |ω| ≤ ωs

2
:::::::::::::::::::::::::::::

(8.7)

:::::
which

:::::
mean

::
it
::::
has

:::
low

:::::
pass

:::::::::
character.

::
If
:::
we

:::::::::::
downsample

::::
this

::::::
signal

::::
with

::::::
factor

:::
M ,

:::
i.e.

:

xd(n) = x(nM).
::::::::::::::

(8.8)

:::
The

::::::::
discrete

::::
time

:::::::
Fourier

:::::::::
transform

::
of

::::
this

::::::::::::
downsampled

::::::
signal

::
is

:::::
given

::
by

:
(8.6)

:::
and

::::
due

::
to

:
(??)

::
we

::::
have

:

Xd(ω) =
1

M
X(ω), for 0 ≤ |ω| ≤ ωs

2M
:::::::::::::::::::::::::::::::::::

(8.9)

::
It

:::
can

:::
be

::::::
shown

::::
that

:::
the

::::::::
original

:::::
signal

:::::
x(n)

:::
can

:::
be

::::::::::::
reconstructed

:::::::
exactly

:::::
from

:::
the

:::::::::::::
down-sampled

::::::
signal

::
by

:

x(n) =

∞∑
k=−∞

xd(k)
sin( πM (n− kM))

π
M (n− kM)

.

::::::::::::::::::::::::::::::::

(8.10)

::
In

:::::
what

:::::::
follows

:::
we

::::::
show

::::
that

::::
this

:::::
ideal

::::::::::::::
reconstruction

::
is
::::::::::

equivalent
:::
of

::::
first

::::::::::
upsampling

:::
the

::::::
signal

::::::
xd(n)

:::
and

:::::
then

::::::::
perform

::::
ideal

:::::::::::
LP-filtering

::::::
where

:::
the

::::
end

::
of

:::
the

:::::::::
pass-band

::
is
:::
at

:::::::::
frequency

:::::::::
ωs/(2M).

::::
Let

:::::
xu(n)

:::
be

:::
the

::::
rate

:::
M

::::::::::
upsampled

:::::
signal

::::::
xd(n).

::::::
Then

::
we

:::::
have

:

x(n) =

∞∑
n′=−∞

xu(n)
sin( πM (n− n′))

π
M (n− n′) =

∞∑
k=−∞

sin( πM k)
π
M k

xu(n− k)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

(8.11)

:::::
which

:::
we

:::::::::
recognize

::
as

:::::::::::
convolution

::::
with

::::
the

:::::::
impulse

::::::::
response

:

h(k) =
sin( πM k)

π
M k

::::::::::::::

(8.12)

::::
with

:::
the

:::::::::
frequency

::::::::
function

:

H(ω) =

{
M, 0 ≤ |ω| < ωs

2M

0,
:::::::::::::::::::::::::

(8.13)

:::
We

:::
can

:::::::::
formulate

::::
the

::::::
entire

::::::
process

:::
as

::
as

::::
the

:::::::
identity

:

x(n) = H(z) ⇑M
::::::::::::::

[⇓M [x(n)]
::::::::

] (8.14)

:::::
where

::::
the

::::::::
operator

:::::
H(z)

:::::::
denotes

::::
DT

:::::::::::
convolution,

:::
i.e.

:

H(z) =

∞∑
k=−∞

h(k)z−k ⇔ y(n) = H(z)x(n) =

∞∑
k=−∞

h(k)x(n− k)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(8.15)

::::
since

:::::::::::::::::::
z−kx(n) = x(n− k).

::::
The

:::::
ideal

::::
DT

:::::::::::::
reconstruction

::
is
::::::
hence

:::::::::
equivalent

:::
to

:::
LP

:::::::
filtering

:::::
with

::
an

:::::
ideal

::::::
filter.
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Interpolation and decimation

By combining the up-sampling and down-sampling operations with filtering we
obtain practically useful function blocks. In this section we will use the operator
form H(z) to denote filtering, i. e.

H(z) =

∞∑
k=−∞

h(k)z−k ⇔ y(n) = H(z)x(n) =

∞∑
k=−∞

h(k)x(n− k)

since z−kx(n) = x(n− k).
:::
As

::::::::
explained

::
in

::::
the

:::::::
previous

:::::::
section

::::
ideal

:::::::::::::
reconstruction

:::
can

:::
be

::::
seen

:::
as

:
a
::::::::::::
combination

::
of

:::::::::::
upsampling

:::::::
followed

:::
by

:::
an

:::::
ideal

::::::::
LP-filter.

:

Interpolation An
::::::
general

:
interpolation function block consists of an up-

sampler followed by a filter which removes the unwanted images of the signal.
Mathematically we can summarize the function as

xI(n) = HI(z)⇑L[x(n)]. (8.16)

Normally the interpolation filter HI(z) is a low-pass filter with a cut off fre-
quency at around ωc = ωs

2L (where ωs is the sampling frequency of the up-
sampled signal) and the resulting signal will be a smooth version of the original
low rate signal. If

:::
the

:::::
filter

::
is

:::
an

::::
ideal

::::
LP

::::
filter

:::
we

:::::::
obtain

::::
ideal

::::::::::::::
reconstruction.

:
If, on the other hand, the filter selects some of the images higher up in frequency,
the function will act like a modulator which moves the information from a base-
band to a higher frequency band. Of course, the position of the modulated
signal is limited to the location dictated by the location of the images resulting
from the up-sampling step.

Decimation In order to reduce the sample rate in a useful manner the poten-
tially harmful aliasing caused by the down-sampling must be reduced. A digital
anti-aliasing filter is used to achieve the desired attenuation before the signal is
down-sampled. After the filtering operation, the bandwidth of the signal should
be limited to ωs/M (counting all frequencies from 0 to ωs:, ::

or
:::::
from

::::::
−ωs/2:::

to

::::
ωs/2), where M is the down-sampling factor and ωs is the sampling frequency of
the original signal. The combination of a filter and a down-sampling operation
is called decimation. The operation can be described as

xD(n) = ⇓M [HD(z)x(n)] (8.17)

where HD(z) is the decimation filter. The most common decimation filter type
is a low-pass filter assuming the information to retain is in the lowest frequency
band. Then the decimation filter HD(z) is a low-pass filter with a cut off
frequency at around ωc = ωs

2M (where ωs is the sampling frequency of original
(high-rate) signal). If instead a band-pass or a high-pass filter is used, leads to
a demodulation operation .

:::::
where

::::
the

:::::::::::
information

::
in

:::
the

:::::::::
passband

::::
will

:::
be

::::::
moved

:::
to

:::
the

:::::::::
baseband

::::
due

::
to

:::
the

:::::::::
sampling

:::::::::
operation.

::::
See

:
(8.6)

:::
for

:::
the

::::::
exact

:::::::
relation.

:
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Rate change By combining an L factor up-sampler, a filter and an M factor
down sampler we obtain a rate converter which changes the sample rate to L/M
times the old rate.

y(n) = ⇓M [H(z)⇑L[x(n)]] (8.18)

Here we can view the interpolation and decimation filter combined into one
filter H(z). Note that normally the up-sampler must be used before the down-
sampler to yield the desired result. If the orders are reversed we are faced with
possible alias problems unless the original signal x(n) has a limited bandwidth

:::::::::
bandwidth

:::::::
limited

:::
to

:::::
ωs/M:::::::::

(counting
:::
all

::::::::::
frequencies

:::::
from

::
0

::
to

::::
ωs) .

Cascaded implementation If M or L are needed to be large integers (and
non-prime) it is from an implementation point of view better to cascade several
interpolation or decimation steps, e.g. L = L1L2.

y(n) = H2(z)⇑L2
[H1(z)⇑L1

[x(n)]] (8.19)

Also if L1 = L2, it is also possible to reuse the filters, i.e. H1(z) = H2(z) which
means that only one filter need to be designed and stored.

Polyphase implementation

At first sight the interpolation and decimation operations seems costly since the
filtering is performed at the higher sample rate. In the interpolation case the
filter is feed with L − 1 zeros at known time indices which of course we could
take advantage of in the filter structure. In a similar fashion it is unnecessary
to actually calculate the output of the decimation filter for those time indices
which in the next step are discarded by the down-sampler. This can be described
mathematically by utilizing a special result known as the “Noble identities”.
First consider a FIR filter in its operator form H(z)

H(z) =

K−1∑
k=0

h(k)z−k ⇔ y(n) = H(z)x(n) =

K−1∑
k=0

h(k)x(n− k) (8.20)

The filter H(zL) is defined by

H(zL) =

K−1∑
k=0

h(k)z−kL ⇔ y(n) = H(zL)x(n) =

K−1∑
k=0

h(k)x(n− kL).

(8.21)
The noble identities are the following operator results

H(z)⇓M [x(n)] = ⇓M [H(zM )x(n)], H(zL)⇑L[x(n)] = ⇑L[H(z)x(n)] (8.22)

which show us how to move the filtering operations to the lower rate side.
In order to achieve this for any decimation or interpolation filter we need to
decompose an arbitrary filter into a sum of filters of the type H(zM ) (or H(zL)).
Consider an arbitrary FIR filter which (if necessary) is zero padded to a length
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K = LP where L and P are integers. Then

H(z) =

K−1∑
k=0

h(k)z−k = [k = pL+ l]

=

L−1∑
l=0

z−l
P−1∑
p=0

h(pL+ l)z−pL︸ ︷︷ ︸
Hl(zL)

=

L−1∑
l=0

z−lHl(z
L)

(8.23)

Now assume the interpolation function given by (8.8). With the polyphase

decomposition of HI(z) =
∑L−1
l=0 z−lHl(z

L) we have the identity

xI(n) = HI(z)⇑L[x(n)] =
L−1∑
l=0

z−lHl(z
L)⇑L[x(n)]

=

L−1∑
l=0

z−l⇑L[Hl(z)x(n)].

(8.24)

All the L filters Hl(z) are operated at the lower rate and are each of size
P . The total complexity of the filtering is thus reduced by a factor L compared
with a straightforward implementation according to (8.8), i.e. up-sample first
and then filter. For the decimation application a dual approach can be applied in
a similar manner. Graphical illustration of the polyphase identities for a factor
3 decimator can be seen in Figure 8.1. In Figure 8.2 a factor 3 interpolation is
illustrated.

