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Repetion

* Analysis of RNA-seq data consist of three main steps
1. Quantification of gene expression

2. Normalization
3. ldentification of differentially expressed genes.

* Linear models are flexible statistical tools that can be used to analyze
gene expression data from RNA-seq experiments.

* Each gene is analyzed separately — this results in a large number of
linear models, coefficients and p-values.

* Visualization of the results for all gene simultaneously can be used to
verify the model and identify genes that are differentially expressed.



Multiple testing

* In bioinformatics we are working with high-dimensional data.

* Genome sequencing
* Large number of positions in the genome where each tested for the presence
of mutations.

* Transcriptomics
* Expression of thousands of genes are measured where each gene is tested for
differentially expression.

* Metagenomics
* Bacterial communities contains tens of thousands of species where each
species is tested for differentially abundance.

High-dimensional data = many tests



The statistical hypothesis test

1. Formulate assumptions of the data.

Formulate statistical hypotheses:
Null hypothesis,
Alternative hypothesis.

3. Apply a decision rule that decides when null
hypothesis should be rejected.



A familiar example: the t-test

* Antibiotic resistance genes (qnrD) in pristine and
polluted river sediments

* Measured by qPCR and quantified relative 16s rDNA.
Data was then log-transformed.

* Replicates: 8+8
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A familiar example: the t-test
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Facts about the p-value

1. Measures deviation from the null hypothesis
(“significance”).

When the null hypothesis is true, the p-value
is a random value between 0 and 1.

3. Summarizes the entire testing procedure.

“The absence of evidence is not
the evidence of absence”



The outcome of a test

Null hypothesis

Null hypothesis

The probability of

_— a false positive.
Often set to 0.05.
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Multiple testing

Assume that we perform m tests.
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Multiple testing

Assume that we perform m tests.

Performing m tests at a level @ where H, is true
result in m X «a false positives (in average).

Correcting for multiple testing means
controlling the number of false positives!



Multiple testing - FWER

Family-wise error rate (FWER)
The probability of at least one false positive, i.e.

FWER = Prob(V > 0)

Under the null hypotheses (H, is true for the m tests)

Prob(VV > 0) = Prob(at least one false positive) =1 — (1 — a)™



Multiple testing: FWER

Prob(at least at least one false positive) =1 — (1 — a)™

Number of performed  Probability of at least one

tests false positive
1 0.05
2 0.098
5 0.226
10 0.401

100 0.99



The Bonferroni correction

Algorithm: Bonferroni correction

Divide the significance level a (p-value cut-off) by the number of
performed test (i.e. m).

A Bonferroni adjusted p-value can be calculated by multiply each p-
value with the number of performed tests (i.e. m).

It can be shown that Bonferroni corrected p-values always control
the Family Wise Error Rate (using Boole’s inequality).

Interpretation: If we perform m tests with and use the significance
cut-off @/m, then Prob(V > 0) < «a.



Bonferroni correction: example

In a study, the entire genome of Escherichia coli was sequenced and
compared to a reference. In total, 4,639,221 position was tested
(‘called’) for single nucleotide polymorphisms (SNP). At a significance
level of 0.05 we expect 232,961 false positives. In total 237,961 test
had a p-value <0.05.

If the tests are corrected for multiple testing using the Bonferroni
method, the significance cut-off is set to 0.05/4,639,221 = 1.07x103.

Alternatively, a Bonferroni-adjusted p-value can be calculated as
Padj = min(1,p X 4,639,221).

Positions with a p,4; < 0.05 are then considered significant.

After correction with Bonferroni, 3 tests were significant.



The Bonferroni correction

As always, there is no free lunch

A stricter p-value cut-off comes at the cost of
reduced statistical power!

Bonferroni and controlling the FWER is often
considered too conservative!



Multiple testing: FDR

False discovery rate (FDR)

* The number of false positive in relation to the total number of rejected
null hypotheses (significant tests)

FDR = Exp[V/R]



Multiple testing

Assume that we perform m tests.
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Multiple testing: FDR

Algorithm: Benjamini-Hochberg g-values
1. Order the p-values from the m testsas p,;), Py s Pym)-
2. The Benjamini-Hochberg g-value for test (i) is

m
di) = Tp(i)

3. Reject all tests where q(;)< cut off.




Multiple testing: FDR

* Benjamini-Hochberg correction controls the false
discovery rate (FDR). Proof is complicated and based on
several assumptions that are fullfilled if

* The individual tests are independent.

* P-values from tests where the null hypothesis is true are
uniformly distributed (i.e. that the statistical distributional
assumptions are true).

* The FDR cut-off can be set to the proportion of false
positives that you can handle (0.05-0.20 is common in
genomics).



Multiple testing —an example

Bonferroni
P-value correction BH g-values
0.005 0.05 0.05
0.01 0.10 0.05
0.02 0.2 0.067
0.10 1 0.25
0.20 1 0.40
0.30 1 0.50
0.40 1 0.57
0.50 1 0.63
0.60 1 0.67
0.70 1 0.70



False discovery rate: example

In a study, the entire genome of Escherichia coli was sequenced and
compared to a reference. In total, 4,639,221 position was tested
(‘called’) for single nucleotide polymorphisms (SNP). At a significance
level of 0.05 we expect 232,961 false positives. In total 237,961 test
had a p-value <0.05.

The Benjamini-Hochberg algorithm were used to calculate g-values for
all tests.

In total 34 tests had a g-value < 0.05. These tests have an estimated
false discovery rate of 5% (i.e. 1 of 20 tests are, on average, false
positives)

In total 257 tests had a g-value < 0.20. These tests have an estimated
false discovery rate of 20% (i.e. 1 of 5 tests are, on average, false
positives).



Multiple testing — a few tips

* For high-dimensional genomics data

* Correction for multiple testing should always be done to ensure that
there is not too many false positives. In research, correction for
multiple testing is often a requirement.

* Bonferroni is often too strict and a small proportion of false positives
is often acceptable. Estimation of the false discovery rate is
therefore often preferred.

* It is good to minimize the number of comparisons. Only test what
you need to know!




