
Lecture 10
Introduction to bioinformatics (MVE510)

Autumn, 2020

Additional reading: Clustering. Naomi Altman and Martin Krzywinski. Nature Methods, 14(6) 2017 and 
Principal component analysis. Jake Lever, Martin Krzywinski, and Naomi Altman. Nature Methods, 14(7) 
2017.
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Todays agenda

• Unsupervised methods and explorative data analysis
• Clustering 

• Hierarchical clustering
• K-means clustering

• Techniques for dimension reduction
• Principal component analysis
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Supervised and unsupervised methods

• Data analysis methods can be divided into supervised and 
unsupervised methods

• Supervised methods rely on metadata, i.e. data that provides 
information about the data. This can be any form of medical, 
biological or technical information about the samples.

• Linear models are a supervised method. Here we specifically look for 
differences associated with a covariate (i.e. metadata). This includes, 
for example, identification of differentially expressed genes between 
different groups of patients.
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Unsupervised methods

• Unsupervised methods does not utilize metadata, i.e. no additional 
information about the samples are used.

• Unsupervised methods focus on the identification of patterns in the 
data. In bioinformatics this typically means patterns between samples 
or genes.

• Unsupervised methods are explorative and does not rely on any 
specific hypotheses. This means that we can identify almost any form 
of patterns. 

• Another common application of unsupervised methods is dimension 
reduction, where high-dimensional data is visualized in e.g. two 
dimensions.
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Unsupervised methods

• In this course we will look at two main methods for unsupervised 
data analysis

• Clustering
• Aims find groups of samples or genes (‘clusters’) that are ‘similar’.
• Two important methods: Hierarchical clustering and K-means clustering.

• Principal component analysis (PCA)
• Used for exploration and visualization of high-dimensional data
• Identifies the dimensions with highest variability. These are used to represent 

the data at a lower dimension (e.g. in two dimensions).
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Hierarchical clustering

• Hierarchical clustering builds a hierarchy describing the similarity 
between clusters

• Agglomerative: All samples starts as individual clusters which are 
merged together (aggregated) according to

• A distance measure describing the separation between data points
• A linkage criterion measuring the distance between clusters

• Divisive: All samples starts in a single large cluster which is then 
successively divided

• The number of clusters are then defined based on a minimum 
similarity threshold
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Hierarchical clustering - distances

All clustering techniques are based on a distance metric that measures 
the similarity between two data points. 

A few notations

We will use ଵ ௣ and ଵ ௣ to denote two data 
points defined in ௣. Let denote the distance between and . 
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Euclidean distance

௜ ௜
ଶ

௡

௜ୀଵ

Manhattan distance

௜ ௜

௡

௜ୀଵ
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Maximum distance ( ஶ)

௜
௜ ௜

Correlation distance

where ଵ

௡ ௜ ௜
௡
௜ୀଵ , ଵ

௡ ௜
௡
௜ୀଵ and 
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The distance matrix
• Contains all pair-wise distances between the data points. 
• The distance matrix is  symmetric since .
• This matrix can be really big since it contains ଶ elements (only 

elements are actually needed). 
• Some algorithms works instead with similarity matrices.

1    2    3    4    5    6    7    8    9   10
1 0.00 5.74 5.04 4.60 4.11 4.63 4.13 5.70 4.59 3.33
2 5.74 0.00 3.49 6.29 5.96 5.30 6.62 7.22 5.68 4.60
3 5.04 3.49 0.00 5.68 5.70 4.26 4.62 6.25 5.94 4.94
4 4.60 6.29 5.68 0.00 3.73 4.98 5.95 6.44 3.71 3.18
5 4.11 5.96 5.70 3.73 0.00 5.45 5.50 4.97 4.33 3.76
6 ... 10



Distances – which distance should I choose?

The choice of distance depends on the question. What similarities are 
you interested in?

Euclidean distance

Correlation distance
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Hierarchical clustering - distances

Some more notation

We will use ଵ ௣ and ଵ ௣ to denote two data 
points defined in ௣. Let denote the distance between and . 