Example 8 Assume the LP filter H(z) to be used in a fac-
tor 3 interpolation (like in the Figure 8.2) has impulse response
h0, h1, . . . , h5. We can write

H(z) = h0 + h1z
−1 + h2z

−2 + . . .+ h5z
−5 (8.25)

Since we want to use this filter for a factor 3 interpolator we want
to split the filter into 3 parts according to (8.15). We obtain

H(z) = H0(z3) + z−1H1(z3) + z−2H2(z3) (8.26)

where

H0(z3) = h0 + h3z
−3 ⇒ H0(z) = h0 + h3z

−1

H1(z3) = h1 + h4z
−3 ⇒ H1(z) = h1 + h4z

−1

H2(z3) = h2 + h5z
−3 ⇒ H2(z) = h2 + h5z

−1

(8.27)

The orignal LP filter of length 6 has now been split into three FIR
filters of length 2. Each of the 3 filters are employed at the low rate
as illustrated in the bottom right graph in Figure 8.2. �
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Figure 8.1: Example of processing structure for factor 3 decimation of sig-
nal x(n). Top left graph illustrate the basic interpolation structure. Follow-
ing graphs illustrate the steps to the polyphase implementation (bottom right
graph)

Figure 8.2: Example of processing structure for factor 3 interpolation of sig-
nal x(n). Top left graph illustrate the basic interpolation structure. Follow-
ing graphs illustrate the steps to the polyphase implementation (bottom right
graph)
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Figure 8.3: Classical processing chain including analog anti-aliasing filter (AAF)
followed by sampling.

Figure 8.4: Oversampled data acquisition processing chain including analog
anti-alias filter, sampling unit (ADC), discrete time anti-aliasing (DT AAF)
filter and downsampling.

Oversampling techniques

Oversampling techniques can be used both when sampling continuous time sig-
nals as well as for reconstruction of analog signals from the digital samples. In
both cases the oversampling, i.e. to increase the sample rate beyond the Nyquist
rate dictated by the bandwidth of the signal, enable to perform the necessary
anti-aliasing and reconstruction filtering in the digital domain instead of in the
analog domain. Often this leads to inexpensive hardware solutions as long as
the higher sample rates are possible to accomodate in the digital hardware.

Sampling When sampling a continuous signal alias distortion will occur if the
signal sampled does not satisfy the Nyquist criteria. Higher frequency signal
content will mix with lower frequency content according to (2.31). The classical
way to mitigate alias distortion is to use an Anti-Aliasing Filter (AAF) prior
to the sampling. For an illustration see 8.3 where the sample frequency fs is
selected to satisfy the Nyquist criteria for the desired signal. If the sampling unit
is operated at a higher sample rate Lfs, the aliasing distortion is reduced since
most disturbances decrease in power with increasing frequency. The sample rate
can then be reduced by a decimation step where the aliasing distortions can be
controlled by the discrete time anti-aliasing filter. It is easier to implement
a high performing discrete time filter compared to an analog continuous time
filter. Figure 8.4 illustrates the oversampling processing steps.

Reconstruction Classical reconstruction employ a zero-order-hold (ZOH)
circuit followed by a continuous time reconstruction filter, see Figure 8.5. The
ZOH reconstruction method introduces reconstruction distortion which can be
illustrated by the Fourier transform of the ZOH operation. The desired be-
haviour is an ideal LP filter. See Figure 3.1. The ZOH operation scales the
magnitude of the transform of desired signal and allow higher frequencies due
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Figure 8.5: Classical reconstruction processing chain with a zero-order-hold
circuit followed by a analog reconstruction filter.

Figure 8.6: Oversampled reconstruction processing chain with an interpolator,
ZOH circuit operating at Lfs sampling frequency followed by an analog recon-
struction filter.

to the ripple behavior. If the sample rate increased to Lfs the forst Zero lo-
cation of the ZOH frequency function will move to Lfs. This will make the
frequency function more ideal in the frequency interval [−fs/2, fs/2] and push
the frequency distortions from the ripple to higher frequencies. An oversampled
processing chain for signal reconstruction is illustrated in Figure 8.6. Since most
physical system attenuates high frequencies due to inertia and natural damping,
the analog reconstruction filter is often not necessary if L is selected large. This
significantly reduces the cost of implementation.
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Chapter 9

Statistical signal processing

A statistical view of signals provide a mathematical framework for analysis and
optimal design. We limit the presentation to real valued stochastic signals.

For a random variabel x, the cumulative distribution function Fx(x0) give
the probability of the event that the random variable x take a value less than
x0.

P (x < x0) = Fx(x0) (9.1)

The probability of an outcome of the random variable x in the interval between
xl and xh is

P (xl < x < xh) = Fx(xh)− Fx(xl) =

∫ xh

xl

px(x) dx (9.2)

where px is the px(x) is the probability density function where

d

dx
Fx(x) = px(x) (9.3)

From (9.2) it follows that px(x) ≥ 0 and liml→∞ P (−l < x < l) = 1 so the area
under px(x) is equal to one.

Expectation of a function of the random variabel x, f(x) is an operation
defined as

E{f(x)} =

∫ ∞
−∞

f(x)px(x) dx (9.4)

The mean value of a random variable x is obtained when f(x) = x, i.e.

mx , E{x} ,
∫ ∞
−∞

xpx(x) dx (9.5)

If the pdf of a random variable x is (even) symmetric around a value x0 then
mx = x0. A multidimensional pdf provide the information on how several
variables are statistically related. Say x and y are two variables with a joint pdf
px,y(x, y). The pdf then gives the probability of the event that the two variables
take values which fall inside the box defined by xl, xh, yl and yh;

P (xl < x < xh, yl < y < yh) =

∫ yh

yl

∫ xh

xl

px,y(x, y) dxdy. (9.6)

63



Expectation for two variables are defined as

E{f(x, y)} =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)px,y(x, y) dxdy. (9.7)

If the joint probability distribution can be factored as px,y(x, y) = px(x)py(y),
the two variables are called independent and

E{xy} =

∫ ∞
−∞

∫ ∞
−∞

xypx,y(x, y) dxdy =

∫ ∞
−∞

xpx(x) dx

∫ ∞
−∞

ypy(y) dy.

= E{x}E{y}
(9.8)

From this results we note that if two variables x and y are independent and at
least one of them have zero mean value then E{xy} = 0.

The variance σ2
x of a stochastic variable x is

σ2
x = E(x−mx)2 = Ex2 − 2mx Ex+m2

x = Ex2 −m2
x. (9.9)

If the stochastic variable is zero mean (mx = Ex = 0) then the variance is
the expected value of x2. The square root of the variance σx =

√
σ2
x is called

the standard deviation. The variance of a zero mean signal is proportional
to the power of the signal while the standard deviation is proportional to the
magnitude of the signal.

Stochastic processes x(n)

If we consider a sequence of stochastic variables and enumerate them with an
integer index we can regard them as a stochastic process x(n). Hence a discrete
time signal can be viewed as a realization (outcome) of a stochastic process.
In our notation we will not differentiate between the stochastic variable and
the numerical outcome or realization of it. Hence x(n) can both represent the
stochastic variable or the numerical value the signal x takes at time index n. The
context in which the symbol is used will most often clarify which interpretation
is the intended one.

The statistical relation between different samples (random variables) are de-
scribed by the joint pdf, px(n),x(n+k). Here we only regard process which are
wide sense stationary (WSS) which means that the mean value (first moment)
is constant and the covariance (second moment) only depend on the time differ-
ences (the time lag) and is finite. Hence, for a WSS process Ex(n) = mx for all
n, i.e. the mean value does not depend in the index n. For all n and k we have
Ex(n)x(n + k) = Ex(0)x(k). We also assume that the process is wide sense
ergodic which mean that for WSS process x(n) the sample means will converge
to the expected value for the first and second moments, i.e.

Ex(n) = mx = lim
M→∞

1

2M + 1

M∑
n=−M

x(n) (9.10)

E(x(n)−mx)(x(n+ k)−mx) = E(x(n)−mx)(x(n+ k)−mx)

= lim
M→∞

1

2M + 1

M∑
n=−M

(x(n)−mx)(x(n+ k)−mx) (9.11)
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where x(n) in the summation represents the realization (outcome). Hence, for
a finite M , the summation can be calculated for samples of a given signal and
can be used to derive an estimate of the expected value.

The auto-correlation function is defined as

φxx(n) , E{x(0)x(n)} (9.12)

and (trivially) satisfy φxx(−n) = φxx(n), i.e. it is an even symmetric function.
The auto-correlation function illustrates how samples at n lags (time indices)
apart co-vary. If mx = 0, the auto-correlation at lag 0 is the same as the
variance.

From here and onwards, we assume that signals have zero mean value and
are wide sense stationary and ergodic unless explicitly stated otherwise.

The cross-correlation between two signals x(n) and y(n) is defined by

φxy(n) , E{x(0)y(n)} (9.13)

and we see that φyx(n) = φxy(−n).

Frequency domain descriptions

By using the DTFT of the auto- and cross-correlation functions we obtain a
spectral domain description of the stochastic processes. The power spectral
density is given by

Sxx(ω) ,
∞∑

n=−∞
φxx(n)e−jωn. (9.14)

Since the auto-correlation function is even symmetric, the power spectral density
Sxx(ω) is a real and non-negative function. Since

σ2
x = φxx(0) =

1

2π

∫ 2π

0

Sxx(ω) dω (9.15)

we can make the interpretation that Sxx(ω) let us know how the power in the
signal is distributed over the frequency interval.

The cross-spectral density is defined in an analogous manner

Sxy(ω) ,
∞∑

n=−∞
φxy(n)e−jωn. (9.16)

and we can derive the relation

Syx(ω) =

∞∑
n=−∞

φyx(n)e−jωn =

∞∑
n=−∞

φxy(−n)e−jωn

∞∑
n=−∞

φxy(n)e−jωn = Sxy(ω)

(9.17)

since ejωn = e−jωn and φxy(n) is real valued.
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The periodogram

The periodogram of a signal was previously introduced and is defined as the
magnitude of the DTFT of the signal. We will now show the relation between
the power spectral density of a stochastic process and the periodogram based
on a realization of length N of the process. Let P (ω) denote the periodogram.
Then

P (ω) = |X(ω)|2 = X(ω)X∗(ω) (9.18)

Since X∗(ω) is the DTFT of x(−n) we can interpret the result as a convolution
in the time domain between the signal x(n) and x(−n), i.e.

p(n) =

N−1∑
k=0

x(k)x(k − n), n = 0,±1, . . . ,±(N − 1) (9.19)

where p(n) is the inverse DTFT of the periodogram. The expected value of p(n)
is

E p(n) = (N − |n|)︸ ︷︷ ︸
wtri(n)

φxx(n) = wtri(n)φxx(n), n = 0,±1, . . . ,±(N − 1) (9.20)

which is a windowed version of the auto-correlation function and wtri(n) is the
triangular window function. We can conclude that

EP (ω) =

N−1∑
k=−(N−1)

wtri(n)φxx(n)e−jω∆tn =
1

ωs

∫ ωs

0

Wtri(λ)Sxx(ω − λ) dλ.

