
 COMPUTER EXERCISE 0: INTRODUCTION TO R

R Studio, working directory and syntax file

In this short exercise we will become familiar with the basic functions in R. The programme can
be downloaded for free from www.r-project.org. There is also a very useful user interface,
RStudio, which can be downloaded from www.rstudio.com.

Install R first and then install RStudio. You should then start RStudio, not R. After a few seconds
the screen will look something like the figure below.

At the bottom left we have the console or command window, where you can perform commands
directly by writing after the prompt > and pressing Enter. This is also where the output of the
commands will appear unless they result in new variables, in which case the variables show up in
the environment window instead.

At the top right we find the environment/history window. Under the environment tab you can see
all the objects that R has in its memory. Under the history tab you have a list of all the commands
you have given.

At the bottom right is the files/plots/packages/help/viewer window. Here you can browse among
your files and see the plots you have made. You can also manage your R packages, i.e., extensions
to R. Here you will also find the help function.

At the top left is the editor window or script window. This is where you edit your programs or
scripts. It may be hidden under a large console. You can start a new script by choosing File – New
File – R Script and it will show up. The simplest form of script is just a sequence of R commands.

1

www.rstudio.com
picchini
Highlight

https://www.r-project.org/

You should save these so that you can reproduce your calculations later. You run the commands
here by pressing Ctrl-R on each successive line. We will use this extensively on the projects.

In contrast to spreadsheet based programmes like Excel, we will not see the datasheet unless we ask
for it. The focus here is on the commands and the results. Data is, as always, entered so that each
row represents one individual and every column represents one variable, e.g. age, HbA1c, etc. If
you have a small dataset you can enter the data by hand but it is easier to import larger datasets from
some other programme, e.g. Excel or a database program. There are many similarities between R
and Matlab, but R is much better at handling data sets, including missing data and string variables.
The functions for statistical tests and different types of regression are also much more user friendly
in R.

When doing more complicated calculations you should always use a script file (with the extension
.R). This works in the same way as an .m-file in Matlab. You should first tell R where to look for
your files, and where to save the R-file. Create a folder somewhere on your computer where you will
save your R-files and other related material. In this example the folder is called DataManagement:

2

In R Studio, set the working directory:

Choose your new folder:

3

picchini
Highlight

Save the syntax for setting the working directory in a syntax file using the History tab and to Source:

This will create a syntax file and copy the command:

4

Save the syntax file in your folder:

Continue writing your syntax in this file, saving often! Add comments so that you can remember
what it is your code is supposed to do, later.

Run the commands from the syntax file by pressing Ctrl-R on each line.

When you are done, close R Studio (q() means Quit). If you are using our computers, you should
copy the folder and its contents to a USB stick, or similar, so that you can access them later.

The next time, you can start R Studio by opening your saved R-file.

5

picchini
Highlight

picchini
Highlight

Basic computing

This is a quick introduction to R. You will note that it has many similarities with Matlab, as well
as some confusing differences.

R is made for computing things. If you want to find the result of 2 + 4 you simply write

2+4

and R will answer

> 2+4

[1] 6

The notation ”[1] 6” means that the first value (in this case the only value) of the answer is 6. If
you want to do a multiplication you write

2*4

All common mathematical functions are available. In order to calculate 42,
√

4, ln(4) and e4 you
write

4^2

sqrt(4)

log(4)

exp(4)

Note that R uses decimal period, never decimal comma.

If you want to save the result of a calculation you have to give the result a name. This is done using
the notation <- (less-than immediately followed by a dash). If we want to calculate 2 + 4 and save
the result under the name myresult you give the command

myresult <- 2+4

A variable named myresult should now be listed in the Environment window. You can also see
that it contains the value 6. You can ask R to print the answer by writing

myresult

We can use this variable in other functions. For example, we can write

sqrt(myresult)

to get the square root of 6. The expression sqrt() is a function. All functions in R end in brackets,
even if they have no argument, e.g. getwd().

6

Variables

You can collect several values into one variable, a vector, using the function c() (c for combine or
collect):

x <- c(3, 5, 7, 11, 13)

You can then perform the same calculation as before but on all the values at the same time:

x + 3

sqrt(x)

You can also combine several variables into one longer variable:

y <- c(17, 19, 23, 29, 31)

z <- c(x, y)

z

Sometimes you will want to create structured data, e.g. series or repeated sequences. There are two
commands for this: seq() and rep(). In addition you can use the colon sign :. Try out the
following commands and try to understand what they do:

seq(1, 100, 9)

seq(to=100, from=1, by=9)

seq(f=1, t=100, length.out=10)

1:3

3:1

rep(c(1,2,3), times=3)

rep(1:3, each=4)

rep(1:3, t=3, e=4)

rep(1:3, length.out=20)

If you need help on a particular function you can use the help function by writing help(seq) or
?seq. You can also use the “Help” window in R Studio. The colon sign is not a function but an
operator so you have to write help(":") using quotes.