Let and denote two clusters with and members each, i.e. 
ଵ ଶ ௞ } and ଵ ଶ ௟ }. Let denote 

the distance between and .
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Hierarchical clustering
Algorithm: Agglomerative hierarchical clustering
1. Calculate a distance matrix containing the pair-wise distance 

between all data point
2. Let each data point be a cluster
3. Identify the most similar clusters and according to a linkage 

criterion. 
4. Merge and into a new cluster. Update the distance matrix.
5. Goto 3 if the number of clusters are more than 2.
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The linkage criterion calculates the similarity between clusters.

Single linkage

Complete linkage

Linkage criteria

௫∈௑,௬∈௒

௫∈௑,௬∈௒
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Linkage criteria

Average linkage

Centroid linkage

ୟ୪୪ ୮ୟ୧୰ୱ (௫,௬),
௫∈௑,௬∈௒

ୡ ୡ xୡ

yୡ
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Hierarchical clustering
Algorithm: Agglomerative hierarchical clustering
1. Calculate a distance matrix containing the pair-wise distance 

between all data point
2. Let each data point be a cluster
3. Identify the most similar clusters and according to a linkage 

criterion. 
4. Merge and into a new cluster. Update the distance matrix.
5. Goto 3 if the number of clusters are more than 2.
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Hierarchical clustering

Example: Agglomerative clustering, Euclidean distance, complete 
linkage.

1
2

3

4

5 6

1    2    3    4    5    6
1 0.00 3.16 5.39 9.22 8.60 9.43
2 3.16 0.00 2.24 6.71 5.66 6.40
3 5.39 2.24 0.00 5.10 3.61 4.24
4 9.22 6.71 5.10 0.00 2.24 2.83
5 8.60 5.66 3.61 2.24 0.00 1.00
6 9.43 6.40 4.24 2.83 1.00 0.00
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1    2    3    4    5    6
1 0.00 3.16 5.39 9.22 8.60 9.43
2 3.16 0.00 2.24 6.71 5.66 6.40
3 5.39 2.24 0.00 5.10 3.61 4.24
4 9.22 6.71 5.10 0.00 2.24 2.83
5 8.60 5.66 3.61 2.24 0.00 1.00
6 9.43 6.40 4.24 2.83 1.00 0.00

Hierarchical clustering

Example: Agglomerative clustering, Euclidean distance, complete 
linkage.

1
2

3

4

5 6
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Hierarchical clustering

Example: Agglomerative clustering, Euclidean distance, complete 
linkage.

1
2

3

4

5 6
1    2    3    4   56 

1 0.00 3.16 5.39 9.22 9.43
2 3.16 0.00 2.24 6.71 6.40
3 5.39 2.24 0.00 5.10 4.24
4 9.22 6.71 5.10 0.00 2.83
56 9.43 6.40 4.24 2.83 0.00
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Hierarchical clustering

Example: Agglomerative clustering, Euclidean distance, complete 
linkage.

1
2

3

4

5 6
1    2    3    4   56 

1 0.00 3.16 5.39 9.22 9.43
2 3.16 0.00 2.24 6.71 6.40
3 5.39 2.24 0.00 5.10 4.24
4 9.22 6.71 5.10 0.00 2.83
56 9.43 6.40 4.24 2.83 0.00
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Hierarchical clustering

Example: Agglomerative clustering, Euclidean distance, complete 
linkage.

1
2

3

4

5 6
1   23    4   56 

1 0.00 5.39 9.22 9.43
23 5.39 0.00 6.71 6.40
4 9.22 6.71 0.00 2.83
56 9.43 6.40 2.83 0.00
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Hierarchical clustering

Example: Agglomerative clustering, Euclidean distance, complete 
linkage.

1
2

3

4

5 6
1   23    4   56 

1 0.00 5.39 9.22 9.43
23 5.39 0.00 6.71 6.40
4 9.22 6.71 0.00 2.83
56 9.43 6.40 2.83 0.00
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Hierarchical clustering

Example: Agglomerative clustering, Euclidean distance, complete 
linkage.

1
2

3

4

5 6
1   23  456 

1 0.00 5.39 9.43
23 5.39 0.00 6.71 
456 9.43 6.71 0.00
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Hierarchical clustering

Example: Agglomerative clustering, Euclidean distance, complete 
linkage.