(9.21)
The expected value of the periodogram is hence equal to the power spectral
density frequency convolved with the DTFT of the triangular window.

Filtering Stochastic Processes

Based on the characterization of the stochastic processes in terms of auto- and
cross-correlations and power spectral densities it is natural to derive these prop-
erties also for signals which has undergone linear filtering.

Consider a stochastic process x(n) which is filtered by a linear filter with
impulse response h(k) and frequency function H(ω). The output of the filter
y(n) is also a stochastic process given by

y(n) =

∞∑
k=−∞

h(k)x(n− k) (9.22)

The cross-correlation between the input and output is given by

φxy(n) = Ex(0)y(n) = E

∞∑
k=−∞

h(k)x(0)x(n− k)

=

∞∑
k=−∞

h(k)φxx(n− k)

(9.23)
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The cross-correlation between x and y is the convolution between the impulse
response of the filter and the auto-correlation of the input x. In the DTFT
domain we consequently can state

Sxy(ω) = H(ω)Sxx(ω). (9.24)

In turn the auto-correlation of the filter output y is

φyy(n) = E y(0)y(n) = E

∞∑
k=−∞

h(k)y(0)x(n− k)

=

∞∑
k=−∞

h(k)φyx(n− k)

(9.25)

which in the DTFT domain is

Syy(ω) = H(ω)Syx(ω) = H(ω)Sxy(ω)

= H(ω)H(ω)Sxx(ω) = |H(ω)|2Sxx(ω)
(9.26)

where we used the result from (9.17) and (9.24) and the fact that Sxx(ω) is a
real valued function. By analyzing (9.26) we notice that the power spectrum of
the output is the product of the power spectrum of the input and the squared
magnitude (amplitude) function of the linear filter. The phase function of the
filter does not influence the power spectrum.

Filtered white noise

Consider a signal e(n) which is a stochastic process with zero mean value and
an auto-correlation function φee(n) = σ2

eδn where δn = 1 for n = 0 and zero
everywhere else. The power spectrum of the signal e(n) is

See(ω) =

∞∑
n=−∞

σ2
eδne

−jωn = σ2
e . (9.27)

The power spectral density See(ω) is constant for all frequencies and is therefore
referred to as a white spectrum and signals with a white power spectral den-
sity are called white noise signals. Consequently, signals with a non-constant
spectrum, a colored spectrum, are called colored.

If the white noise signal e is filtered through a filter H(ω) the output power
spectral density is given by

Syy(ω) = |H(ω)|2σ2
e . (9.28)

Since only the amplitude function matters for the resulting spectrum the phase
of the filter can be arbitrary.

Minimum phase spectral factors

Assume a power spectral density S(ω) which is strictly positive is specified in
the form of a filter factor, i.e. S(ω) = |H(ω)|2 = H(ω)H(ω) and H(ω) is an
FIR filter with a real valued impulse response. We can express the filter as
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H(z) = Πk(z − zk) where zk are the zeros of the polynomial. The zeros zk are
either real valued or are pairwise complex conjugated. With the z-transform
notation (i.e. z = ejω) we can write

S(z) = |H(z)|2 = H(z)H(z) = H(z)H(z−1) (9.29)

Notice that of zk is a zero for H(z) then 1/zk is a zero for H(z−1). If we collect
all zeros of the product H(z)H(z−1) which reside inside the unit circle into
H+(z) we have by construction

S(z) = |H(z)|2 = H+(z)H+(z−1) = |H+(z)|2 (9.30)

and we have constructed a filter H+(z) with all zeros inside the unit circle. The
spectral factor H+(z) is called minimum phase and has the important property
that the causal inverse of the filter, which is if IIR type, is stable since all zeros
of H+(z) will be poles in 1/H+(z). We can perform a similar factorization if the
specified spectrum is a fraction of two polynomials which will yield a spectral
factor with both poles and zeros inside the unit circle.

Noise whitening filter

In some applications it is desirable to use a filter to make the spectrum of
a stochastic signal to become white. Such filters are called whitening filters.
If the colored spectrum has a rational structure at can be written using the
minimum phase factor H+(ω)

Sxx(ω) = |H+(ω)|2. (9.31)

The whitening filter is given by H+(ω)−1, the inverse of the spectral factor,
which is always stable.

Inverse filtering

Equalization or inverse filtering is the process where a filter is used to recover
a source signal from a second signal originating from the source but altered by
some linear filter g(n). Assume

y(n) = g(n) ∗ x(n) + w(n) (9.32)

where y(n) is the received signal x(n) is the signal we want to recover and w(n)
is a term modeling the noise in the receiver. To recover x(n) from y(n) we use
a linear filter h(n)

x̂(n) =

∞∑
k=−∞

h(k)y(n− k) (9.33)

where x̂(n) is the estimate of the original input signal x(n). In the DTFT
domain we have

X̂(ω) = H(ω)G(ω)X(ω) +H(ω)W (ω) (9.34)

A possible choice could be to simply select H(ω) = G(ω)−1. This choice could
lead to some undesirable effects:
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• Firstly, if G(z) have zeros outside the unit circle then H(z) would be an
unstable filter and not possible to use in practice.

• Secondly, for frequencies where G(ω) is close to zero the filter H(ω) would
be vey large and lead to a high gain of the noise.

The so called Wiener filter provide a solution which provide an optimal balance
between inverting G and keeping the resulting noise levels low.
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Chapter 10

Optimal filtering - Wiener
filter

Previously we have designed frequency filters based on specifications in the
frequency domain. In this section we will consider the filter design problem
from a statistical signal point of view and use optimality based on a mean-
square error criterion. At first this can be interpreted as a time-domain filter
design technique. However since we will base the design on correlation and
cross-correlation functions the optimal filtering problem have an equally valid
interpretation in the frequency domain, i.e. in terms of minimizing the power
spectrum of the error.

Equalization

Consider the filtering problem where a known signal y(n) contain information
of a signal x(n) but also contain a disturbance w(n). Assume

y(n) = G(z)x(n) + w(n) (10.1)

where G(z) is a linear filter, x(n) and w(n) are zero mean stochastic processes
independent of each other. This signal model works well for a communication
application where y(n) is the received signal and x(n) is the information which
is transmitted over the channel modeled by G(z). For this signal model the
power spectrum of y(n) and the cross spectral density are given by

Syy(ω) = |G(ω)|2Sxx(ω) + Sww(ω)

Sxy(ω) = G(ω)Sxx(ω)
(10.2)

where we have assumed w and x to be uncorrelated, an assumption which is
most natural in many applications.

Filtering, prediction and smoothing

A second signal setup which is a variation on (10.1) can be written

y(n) = s(n) + w(n) (10.3)

where s(n) is a signal of importance and w(n) is a disturbance. Three different
scenarios can be identified.
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h(n) +
y(n)

x(n)

e(n)−x̂(n)

Figure 10.1: Block diagram for the general optimal filtering problem.

Filtering If we want to make the best causal estimate of the signal s(n) from
y(n) we set the desired signal x(n) = s(n).

Prediction If we want to use the signal y(n) to produce estimates of future
values of s(n) we set x(n) = s(n+ k) for some positive prediction horizon
k.

Smoothing If the objective is to obtain a good estimate of past values of s(n)
based on the observed values y(n) we set x(n) = s(n−k) for some positive
smoothing lag k.

Optimal non-causal Wiener filter

The filtering objective for all cases listed above is to recover a good approx-
imation of x by filtering the received signal y. Consider the general case, as
illustrated in Figure 10.1, when the filter H(ω) has a double infinite length
impulse response, i.e. it is a non-causal filter. Then the filter equation is

x̂(n) =

∞∑
k=−∞

h(k)y(n− k), (10.4)

where x̂ is the estimate of the desired signal x. The mean squared error (MSE)
is given by

E e2(n) = E(x(n)− x̂(n))2 = E(x(n)−
∞∑

k=−∞

h(k)y(n− k))2

= E

[
x2(n)− 2

∞∑
k=−∞

h(k)y(n− k)x(n) +

∞∑
k=−∞

∞∑
r=−∞

h(k)h(r)y(n− k)y(n− r)
]

= φxx(0)− 2

∞∑
k=−∞

h(k)φyx(k) +

∞∑
k=−∞

∞∑
r=−∞

h(k)h(r)φyy(k − r)

(10.5)
The gradient of the MSE w.r.t the filter coefficients are given by

d

dh(k)
E e2(n) = −2φyx(k) + 2

∞∑
r=−∞

h(r)φyy(k − r) (10.6)

When the filter is optimal the MSE is minimized and hence the gradient w.r.t.
each of the filter coefficients must be zero. At the optimum, for each k we have

φyx(k) =

∞∑
r=−∞

h(r)φyy(k − r) (10.7)
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which gives an implicit characterization of the optimal filter. However, employ-
ing the DTFT on both sides of the equation and rearranging we obtain

H(ω) =
Syx(ω)

Syy(ω)
=
Sxy(ω)

Syy(ω)
(10.8)

Returning to the communication example before, e.g. (10.1), where a signal
x(n) should be recovered from noisy measurements y(n). For this case the
power spectrum and cross spectrum are detailed in (10.2). Hence, the filter
which minimizes the MSE of the estimation error is given by

H(ω) =
G(ω)Sxx(ω)

|G(ω)|2Sxx(ω) + Sww(ω)
=

1

G(ω)
× 1

1 + Sww(ω)
|G(ω)|2Sxx(ω)

. (10.9)

where the right hand side is only valid if |G(ω)| > 0 for all ω. If we define

SNR(ω) , |G(ω)|2Sxx(ω)
Sww(ω) as the signal to noise ratio, we can also describe the

optimal filter as

H(ω) =
1

G(ω)
× SNR(ω)

SNR(ω) + 1
(10.10)

Notice that if the signal to noise ratio tends to infinity (for all frequencies) the
optimal filter is given by H(ω) = 1/G(ω), i.e. the optimal filter is the inverse
of the transmission channel. On the other side of the scale, i.e. when SNR(ω)
approaches zero, the filter gain tends to zero. In conclusion (10.9) provide the
optimal tradeoff between mitigating effects of noise and approximately inverting
the transmission channel.