Sometimes you only want some of the values in a variable. We can choose values using []:

myvalues <- 21:30

myvalues

myvalues[1]

myvalues[c(1, 3, 5)]

myvalues[1:3]

You can also choose to exclude values:

myvalues[-1]

myvalues[-c(1, 3, 5)]

myvalues[-(2:4)]

7

Some functions

There is a large number of functions in R. Here are some examples of basic statistical functions.
The first one creates 100 random numbers from a standard normal distribution. Run help on the
others to find out what they do.

x <- rnorm(100)

x

mean(x)

var(x)

sd(x)

median(x)

boxplot(x)

boxplot(x, horizontal=TRUE)

hist(x)

Objects

All variables in R are objects. You can see the objects you have created in the Environment window.
You can also list them using the command ls(). If you want to remove an object you use the
command remove() or, shorter, rm():

rubbish <- c(1, 19, 23.4)

ls()

remove(rubbish)

ls()

If you want to remove all objects you can combine the two commands into

remove(list=ls())

Be careful! R will NOT warn you that you are removing anything. It assumes you know what
you are doing. Now we have a nice empty environment. Save your script file and close R Studio.
You can answer No when asked to save the workspace. Since you saved your script file you can run
the commands and recreate then again next time you run R.

8

Create a vector of zeroes

We can use numeric to initialize a vector of a given size. For example

> numeric(3)

[1] 0 0 0

and afterwards you can fill it with some values. For example here we assign values to vector x:

> x <- numeric(3)

> x[1] <- 2

> x

[1] 2 0 0

If you wish to type all values by hand (you should do this only for very few values), then use c() as
explained in the Variables section, for example

> x <- c(2,4,-7)

Create a matrix initialised to NAs

NA stands for “Not available”, and is an important “value” in statistics, where missing data are not
uncommon. Here we use it to initialize a matrix of a given size.
For example

> matrix(,nrow=2,ncol=3) # matrix with 2 rows and 3 columns

[,1] [,2] [,3]

[1,] NA NA NA

[2,] NA NA NA

The above creates a matrix of NAs with number of rows specified in nrows and number of columns
specified in ncol. As usual, type ?matrix for more options.
Say that we call the matrix mymat, via mymat <- matrix(,nrow=2,ncol=3), we can then fill it with
values, for example

> mymat[1,1]<-3 # put a 3 in the [1,1] slot

> mymat

[,1] [,2] [,3]

[1,] 3 NA NA

[2,] NA NA NA

More typically, you will want to fill-up a matrix using a for loop (further below).

Matrix multiplication

While the * performs elementwise multiplication, if you want to perform matrix multiplication you
use %*%.

> A <- matrix(c(2,3,-2,1,2,2),3,2)

> B <- matrix(c(2,-2,1,2,3,1),2,3)

> A*B # this result in an error

Error in A * B : non-conformable arrays

> A%*%B # this is ok

[,1] [,2] [,3]

[1,] 2 4 7

[2,] 2 7 11

[3,] -8 2 -4

1

for loops

A for loop in R is represented with

for(i in 1:trials){

write your code here

}

The above is just an example, the scope of the i counter can be very general. For example, let’s fill
the first row of the mymat matrix we created further above:

for(i in 1:3){

mymat[1,i] <- runif(1) # generates a uniform random number in (0,1)

}

and we obtain

> mymat

[,1] [,2] [,3]

[1,] 0.4981466 0.3348102 0.296695

[2,] NA NA NA

Notice, if you run the code you will almost certainly obtain different values than the ones I reported.
That’s because I invoked a “(pseudo) random number” generator to fill-up the matrix first row. See
the next section.

Pseudo-random numbers

We have already encountered runif() which generates independent (pseudo-)random draws from the
uniform distribution on the real interval (0, 1). You can generate more independent draws, say three
draws using runif(3). Or generate three draws in the interval (a,b) using runif(3,a,b) for some
a < b. Example

> runif(3,2,5)

[1] 2.331082 4.521521 2.953891

generates three draws sampled uniformly on the interval (2, 5).

Another popular distribution is the standard Gaussian N(0, 1) (having mean µ = 0 and standard
deviation σ = 1). You can sample n independent draws from N(0, 1) using rnorm(n) for some
positive integer n.

> rnorm(3)

[1] 0.7818592 -0.7767766 -0.6159899

Of course it is possible to set arbitrary values for the mean and the standard deviation:

> rnorm(3,2,0.1)

[1] 2.004658 1.886961 2.057672

the above has generated three draws from N(µ, σ), with µ = 2 and σ = 0.1. Important: a common
mistake is to pass the variance σ2 as third argument to rnorm(n, µ, σ). No! You should pass the
standard deviation σ.

2

Controlling pseudo-random numbers generation

As mentioned in the section devoted to “for loops”, every time you execute a code involving pseudo-
random numbers generation, you get different values. However, it is sometimes desirable to be able
to control that the stream of generated random numbers is repeatable, for reproducibility of certain
results, or when we wish to compare two different codes and we want them to use the same random
numbers, for code debugging purposes etc. Then you can use set.seed() and put it at the beginning
of the script you want to run. set.seed takes an integer value as argument:

> set.seed(123)

> runif(3)

[1] 0.2875775 0.7883051 0.4089769

> runif(3)

[1] 0.8830174 0.9404673 0.0455565

> set.seed(123)

> runif(3)

[1] 0.2875775 0.7883051 0.4089769

> runif(3)

[1] 0.8830174 0.9404673 0.0455565

Notice I used set.seed(123) then generated some uniform random numbers. Then I called again
set.seed(123) and as you can see I am re-obtaining the same stream of random numbers as in the
previous attempts. You can use any integer within set.seed, it does not have to be 123. This number
has no specific meaning.

More topics

It does not really make much sense to write a detailed guide to R here. There are endless ex-
cellent guides on the web. See for example http://r.sund.ku.dk/index.html or https://www.

statmethods.net/. Just google around for specific topics.

3