1
2

3

4

5 6
1   23  456 

1 0.00 5.39 9.43
23 5.39 0.00 6.71 
456 9.43 6.71 0.00
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Hierarchical clustering

Example: Agglomerative clustering, Euclidean distance, complete 
linkage.

1
2

3

4

5 6
123  456 

123 0.00 9.43
456 9.43 0.00
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Hierarchical clustering

Example: Agglomerative clustering, Euclidean distance, complete 
linkage.

1
2

3

4

5 6
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Hierarchical clustering - dendrogram
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Hierarchical clustering in R

Hierarchical clustering in R can be done using the dist and hclust
commands.
> dist.mat<-dist(data.matrix)      # Calculates a distance matrix. Default method is ‘euclidean’

> dist.matrix

1        2        3        4        5

2 3.162278                                    

3 5.385165 2.236068                           

4 9.219544 6.708204 5.099020                  

5 8.602325 5.656854 3.605551 2.236068         

6 9.433981 6.403124 4.242641 2.828427 1.000000

> res.cluster<-hclust(dist.matrix)  # Performs hierarchical clustering. Default method is ‘complete’

> plot(res.cluster)                 # Plots the results
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Clustering of gene expression data (RNA-seq)

Data: Gene expression of 45,015 transcripts in 33 patients and 6 cell 
lines. Among the patients, 23 were from less aggressive group and 10 
from more aggressive group. For each patient, a biopsy was sampled, 
the RNA extracted, sequenced using standard protocols, preprocessed 
and transformed and normalized so that the resulting data is 
approximately normal distributed. For each patient, the age and gender 
was also recorded. 

Aim: Use clustering so investigate patterns between the patients.

Clusters were calculated in R using dist and hclust.
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Euclidean distance, complete linkage 30



Euclidean distance, single linkage 31



Manhattan distance, complete linkage 32



K-means clustering

• A method for clustering observations in to clusters. Note that is 
pre-specified!

• We want assign each sample to one of the clusters such that the 
variance within each cluster is minimized. This means that we want to 
minimize 

௝ ௝

௦

௝ୀଵ

• K-means clustering implicitly assumes a Euclidean distance between 
points.

Cluster size
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K-means clustering
The variance within a cluster can be calculated by

௝ ௜ ௜
ଶ

௡

௜ୀଵ௫∈௖ೕ

where ௜ is the mean point of ௝. Note that minimizing ௝ is equivalent 
to minimizing the distance between all pairs of data points in the cluster, i.e.

௜ ௜
ଶ

௡

௜ୀଵ௫,௬∈௖ೕ

𝜇
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K-means clustering

The naïve algorithm
Start with an initial set of randomly selected cluster means

ଵ ଶ, …, ௞). 
Step 1: Assignment
Assign each data point to the closest cluster based on the Euclidean 
distance to the cluster mean.
Step 2: Update
Recalculate the cluster mean values.

Repeat these steps until no more assignments are done.
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K-means clustering

𝜇ଵ

𝜇ଶ

𝜇ଷ

𝜇ଵ

𝜇ଶ

𝜇ଷ

𝜇ଵ

𝜇ଶ

𝜇ଷ

𝜇ଵ

𝜇ଶ

𝜇ଷ

Data points
𝜇ଵ

𝜇ଶ

𝜇ଷ

Initial mean values Iteration 1: Assignment

Iteration 1: Update Iteration 2: Assignment Iteration 2: Update
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K-means clustering

𝜇ଵ

𝜇ଶ

𝜇ଷ

𝜇ଵ

𝜇ଶ

𝜇ଷ

Iteration 3: Assignment Iteration 3: Update

Since there are no changes in assignment, the algorithm has converged.
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A drawback with K-means clustering is that it is often hard to decide 
the number of clusters ( ).



Principal component analysis (PCA)

• Method used for exploration and visualization of high-dimensional 
data

• The main principle: Identify the dimensions of the data that explains 
as much variability as possible. These dimensions are defined by 
principal components.

• The data can then be projected on a set of the to principal 
components (often two) which results in a reduction of the 
dimensionality

• PCA is often used to identify patterns in the data. However, PCA does 
not assign each data point to a cluster.
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Principal component analysis
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Principal component analysis

First principal 
component
(std.dev 6.21)

Second principal 
component
(std.dev 0.98). 
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First principal 
component
(std.dev 6.21)



Principal component analysis
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Principal component analysis

Some notation

We will, as before, use ଵ ௣ to denote a data point. Note 
that we will here regard as a random variable.
Let ଵ ଶ ௡ denote linear combinations of  the coordinates of , 
i.e.