Optimal causal FIR Wiener filter

For many practical applications it is sufficient to use a finite FIR filter structure
and the optimal filter refers to best causal FIR filter of a given length. Hence,
the filter equation is simplified to

x̂(n) =

M−1∑
k=0

h(k)y(n− k). (10.11)

The derivation of the optimal filter of finite length follows along the lines above
with the exemption that the summations are finite. The gradient of the MSE
w.r.t. to h(k) for k = 0, 1, . . . ,M − 1 is given by

d

dh(k)
E e2(n) = −2φyx(k) + 2

M−1∑
r=0

h(r)φyy(k − r) (10.12)

and the optimal filter is defined by, for all k, setting all gradients to zero

φyx(k) =

M−1∑
r=0

h(r)φyy(k − r) (10.13)

Define the matrix

Φyy ,


φyy(0) φyy(1) · · · φyy(M − 1)
φyy(1) φyy(0) · · · φyy(M − 2)

...
φyy(M − 1) φyy(M − 2) · · · φyy(0)

 . (10.14)
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All elements on the diagonals in this square matrix have the same value. Such
a matrix is known as a Toeplitz matrix. Also introduce the vectors

Φyx =
[
φyx(0) φyx(1) · · · φyx(M − 1)

]T
(10.15)

and
h =

[
h(0) h(1) · · · h(M − 1)

]T
(10.16)

With the matrix and vector notation we can rewrite (10.13) as

Φyx = Φyyh (10.17)

where we have used the property that φyy(−k) = φyy(k). All solutions h to
equation (10.17) is an optimal causal FIR filter of order M . Furthermore, if
Φyy has full rank the solution is unique and given by

hopt = Φ−1
yy Φyx. (10.18)

if we define
y ,

[
y(n) y(n− 1) · · · y(n−M + 1)

]T
(10.19)

we obtain Φyy = E{yyT } and Φyx = E{yx(n)}. With this notation we can
derive the resulting MSE when using the optimal filter as

E e2(n) = E(x(n)− x̂(n))2 = E(x(n)− hTy)2

= E
[
x2(n)− 2x(n)hTy + (hTy)(yTh)

]
= φxx(0)− 2hTΦyx + hTΦyyh

= φxx(0)− 2hTΦyx + hTΦyyΦ−1
yy Φyx

= φxx(0)− hTΦyx = φxx(0)− ΦTyxΦ−1
yy Φyx

(10.20)
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Finding the optimal filter from data

Many times in practice it might be difficult to obtain the auto-correlation and
cross-correlation functions needed to derive the optimal Wiener filter. Secondly,
in many applications we are faced with environments which slowly varies over
time and we would like to track theses changes automatically. Both these issues
are solved by adaptive filter algorithms. In principle we will consider:

• The estimation problem: How to derive the optimal filter based on mea-
sured data.

• The adaption problem: How to adaptively update the filter when the signal
properties changes over time.

First we consider the estimation problem where we assume we have access to
training samples of both y(n) and x(n). If we consider a sample based criterion
as an approximation of the variance of e(n) we have

E{e2(n)} ≈ LN (h) ,
1

N + 1

N∑
n=0

e2(n) =
1

N + 1

N∑
n=0

(
x(n)− hTy(n)

)2
(10.21)

where
y(n) =

[
y(n) y(n− 1) · · · y(n−M + 1)

]T
h =

[
h(0) h(1) · · ·h(M − 1)

]T (10.22)

The criterion function LN is a non-negative quadratic function and hence the
minimum is attained when the gradient w.r.t. h is zero

d

dh
LN (h) = 0 ⇒ 1

N + 1

N∑
n=0

y(n)yT (n)h =
1

N + 1

N∑
n=0

y(n)x(n) (10.23)

Introducing the notation

Ryy(N) ,
N∑
n=0

y(n)yT (n), Ryx(N) ,
N∑
n=0

y(n)x(n) (10.24)

we note that the filters minimizing LN should satisfy

Ryy(N)h = Ryx(N) (10.25)

and if Ryy(N) has full rank the solution is unique and can be written as

ĥ(N) = R−1
yy (N)Ryx(N). (10.26)

If the signals y(n) and x(n) are ergodic processes we have that

lim
N→∞

1

N + 1
Ryy(N) = Φyy, lim

N→∞

1

N + 1
Ryx(N) = Φyx (10.27)

and, if for some N0, Ryy(N) is non-singular for all N > N0 we obtain

lim
N→∞

ĥ(N) = Φ−1
yy Φyx = hopt (10.28)
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Recursive least-squares (RLS) algorithm

For on-line applications it is desirable to be able to re-calculate the optimal filter
base on new data. Clearly this can be directly be accomplished by simply use
relations (10.24) and (10.26). However this would involve, for each time sample,
calculating a matrix inverse of a matrix of size M×M which is computationally
quite costly (order M3 number of multiplications). However, the least-squares
solution in (10.26) can be formulated as a recursion without calculation of the
full inverse which saves computations.

Assume we have already calculated R−1
yy (N − 1) and ĥ(N − 1). The filter

output based on the filter ĥ(N − 1) is

x̂(N) = ĥT (N − 1)y(N), with error e(N) = x(N)− x̂(N). (10.29)

We will now derive a recursion which provides us with an update of these two
entities based on the new data x(N) and y(N). Clearly from the definition in
(10.24) we have

Ryy(N) = Ryy(N − 1) + y(N)yT (N) (10.30)

and
Ryx(N) = Ryx(N − 1) + y(N)x(N) (10.31)

Using relation (10.26) on the left hand side in (10.31) and relation (10.30) on
the right hand side we obtain

Ryy(N)ĥ(N) = Ryy(N − 1)ĥ(N − 1) + y(N)x(N)

=
(
Ryy(N)− y(N)yT (N)

)
ĥ(N − 1) + y(N)x(N)

(10.32)

Furthermore expanding the parenthesis yields

Ryy(N)ĥ(N)

= Ryy(N)ĥ(N − 1)− y(N) yT (N)ĥ(N − 1)︸ ︷︷ ︸
x̂(N)

+y(N)x(N)

= Ryy(N)ĥ(N − 1) + y(N) (x(N)− x̂(N))︸ ︷︷ ︸
e(N)

= Ryy(N)ĥ(N − 1) + y(N)e(N) (10.33)

Assuming Ryy(N) non-singular we obtain the recursion for the filter as

ĥ(N) = ĥ(N − 1) + R−1
yy (N)y(N)e(N) (10.34)

The last issue to fix is to provide a technique to calculate the inverse of Ryy(N)
in an efficient way. To do so we will use the following matrix result. Consider
the matrix A defined as

A = B + vvT (10.35)

where v is a column vector and B is a symmetric matrix. If B−1 exists and
1 + vTB−1v 6= 0 then the inverse of A is given as

A−1 = B−1 − B−1vvTB−1

1 + vTB−1v
(10.36)

75



and is a special case of the Sherman-Morrison-Woodbury formula. The update
(10.35) is known as a matrix rank one update (since the vector outer product
vvT is a matrix with rank one). Since the formation of Ryy(N) in (10.30) is a
rank one update, the inverse of Ryy(N) can be formulated as the recursion:

R−1
yy (N) = R−1

yy (N − 1)− R−1
yy (N − 1)y(N)yT (N)R−1

yy (N − 1)

1 + yT (N)R−1
yy (N − 1)y(N)

(10.37)

Note that the update in (10.37) only requires one matrix vector multiplication
(R−1

yy (N − 1)y(N)) and one vector outer product. The computational complex-
ity is hence proportional to M2. The RLS algorithm is composed of the two
recursions (10.37) and (10.34). The recursions must be initialized properly to
give the true least-squares solution for each value of N . This can be accom-
plished by selecting an integer N0 such that Ryy(N0) is non-singular and then
derive the least-squares solution

ĥ(N0) = R−1
yy (N0)Ryx(N0) (10.38)

and start the recursion from these values for N > N0.
The RLS algorithm above will deliver the optimal estimate minimizing∑N
n=0 e

2(n), i.e. all errors are weighted equally. To obtain an algorithm which
adaptively changes the filter when the conditions changes we can impose a
time dependent weighting of the functional being minimized. If an exponential
weighing is used

LN (h) =

N∑
n=0

e2(n)αN−n (10.39)

errors for time indices n << N will hava a low weight if α is selected in the
range

0 < α < 1. (10.40)

The weighting α is called the forgetting factor (when (10.40) is satisfied) and is
commonly selected to be in the range of [0.95, 0.999] depending on the applica-
tion. A value close to 1 will yield an algorithm which adapts to changes slowly
but is robust against measurement noise while a smaller value will lead to a fast
adaptation to changes but with a higher sensitivity to noise.

It is interesting to note that the recursive representation of the least-squares
solution is particularly well suited for the RLS algorithm with a forgetting factor.
The only equation which need to be modified is the update of the matrix inverse
in (10.37).

R−1
yy (N) =

1

α

[
R−1
yy (N − 1)− R−1

yy (N − 1)y(N)yT (N)R−1
yy (N − 1)

α+ yT (N)R−1
yy (N − 1)y(N)

]
(10.41)

When using RLS with a forgetting factor it is natural to use a simplified initial-
ization procedure for the recursions. Common choices are to select R−1

yy (0) = βI

and ĥ(0) = 0 with β > 0. The magnitude of β will influence the algorithm initial
convergence but will not make any difference when the algorithm has reached a
stationary operation.
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Chapter 11

Kalman Filtering

Introduction

Kalman filtering [3, 4] is a commonly used technique for model based signal
processing and estimation since it was presented around 1960. The technique is
named after one of the key inventors Rudolf Kalman. Kalman filtering is part
of the class of linear filtering techniques which are based on time domain design
criteria.

First consider a simple filtering example to introduce the basic concept of
Kalman filtering. Assume an airplane is moving along a straight line. The
position of the airplane in some coordinate system is pc(t) [m]. The speed of
the airplane is sc(t) = d

dtpc(t) [m/s]. A discrete time model of the movement of
the airplane is then

p(k + 1) = p(k) + ∆ts(k)

s(k + 1) = s(k)
(11.1)

where ∆t is the sampling interval and s(k) , sc(k∆t) and p(k) , pc(k∆t) are
the sampled speed and position respectively. In the model above the speed
is assumed to be constant. This assumption is in practice not realistic. The
pilot will change the speed of the airplane over time and the the airplane could
be subject to turbulence etc. These changes can also be incorporated into the
model by adding an extra input w1(k) and we obtain

p(k + 1) = p(k) + ∆ts(k)

s(k + 1) = s(k) + w1(k).
(11.2)

It is natural to regard the extra input w1(k) as small perturbations which over
time has a zero average. The model above is called a constant speed model and
is a model of how the speed and position of the airplane changes over time.

A radar station can measure the position p(n) of the airplane. However all
measurements are subject to inaccuracies so a natural model of the measurement
is

y(k) = p(k) + v(k) (11.3)

where v(k) is the measurement noise which we also assume is zero on average.
An air traffic controller need to know the speed and position of all airplanes

in the airspace so the core signal processing problem is how to provide him with
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the best estimates of the position and speed of the airplane given only noisy
measurements of the position obtained from the radar sensor.

In principle there are two sources of information involved in this estimation
problem.

1. The equations which describes the movement of the airplane assuming
constant speed (11.1)

2. The measurement of the position of the airplane (11.3)

A Kalman filter is a linear filtering algorithm which in an optimal way combines
these two sources of information. It provides an estimate of both the speed and
position of the airplane. To derive the Kalman filtering equations we will use a
probabilistic view of the problem using multivariate random variables.

Some results on multivariate normal random variables

An n-dimensional real valued multivariate random variable Z with a normal
distribution has the probability density function (PDF)

pZ(z) =
1√

(2π)n detQ
exp

(
−1

2
(z − µ)TQ−1(z − µ)

)
(11.4)

where EZ = µ ∈ Rn is the mean value and E(Z−µ)(Z−µ)T = Q ∈ Rn×n is the
positive definite covariance matrix. Often the multivariate normal distribution is
called a multivariate Gaussian distribution. The distribution is uniquely defined
by the mean value vector and the covariance matrix. Hence we use the notation

Z ∼ N(µ,Q) (11.5)

to denote that the random variable Z has a normal distribution with mean value
µ and covariance matrix Q.

An important property for random variables with a normal distribution is
that the scaled sum of such variables also has a normal distribution. More
specifically if the variables Zi ∼ N(µi, Qi) are statistically independent and
normally distributed then

∑
i

AiZi ∼ N
(∑

i

Aiµi,
∑
i

AiQiA
T
i

)
(11.6)

where Ai are a scaling matrices such that
∑
iAiQiA

T
i is positive definite.

In Kalman filtering the conditional distribution plays a key role. This is
connected with the case when we study a multivariate random variable and have
exact knowledge about the outcome of some components of it. This knowledge
can be used to infer more information about the remaining, unobserved, parts
of the random vector. Particularly we seek the PDF of the unobserved part
of the random vector. This is called the conditional distribution as it is a
distribution which is conditioned on a specific numerical outcome of parts of the
random variable. Assume variables X and Y have a joint PDF pX,Y (x, y). The
distribution of X given that we know the outcome of Y = y is the conditional
distribution

pX|Y (x|Y = y) =
pX,Y (x, y)

pY (y)
. (11.7)
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Note that (11.7) is the PDF for X conditioned on the observed outcome Y = y,
where y is the numerical outcome. For normally distributed variables we have
the following properties.

Assume we partition a multivariate normally distributed random random
variable into two parts Z = [XY ] and write

Z =

[
X
Y

]
∼ N

([
µx
µy

]
,

[
Q11 Q12

QT12 Q22

])
. (11.8)

Then the conditional distribution of X given that we know Y = y is also a
normal distribution

pX|Y (x|Y = y) ∼ N
(
µx +Q12Q

−1
22 (y − µy), Q11 −Q12Q

−1
22 Q

T
12

)
(11.9)

A proof of the result is given in Appendix A.1. The result can interpreted as
follows. Before the outcome of Y = y was observed, the variable X had a mean
value of µx and a variance of Q11. The observation of Y = y provides partial
knowledge about X. The mean value is changed to µx + Q12Q

−1
22 (y − µy) and

the variance decreases to Q11−Q12Q
−1
22 Q

T
12. It is easy to see that Q12, the cross-

covariance between X and Y , control the amount of information the knowledge
of the outcome Y = y have regarding the variable X. For example if Q12

would be zero (which means that X and Y are uncorrelated and independent),
then the conditional distribution is identical to the distribution of X only, i.e.
the outcome of the variable Y would then carry no information regarding the
variable X.

The Kalman Filter

First a data model is described and in the following section the filtering equations
are derived based on on a probabilistic view where it is assumed the variables
are described by multivariate normal distributions.

The data model

A linear discrete time stochastic process of order n can be written as a multidi-
mensional first order difference equation

x(k + 1) = Ax(k) + w(k)

y(k) = Cx(k) + v(k)
(11.10)

where x(k) ∈ Rn is the state, A ∈ Rn×n is the state-transition matrix, y(k) ∈ Rp
is the measurement and C ∈ Rp×n the measurement matrix. The index k nor-
mally refers to time samples but in general can refer to other units, e.g. distance
samples. The variables w(k) and v(k) are the state noise and measurement noise
respectively. We assume the state and measurement noises to be zero mean ran-
dom variables with a normal distribution and independent of the state variable
x(k). [

w(k)
v(k)

]
∼ N

([
0
0

]
,

[
Q 0
0 R

])
(11.11)
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By employing a probabilistic view also for the state x(k) and assume

x(k) ∼ N (x̂k, Pk) . (11.12)

conditioned on the measurements up to k − 1, where x̂k is the mean value and
Pk is the covariance matrix. Now considering the joint distribution of x(k) and
y(k) and using (11.6), (11.10), (11.11) and (11.12) we obtain[

x(k)
y(k)

]
∼ N

([
x̂k
Cx̂k

]
,

[
Pk PkC

T

CPk CPkC
T +R

])
(11.13)

Since

E y(k) = E(Cx(k) + v(k)) = Cx̂k

E(x(k)− x̂k)(y(k)− Cx̂k)T =

= E(x(k)− x̂(k))
(
(x(k)− x̂k)TCT + v(k)T

)
= PkC

T

E(y(k)− Cx̂k)(y(k)− Cx̂k)T =

= E (C(x(k)− x̂k) + v(k))
(
(x(k)− x̂k)TCT + v(k)T

)
= CPkC

T +R.
(11.14)

The filtering equations

The probabilistic model (11.13) tell us how the measurement y(k) is related to
the state x(k). As the goal of the filtering is to provide an estimate of x(k) based
on y(k) it is then natural to determine the distribution of x(k) conditional on
knowledge of y(k). By combining the results of (11.13), (11.8) and (11.9) the
conditional distribution is

pX|Y (x(k)|Y = y(k)) ∼ N
(
x̂+
k , P

+
k

)
(11.15)

where the mean value is

x̂+
k = x̂k + PkC

T (CPkC
T +R)−1(y(k)− Cx̂k) (11.16)

and covariance
P+
k = Pk − PkCT (CPkC

T +R)−1CPk (11.17)

The measurement y(k) thus provide information about x(t) leading to a new
normally distributed random variable with a modified mean value x̂+

k and re-
duced variance P+

k . To complete the picture consider the time update in the
state-equation (11.10). The state update equation is a linear combination of the
current state and the independent noise where both quantities are Gaussian ran-
dom variables. The distribution for the state variable time update, condistioned
on all measurements up to time k, is thus

x(k + 1) ∼ N (x̂k+1, Pk+1) (11.18)

where
x̂k+1 = Ax̂+

k (11.19)

and
Pk+1 = AP+

k A
T +Q. (11.20)

80



We can see that the noise only influences the variance of the state-update dis-
tribution since the added noise has a zero mean value, see (11.11).

To this end it has been demonstrated that the state and measurement vari-
ables are normally distributed random variables. It has also been shown how
the distribution of the state-variable is changed by considering the measure-
ment y(k). Hence, over time for k = 1, 2, . . . . we can track the distribution of
the state-variable by recursively updating the mean values x̂k and x̂+

k and the
corresponding covariances Pk and P+

k . In summary the filtering equations are

x̂+
k = x̂k + PkC

T (CPkC
T +R)−1(y(k)− Cx̂k), measurement update

P+
k = Pk − PkCT (CPkC

T +R)−1CPk

x̂k+1 = Ax̂+
k , time update (prediction)

Pk+1 = AP+
k A

T +Q.
(11.21)

The recursion equations need to be initialized when started, i.e. values of x̂0

and P0 must be supplied. The parameters are the mean value and variance of
the initial state. If no knowledge is available a practical choice is x̂0 = 0 and
P0 = αI where α is a large scalar to reflect a large uncertainty (covariance) of
x(0).

The Kalman filter equations together with the assumption that the driving
noise and the initial state are random variables with a known normal distribution
provide means to calculate the distributions of x(k0) conditioned that y(k) is
known from k = 0, 1, . . . , k0. Access to the conditional distribution of the state
x(k0) means that a point estimate of the variable x(k0) can be derived. A
natural choice is to use the mean value of the conditional distribution, i.e. x̂+

k .
Further analysis show that this value is also the minimum mean squared error
estimate.

Remark 1. Often the process noise is described as w(k) = Pr(k) where the
dimension of r(k) is smaller then the dimension of w(k). This imply that Q is
singular. The net effect is that w(k) is not a proper Gaussian random variable
since Q is rank defect. However, what is needed for the Kalman filter is that
Pk stays positive definite for all k which is guarenteed by (11.20) if P0 > 0 is
positive definite.