ଵ ଵଵ ଵ ଵଶ ଶ ଵ௡ ௡ ଵ
்

ଶ ଶଵ ଵ ଶଶ ଶ ଵ௡ ௡ ଶ
்

௡ ௡ଵ ଵ ௡ଶ ଶ ௡௡ ௡ ௡
்
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Principal component analysis

The principal components will be identify be selecting ௜௝ according to 
the following rules

43

The first principal component is the linear combination ଵ ଵ
்

that maximizes the variability ଵ under the condition that ଵ
்

ଵ=1.

The second principal component is the linear combination ଶ ଶ
்

that maximizes the variability ଶ under the condition that ଶ
்

ଶ=1 
and is independent of ଵ.



Principal component analysis

The nth principal component is the linear combination ௡ ௡
்

that maximizes the variability ଶ under the condition that ௡
்

௡=1 
and is independent of ଵ ଶ ௡ିଵ.
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The principal components corresponds to the eigenvectors of the 
covariance matrix. They are therefore often calculated by singular value 
decomposition (SVD).



Principal component analysis

A principal component analysis results
1. The principal components ଵ ௡ constitutes a new orthogonal 

basis for the data. The number of principal components is the same 
as the dimension of the data (or, if lower, the number of samples).

2. The rotation matrix, which is formed from vectors ଵ ଶ ௡. This 
matrix describe how data can be rotated to the new basis. The 
individual elements are sometimes called loadings. Note that the 
rotation matrix is not unique – it can always be multiplied by -1.

3. The estimated variance for each principal component. These are 
always in decreasing order.
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Principal component analysis in R
In R, principal component analysis can be done using the prcomp
command.
> res.pca<-prcomp(data.matrix, center=FALSE)   # 3x5 matrix  

> res.pca$rotation # the rotation matrix defined by the loadings
PC1         PC2         PC3

[1,] -0.26494186 -0.64099271  0.42258957
[2,] -0.96105263  0.14754678 -0.07881318
[3,]  0.07043733 -0.04676936  0.62289920
[4,] -0.01286506  0.02371949 -0.49200523
[5,] -0.03250730  0.75140422  0.43027198

> res.pca$x # the transformed data calculated from the
PC1        PC2        PC3           # rotation matrix

[1,] -1.084225 -1.4550113 -0.3345473
[2,]  1.559554 -1.6491774  0.1780445
[3,] -1.815806 -0.5476472  0.3526779

> res.pca$sdev # the standard deviation of the three principal
[1] 1.8580773 1.6026168 0.3660624              # components
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PCA of gene expression data (RNA-seq)
Data: Gene expression of 45,015 transcripts in 33 patients and 6 cell 
lines. Among the patients, 23 were from less aggressive group and 10 
from more aggressive group. For each patient, a biopsy was sampled, 
the RNA extracted, sequenced using standard protocols, preprocessed 
and transformed and normalized so that the resulting data is 
approximately normal distributed. For each patient, the age and gender 
was also recorded. 

Aim: Use PCA so investigate patterns between the patients.

The PCA was performed in R using prcomp. The principal components 
were plotted using the plot function.
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Clustering and PCA – some remarks

• Clustering and PCA are explorative methods. They can be used to 
visualize data and formulate hypothesis but they does not result in 
any statistical test (and thus no measure of the significance).

• Many methods automatically center and scale the data. You may 
need to manually turn such features off.

• There is a wide range of different tools for clustering and PCA. The 
command heatmap can for example cluster and display the results as 
a heatmap and a dendrogram.
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Summary – Unsupervised methods

• Unsupervised methods can be used to explore and visualize high-
dimensional data. 

• Clustering is a technique used to find groups of data points 
(‘clusters’). Common clustering methods includes hierarchical 
clustering and k-means clustering. A distance metric and linkage 
criterion is needed to perform hierarchical clustering.

• Principal component analysis can be used to reduce the dimension of 
the data. The principal components are identified based on the 
dimension on where the variability of the data is as high as possible.
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