Example again

Returning to the airplane example we identify that the state at time index k is

x(k) =

[
pc(k∆t)
sc(k∆t)

]
(11.22)

and the state transition matrix and measurement matrix are

A =

[
1 ∆t
0 1

]
, C =

[
1 0

]
(11.23)

Remaining to define are the covariance matrices of the state and measurement
noises. In a practical application it can be difficult to derive these from avail-
able data. Often they are used to tune the filter to a desired performance. A
few key properties are though important. The relative magnitude between the
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covariance matrix of the state-noise and the measurement noise will control how
much the filter will rely on the signal model as compared to the measurement.
If the state-noise is small the measurements are given less weight and if the
state-noise is large the measurements are given more weight.

Extensions

In the derivation above we have assumed that the matrices A and C and the
covariance matrices Q and R are independent of the time index k. However, the
derivation above is still valid if they also are modeled as time variant, i.e. each
matrix can be assigned a time index e.g. Ak. This opens up to use the Kalman
filter for a wide class of problems. For example with a very particular setup it
is possible to show that the RLS and the LMS algorithms are special cases of
the more general Kalman filter.

In many applications the state update and/or the measurement equations are
nonlinear functions. A linearization approach to this case is known as the Ex-
tended Kalman filter [1] which is further developed into the Unscented Kalman
Filter technique [2].
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Chapter 12

LMS adaptive algorithm

The main disadvantage with the RLS algorithm is the computational complex-
ity and storage requirement of the R−1

yy matrix which is of size M ×M . Hence
the complexity and storage requirement is a quadratic function of the filter
length. Instead we can consider a iterative gradient descent method for opti-
mizing (10.21). In each iteration the parameter vector ĥi is updated according
to

ĥi+1(N) = ĥi(N)− µ∇hLN (ĥi(N)) (12.1)

where ∇hLN (h) denotes the vector corresponding to the gradient of the scalar
function LN (actually a scalar field). The vector ∇hLN (h) points in the direc-
tion where the function LN (h) increase most. In each iteration the vector is
updated in the negative direction of the gradient in order to reduce the value of
the function LN . The positive scalar µ control the length of the step and must
be selected small enough for the algorithm to converge. Employing the gradient
descent method on the Wiener filter problem yields

ĥi+1(N) = ĥi(N) + 2µ

N∑
n=0

y(n)
(
x(n)− (ĥi(N))Ty(n)

)
(12.2)

where index i is the gradient descent iteration index. The algorithm above is
quite complex since for each new iteration index i and data index N the terms
in the summation must be evaluated which means all previous data need to be
stored. This is not a realistic alternative. A significant simplification is achieved
if we merge the data sample index N and the iteration index i to be one. We
can interpret this as, for each sample, taking one step using gradient descent on
the function

LLMS(N,h) = e2(N) = (x(N)− hTy(N))2 (12.3)

which has gradient
∇hLLMS(N,h) = −2y(N)e(N) (12.4)

This simplification leads to the well known least-mean square algorithm (LMS)
which can be summarized as

e(N) = x(N)− ĥT (N)y(N)

ĥ(N + 1) = ĥ(N) + 2µy(N)e(N)
(12.5)
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Comparing with the full gradient search method note that the update step is not
in the true gradient direction but instead an estimate of it. Hence the method
is also called a stochastic gradient descent method. However, if each update
step is quite small, on average the movement in the parameters space will be in
the negative gradient direction and the updated vector will move towards the
global optimum. The rate of convergence towards the optimum is controlled by
the value of the step length parameter µ. A too small value will lead to long
convergence time while a large value will lead to a faster convergence. However,
if selected too large the algorithm will diverge.

It is clear that the filter vector ĥ will be updated unless the error e(N) is
zero. In most applications it is highly unlikely that this would happen so the
filter will, after approaching the optimum, continues to move around it. This
movement will lead to a variance of the error which is larger then the optimum
and is called a residual variance. The size of the residual variance is influenced by
the step length choice. A large step length leads to larger residual variance and
vice-versa. To see this consider the updating equation (12.5). If the algorithm
has reached the convergence region at time index N0 we have

N0+N∑
n=N0

2µy(n)e(n) ≈ 0 (12.6)

i.e. on average the updating has stopped. The covariance, i.e. the variability of
the filter coefficients will be proportional to

Cov ĥ(N) ≈ E{4µ2y(N)e(N)e(N)yT (N) } = 4µ2σ2
eΦyy (12.7)

The level of the variability (measured in terms if the covariance) is proportional
to µ2. This variability in the filter coefficients will be translated into an increased
level of the filter error. To see this define

h̃(n) = ĥ(n)− hopt (12.8)

as the deviation of the estimate from the optimal filter value. Now we can write
the error signal as

e(n) = x(n)− ĥ(n)Ty(n) = x(n)− hTopty(n)︸ ︷︷ ︸
eopt(n)

− h̃(n)Ty(n)︸ ︷︷ ︸
ẽ(n)

(12.9)

where we call the last term the residual error. If we assume that the two error
terms are uncorrelated we obtain

E e(n)2 = E eopt(n)2 + E ẽ(n)2 (12.10)

The total error variance is the sum of the variance of the fixed optimal filter and
the variance from the residual error. The variance of the residual error will be
proportional to the covariance of ĥ(N) which illustrates that the adaptation of
the LMS filter increases the error variance of the filter error signal. If the step
length is increased the level of the residual error increases and vice versa.

In the LMS algorithm the continuous updating also results in that the algo-
rithm adapts to changes automatically. When the signal properties of x(n) or
y(n) changes, also the optimal solution is different.

Finally in comparison with RLS and the full gradient search, the LMS al-
gorithm has low complexity. Both computation and memory requirements are
linear in the filter length.
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ĥ(n)

h(n)

+

+

y(n)

x(n)

w(n)

e(n)−x̂(n)

Figure 12.1: System modeling setup.

g(n) + ĥ(n)

z−d

+
s(n) y0(n) y(n)

x(n)

w(n)

e(n)−x̂(n)

Figure 12.2: Inverse system modeling setup. The level of delay d will influence
the quality of the solution.

Adaptive filter examples

In this section we discuss a few special cases where the optimal filtering methods
can be used together with the LMS adaptation algorithm.

System modeling In systems modeling we ar interested in a parametric
model ĥ of the system h under study. Here we assume that the signals x(n)
and y(n) are available for processing where x(n) is the noisy version of the true
system output. The setup is illustrated in Figure 12.1.

Inverse system modeling - Equalization In the equalization we are inter-
ested in a filter ĥ which inverts the effect of the system g as well as suppress
the noise signal w(n), as illustrated in Figure 12.2 . The selected delay d > 0
will influence how well the optimal equalizer will work. In a communications
application we can use the training samples of the message to learn the filter ĥ
and then turn off the adaptation to process the data part of the message.

Filtering, prediction and smoothing The block diagram illustrated in Fig-
ure 12.3 captures the application a the measured signal y(n) is a sum of the
desired signal s(n) and a disturbance signal w(n). By processing the signal in

the filter ĥ we try to recover s(n − d). If d = 0 we causally try to recover s
(filtering). If d > 0 we try to recover d(n−d) from y(n), i.e. smoothing. Finally
if d < 0 the objective is to predict s(n) d steps ahead. Practically we need
access to example data s(n) and y(n) in order to train the filter.

Adaptive signal enhancement/separation Sometimes the signal y(n) we
process is composed of 2 signals with different spectral properties, e.g. one
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+ ĥ(n)

z−d

+
s(n) y(n)

x(n)

w(n)

e(n)−x̂(n)

Figure 12.3: Setup which covers, filtering d = 0, prediction d < 0 and smoothing
d > 0.

+ z−d ĥ(n) +
s(n) y(n)

x(n)w(n)

e(n)−x̂(n)

Figure 12.4: Adaptive signal enhancement

component s(n) have a line spectrum, while the second component w(n) have a
wide bandwidth, e.g. white noise.

::::
The

::::::
narrow

:::::
band

::::::
signal

::::
s(n)

::::
can

:::::
more

:::::
easily

::
be

:::::::::
predicted

:::::
from

:::
it’s

:::::::
delayed

:::::::
version

::::::::
s(n− d)

:::
by

:
a
::::::::
suitable

::::
filter

:::
as

:::::::::
compared

::
to

:::
the

:::::
wide

:::::
band

:::::::
signal.

:
If we run the adaptive filter according to the setup

in Figure 12.4 we obtain a separation of the original signal where x̂(n) will be
approximately s(n− d)

::::
s(n) and consequently e(n) ≈ w(n).
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Chapter 13

Analysis of LMS

Assume we are running an adaptive filter in a system modeling setup. This
means that

x(n) = H0(z)y(n) + w(n) (13.1)

where y(n) is a known (measured without error) input signal, the transfer func-
tion H0(z) is the unknown system to model and w(n) is an unknown disturbance
which is assumed to have zero mean. We connect the adaptive filter such that

x̂(n) = H(z,h)y(n) (13.2)

is the modeled output and where H(z,h) is the model parametrized with the
impulse response vector h. The error between the measured output and model
output is e(n) = x(n)− x̂(n). The optimal filter is defined as

hopt = arg min
h

E e(n)2 = arg min
h

1

2π

∫ 2π

0

See(ω) dω (13.3)

which means that we want to find the impulse response which will minimize
the variance of the error which in turn is equivalent to minimize the integral
of the power spectral density of the error e(n) (Parseval’s relation). The error
is e(n) = x(n) − x̂(n) = (H0(z) −H(z,h))y(n) + w(n) which yields the power
spectral density

See(ω) = |H0(ω)−H(ω,h)|2Syy(ω) + Sww(ω) (13.4)

where we have used the assumed fact that the signals y and w are uncorrelated.
Since Sww(ω) does not depend on h we have the alternative expression for the
optimal filter

hopt = arg min
h

1

2π

∫ 2π

0

|H0(ω)−H(ω,h)|2Syy(ω) dω (13.5)

The characterization in (13.5) indicate that the integrand has two factors which
are non-negative functions. Clearly if the frequency function of the true system
H0(ω) can exactly be represented by some h∗ such that H0(ω) = H(ω,h∗) for
all ω then the integral will be zero and h∗ is an optimal solution. In practice this
is often not possible and normally the function H0(ω) can not be represented
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with a FIR filter with finite order M . In this case the optimal solution will yield
a filter which makes the weighted error |H0(ω) − H(ω,h)|2Syy(ω) minimized
when integrated. Clearly an optimal solution will be such that for frequencies
where Syy(ω) is large, the factor |H0(ω) − H(ω,h)|2 should be small, i.e. the
FIR filter approximates the true Ho well. For frequencies where Syy(ω) is small
(or zero) then the approximation can be poor. Hence the shape of the power
spectral density of the input signal will influence the character of the optimal
solution whenever it is not possible to have H0(ω) = H(ω,hopt) for all values
of ω.

Example 9 Assume the input signal y(n) is a single sinusoidal
signal y(n) = cos(ω0n) = 1

2 (ejω0n + e−jω0n). In this case the power
spectral density of the input will correspond to two delta functions
at location ω0 and −ω0 (or 2π − ω0). Hence, all impulse responses
h∗ such that H0(ω0) = H(ω0,h

∗) will be an optimal filter for this
input signal. The filter only need to match the amplitude and phase
precisely at frequency ω0. From another point of view we can say
that with such an input signal we only obtain information about
the unknown system at frequency ω0. The behavior of the filter for
all other frequencies will be unknown. If the frequency of the input
signal changes to a frequency ω1 then, in general, the set of optimal
filter solutions will change, although the unknown system is still the
same. �

Step length and convergence of LMS

A note on symmetric matrices Consider a real valued symmetric matrix
A = AT ∈ RM×M . An eigenvalue λ and eigenvector s of the matrix A satisfy

As = λs (13.6)

For symmetric matrices there exist M unique eigenvectors sm and correspond-
ing real valued eigenvalues λm. The eigenvalue-eigenvector pairs are numbered
according to the eigenvalue size, i.e. λ1 ≥ λ2 ≥ . . . ≥ λM . Denote by S the
matrix constructed from all eigenvectors and Λ the diagonal matrix with the
eigenvalues on the diagonal

S =
[
s1 . . . sM

]
, Λ =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λM

 . (13.7)

Since the matrix A is symmetric all eigenvectors are orthogonal, i.e. sTi sj =
δ(i − j). This means that SST = I = STS i.e. the matrix S is an orthogonal
matrix (the inverse of the matrix is given by the transposed matrix).

By expressing (13.6) for all eigenvalues jointly we obtain

AS = SΛ (13.8)

which le us writeA as a product of three matrices known as the eigen-decomposition

A = SΛST . (13.9)

88



If the matrix is positive definite (positive-semi definite) all eigenvalues are pos-
itive (non-negative).

Convergence analysis In principle the only adjustable parameter of the LMS
filter is the step length µ besides the choice of the length of the filter M . In this
section we will investigate theoretical bounds on its value in order to guarantee
convergence of the filter and how the power spectrum of the input also influence
the how fast the filter will converge to the optimum. The analysis is only
approximately valid due to simplifying assumptions are employed.

Consider the LMS equations (12.5). Let us introduce the notation

h̃(N) , ĥ(N)− hopt (13.10)

to denote the difference between the filter at time N and the optimal filter.
Recall that the optimal filter is given by hopt = Φ−1

yy Φyx. If we assume the
step length is quite small the filter will only change slightly between samples.
Hence, we could approximate these updates by the expected value taken over
the signal samples assuming, when taking expectation, the filter coefficients are
constant. By subtracting the optimal filter hopt from the filter update equation
of the LMS algorithm in (12.5) we obtain

h̃(N) = h̃(N − 1) + 2µy(N)e(N)

= h̃(N − 1) + 2µy(N)(x(n)− ĥT (N − 1)y(N))

= h̃(N − 1) + 2µy(N)(x(n)− yT (N)ĥ(N − 1))

(13.11)

The expected value of the equation above is

h̃(N) = h̃(N − 1) + E 2µy(N)(x(n)− yT (N)ĥ(N − 1))

= h̃(N − 1) + 2µ( Φyx︸︷︷︸
Φyyhopt

−Φyyĥ(N − 1))

= (I− 2µΦyy)h̃(N − 1)

(13.12)

which yields a recursion equation for the filter error. Clearly we have

h̃(N) = (I− 2µΦyy)N h̃(0) (13.13)

and we can conclude that the filter error converges to the zero vector if all the
elements of the matrix (I− 2µΦyy)N converge to zero as N →∞. As Φyy is a
positive semi-definite matrix we can use the eigen-decomposition Φyy = SΛST

89



and write

h̃(N) = (I− 2µSΛST )N h̃(0) = (SST − 2µSΛST )N h̃(0) = S(I− 2µΛ)NST h̃(0)

= S


1− 2µλ1 0 . . . 0

0 1− 2µλ2
. . .

...
...

. . .
. . . 0

0 · · · 0 1− 2µλM


N

ST h̃(0)

= S


(1− 2µλ1)N 0 . . . 0

0 (1− 2µλ2)N
. . .

...
...

. . .
. . . 0

0 · · · 0 (1− 2µλM )N

ST h̃(0)

(13.14)
where λi are the eigenvalues of the matrix Φyy. By changing the basis of the

initial error ST h̃(0) = [h̃1, h̃2, · · · h̃M ]T we can also write the error as a linear
combinatin of the eigenvectors si

h̃(N) =

M∑
i=1

si(1− 2µλi)
N h̃i (13.15)

The desired convergence to zero is guaranteed if |1 − 2µλi| < 1 for all i. Since
λi ≥ 0 for all i, the step length µ must be positive. Hence the limiting eigenvalue
is the largest one and the bounds on µ guaranteeing convergence are expressed
as

0 < µ <
1

λ1
(13.16)

where the λ1 is the largest eigenvalue of Φyy. It is notable that the convergence
only depends on the input y(n) to the filter and the size of µ. It is important
to note that the choice µ = 1

λ1
− ε for some small ε would make the factor

corresponding to the largest eigenvalue to become (−1+ε)N and the convergence
rate of that parameter direction would go to zero as ε → 0. With this choice
we are overshoting the optimium in each step, since (−1 + ε) < 0. This is of
course not desirable. Hence, a more realistic bound for the step length is to
the choice µ = 1

2λ1
which for the largest eigenvalue then would yield the factor

(1− 1)N = 0, i.e. convergence in one step.

Example 10 Assume the input to the filter is a white noise signal
with variance σ2

y. Then Φyy = σ2
yI, i.e., a matrix proportional to

the identity matrix. All eigenvalues are equal to σ2
y and the upper

bound on µ is 1/σ2
y. This means that µ should be scaled with the

inverse of the variance of the input. �

It should be remembered that the bound (13.16) is based on a simplifying ap-
proximation and should only be used as a guide to determine an appropriate
value. We also know that a large µ leads to a high residual variance so from
that perspective µ should be selected small.

Returning back to (13.14) we can interpret the result that the convergence
rate in the directions in the parameter space given by the eigenvectors converge
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at different rates. The direction with the slowest convergence corresponds to the
smallest eigenvalue and the convergence rate is given by the factor (1− 2µλM ).
If we for example set µ = 1

2λ1
we can express the factor as (1− λM

λ1
). Clearly, if

the fraction λM
λ1

is small, i.e. the eigenvalue spread is large, there will be a large
spread of convergence speeds in the different directions of the parameter space.
If λM is zero then there will be no convergence in the corresponding parameter
direction. This is the case when the optimal filter is non-unique since in such a
case Φyy is singular. The opposite case is when the input y(n) is a white noise
signal since then (as before) all eigenvalues of Φyy are identical and equal to the
variance of the signal. All directions in the parameter space will then converge
with the same speed.

The eigenvalue spread of the matrix Φyy is closely linked to the shape of the
power spectrum of the signal. A smooth spectrum will have a small spread while
a peaky spectrum will have a larger spread. A white noise signal is one of the
extreme cases which imply that all eigenvalues are identical and consequently
have a zero spread between the eigenvalues. The other extreme side is when
one or several eigenvalues are zero. A signal which contain only pure sinusoidal
signals can have zero eigenvalues. Each sinusoidal signal will contribute with
two non-zero eigenvalues and depending on the size of M the others (if any
left) will be zero. If, for example, M = 3 and y(n) contain only one sinusoidal
component, one eigenvalue of Φyy will be zero and the eigenvalue spread will be
infinite.
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Chapter 14

Quantization errors and
signal detectors

So far we have disregarded the effects of using a finite precision representing
signals and filters. Since each number in a computer is represented by a sequence
of ones and zeros, i.e. bits, the amount of bits used will influence the quality of
the processing but also how much memory and how expensive it is to perform
arithmetic operations.

Here we will briefly discuss the effects of using a finite representation of
the signal samples. We start with the natural analog frontend, the analog to
digital converter. When an analog signal is sampled a hold circuits will lock the
analog voltage at a constant level. This level is then converted to a digital word
including B bits resulting in a quantized signal. The two steps are illustrated
graphically in 14.1. The output of the ADC can be described by

xq(n) = xc(n∆t) + q(n) = x(n) + q(n) (14.1)

where xq(n) is the quantized signal and q(n) is the difference between the true
sample x(n) and the output xq(n). Assume the quantizer is uniform and the
output word has B bits. Hence, the output of the quantizer has 2B different

Figure 14.1: An analog to digital converter with a sampling circuit operating
with sampling frequency 1/∆t and a quantization circuit converting the analog
value into a digital word with B bits.
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levels. Assume the quantizer is uniform and have max and min levels of A
and −A respectively. Then the quantization step is Sq = 2A

2B−1
≈ 2A

2B
and the

quantization error is bounded by |q(n)| ≤ Sq
2 = A

2B
. The quantization error is

completely determined by the value of the input signal and the quantization
levels. However, a good model of the error is to assume q(n) is a zero mean
random variable with a uniform distribution in the interval [− A

2B
, A

2B
]. The

variance of the quantization error is

σ2
q =

∫ A/2B

−A/2B
x2 1

2A/2B
dx =

1

3

A2

22B
(14.2)

A common way to express the level of the quantization is to relate it to a
sinusoidal signal with maximum amplitude A. The power of the sinusoidal
signal is A2/2 and the resulting signal to noise ratio (SNR) or dynamic range is
given by

RD = 10 log10

A2

2
A2

3×22B

= 10 log10

3

2
+ 10 log10 4B = 1.76 + 6.02B [dB]. (14.3)

Every extra bit will provide an increased SNR with 6.02 dB. The quantization
noise will have a constant power spectral density and will correspond to what
is commonly referred to as a noise floor when analyzing the powers spectral
density of a measured and sampled signal. If the power of the measured signal
decreases the corresponding power spectrum will approach and finally disappear
in the noise floor.

Oversampling and Quantization

Assume we are interested in sampling a real valued signal x where the infor-
mation of interest is between frequency 0 and f0. The signal is sampled at a
rate which is M times the necessary rate according to the Nyquist theorem,
i.e. ωs = 2πM2f0 [Hz], using a total of B bits in the ADC. From the assump-
tions it follows that the power spectral density Sxx(ω) of the signal x is zero for
|ω| > ωs

2M . The power of the signal is hence

σ2
x =

1

ωs

∫ ωs
2

−ωs2
Sxx(ω) dω =

1

ωs

∫ ωs
2M

− ωs
2M

Sxx(ω) dω (14.4)

The sampled signal is filtered through an ideal LP filter with a cut off fre-
quency of f0 [Hz]. Before filtering the total power of the quantization error was

σ2
q = A2

3×22B . This corresponds to the power spectral density

Sq(ω) = σ2
q =

A2

3× 22B
, ω ∈ [−ωs

2
,
ωs
2

] (14.5)

After filtering with the (ideal) low pass filter the quantization noise has PSD

Sq,f (ω)

{
A2

3×22B , |ω| < ωs
2M

0, otherwise
(14.6)
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Figure 14.2: Block diagram of an oversampled ADC. Image reprinted from IEEE
Signal Processing Magazine, Volume 13, Issue 1, September 1996, pages 61–84.

which corresponds to the noise variance

σ2
q,f =

1

ωs

∫ ωs
2

−ωs2
Sq,f (ω) dω = σ2

q/M (14.7)

After the filtering the power of the quantization error has reduced a factor M
while the PSD of the signal x (and hence, also its variance) is unchanged. After
the LP-filtering we have increased the SNR a factor M .

Assume we downsample the filtered signal a factor M . Then the noise will
have a flat power spectral density in the full frequency band [0, ωs/M ] and we
can interpret the noise again as a quantization noise.

The SNR can then be expressed as

SNR =
σ2
x

A2

3×22B
1
M

=
σ2
x

A2

3×22(B+(log2 M)/2)

(14.8)

This corresponds to an effective increase in the number of bits of log2 M
2 .

Hence if we allow the word length to increase correspondingly during the LP
filtering we can now downsample the signal a factor M . The resulting signal will
have a dynamic range corresponding to B+ log2 M

2 number of bits although the
original ADC only used B bits. The price paid for the increased dynamic range
is that the ADC must operate at a frequency M times higher then the required
Nyquist rate. Even further gains can be obtained if so called noise shaping
filtering is employed which form the back bone in the family of oversampled
ADCs called Sigma-Delta (Σ−∆) converters.
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Signal Matched Filtering

Signal matched filtering or simply matched filtering is a filtering method com-
monly applied for applications where the task is to determine if a signal is
present or not. A classical application is radar signal processing where the re-
ceiver task is to detect the radar signal which are reflected on the target and
accurately measure the time from transmission to reception.

Consider the following problem setup. Assume we receive a (possibly com-
plex) signal

x(n) = s(n) + v(n) (14.9)

where s(n) is the signal to be detected and v(n) is a noise signal which we
assume has zero mean, an auto-correlation function φvv(n) = σ2

vδ(n) and is
uncorrelated with s(n). The noise is hence uncorrelated in time, i.e. a white
noise signal.

A signal matched filter is a filter which maximizes the signal to noise ratio of
the received and filtered signal. For our derivation let us assume a finite signal
length scenario where we observe samples x(n), n = 0, . . . , N − 1 and we collect
all observed samples in a vector

x =
[
x(0) x(1) · · · x(N − 1)

]T
(14.10)

and we define s and v correspondingly. At time N − 1 we can write the output
y(n) obtained by filtering the signal x(n) through a FIR filter with impulse
response h(n) as

y(N − 1) =

N−1∑
k=0

h(k)x(n− k) = hHx (14.11)

where
h =

[
h∗(N − 1), h∗(N − 2), · · · , h∗(0)

]T
(14.12)

and (·)H denotes complex conjugation and transpose and (·)∗ denotes complex
conjugation. The filtered signal component in y(N − 1) is hence hHs while the
noise component in the filtered signal is hHv. The signal to noise ratio after
the filtering is hence

SNR =
|hHs|2

E{|hHv|2} =
|hHs|2

E{hHvvHh} =
|hHs|2
σ2
vh

Hh
(14.13)

since E{vvH} = σ2
vI. The inner product between any two vectors h and s

satisfy the following inequality

|hHs|2 ≤ (hHh)(sHs) (14.14)

with equality if h = s. Inserting this inequality in (14.13) results in

SNR =
|hHs|2
σ2
vh

Hh
≤ sHs

σ2
v

(14.15)

This shows that the filter which optimizes the SNR of the received signal is
hopt = s. The impulse response of the optimal matched filter is then given by

hopt(n) = s(N − 1− n)∗, n = 0, . . . , N − 1, (14.16)
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i.e. the time reversed and complex conjugated signal we want to detect. In the
frequency domain the optimal filter has the frequency function

Hopt(ω) = S∗(ω)e−jω(N−1) (14.17)

The bandwidth of the optimal filter matches the bandwidth of the signal to be
detected.
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Appendix A

Additional material

A.1 The conditional probability of a Gaussian
random variable

First we note the following matrix identities for block matrices: The inverse of a
triangular block matrix with identity blocks on the diagonal is simply a matrix
with the same structure where the off diagonal block has a reversed sign.[

I A
0 I

] [
I −A
0 I

]
=

[
I 0
0 I

]
= I (A.1)

Define the block triangular matrix P as

P =

[
I −Q12Q

−1
22

0 I

]
. (A.2)

If the covariance matrix Q is congruence transformed with P , i.e. PQPT , we
note the identity

PQPT =

[
I −Q12Q

−1
22

0 I

] [
Q11 Q12

QT12 Q22

] [
I 0

−Q−1
22 Q

T
12 I

]
=

[
Q11 −Q12Q

−1
22 Q

T
12 0

0 Q22

]
(A.3)

Clearly the transformation block-diagonalized the covariance matrix Q. Also
since det(AB) = detAdetB, and detP = 1 we can conclude that

detQ = det(Q11 −Q12Q
−1
22 Q

T
12) detQ22 (A.4)

According to the definition of conditional distributions (see (11.7)) we obtain
for the variables X and Y

pX|Y (x|Y = y) =
pX,Y (x, y)

pY (y)
=
pZ(z)

pY (y)
(A.5)

=

1√
(2π)n detQ

exp
(
− 1

2 (z − µ)TQ−1(z − µ)
)

1√
(2π)ny detQ22

exp
(
− 1

2 (y − µy)TQ−1
22 (y − µy)

) (A.6)

where ny and nx is the length of the vector y and x respectively and ny+nx = n.
By inserting identity matrices, in the form of P−1P = I and its transpose, right
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and left of Q in (A.5) the argument to the exponential function in the numerator
becomes

− 1

2
(z − µ)TQ−1(z − µ) =

[
x− µx
y − µy

]T
PTP−TQ−1P−1P

[
x− µx
y − µy

]
(A.7)

Now using properties from (A.1) to (A.3), the expression in (A.7) turns into

−1

2
(x−µx−Q12Q

−1
22 (y−µy))T Q̃−1(x−µx−Q12Q

−1
22 (y−µy))−1

2
(y−µy)TQ−1

22 (y−µy)

(A.8)
where Q̃ = Q11 − Q12Q

−1
22 Q

T
12. To simplify the notation let us define µ̃x(y) =

µx−Q12Q
−1
22 (y−µy). Inserting (A.8) back into (A.5), use the property in (A.4)

and the identity exp(a + b) = exp(a) exp(b), we can factor out pY (y) from the
numerator and obtain

pX|Y (x|Y = y) =
pY (y) 1√

(2π)nx det Q̃
exp

(
− 1

2 (x− µ̃x(y))T Q̃−1(x− µ̃x(y))
)

pY (y)
(A.9)

Since pY (y) in the numerator and denominator cancel each other we are left with
a PDF for a Gaussian variable with mean µx −Q12Q

−1
22 (y− µy) and covariance

Q11 −Q12Q
−1
22 Q

T
12 which concludes the derivation.

A.2 Linear minimum mean square error estima-
tor

In this section we consider the estimation problem of finding the linear minimum
variance estimate of a vector x based on measurements of a correlated vector y.

Assume the a-priori knowledge regarding the two vectors, are

E

[
x
y

]
=

[
µx
µy

]
(A.10)

and

Cov

[
x
y

]
, E

[
x− µx
y − µy

] [
x− µx
y − µy

]T
=

[
Q11 Q12

QT12 Q22

]
(A.11)

where we assume Q22 to be positive definite.
The linear minimum mean square error estimate x̂LMMSE is defined as

x̂LMMSE = z0 +K0y (A.12)

where vector z0 and matrix K0 are the minimizers to the optimization problem

min
z,K

E(x− z −Ky)T (x− z −Ky). (A.13)

The estimator (A.12) is actually affine whenever z0 6= 0. Using the property

99



that trAB = trBA we can rewrite the functional in (A.13) as

E(x− z −Ky)T (x− z −Ky) = tr E(x− z −Ky)(x− z −Ky)T =

tr
(
Q11 −Q12K

T −KQT12 +KQ22K
T
)

+ (µx −Kµy − z)T (µx −Kµy − z) =

tr(Q11 −Q12Q
−1
22 Q

T
12)+

tr(K −Q12Q
−1
22 )Q22(K −Q12Q

−1
22 )T + (µx −Kµy − z)T (µx −Kµy − z)

(A.14)

The first term is independent of z and K. The second and third terms in (A.14)
are both non-negative and hence we minimize (A.13) by setting

K0 = Q12Q
−1
22 and z0 = µx −K0µy (A.15)

and we obtain the optimal estimator as

x̂LMMSE = µx +Q12Q
−1
22 (y − µy) (A.16)

and the resulting variance of the optimal estimate

E[(x− x̂LMMSE)(x− x̂LMMSE)T ] = Q11 −Q12Q
−1
22 Q

T
12. (A.17)

In Appendix A.1 we derived the conditional distribution for two joint Gaussian
random vectors. If we compare the results there with the results for the Gaussian
case we can conclude that the optimal LMSSE estimate is equal to the mean
value of the conditional distribution and the variance of the LMMSE estimate
is the variance of the conditional Gaussian distribution.
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