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Additional reading: The road to metagenomics: from microbiology to DNA sequencing technologies and 
bioinformatics. Escobar-Zepeda A, de León AVP, and Sanchez-Flores A. Frontiers in Genetics, 6 2015.
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Microorganisms

• Present in every habitat and are 
integral members in almost every 
ecosystem on Earth

• The number of bacterial species 
is estimated to 107-109. Only a 
small proportion of these has 
been isolated and named
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Microorganisms and their diversity

Human Soil Ocean
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Metagenomics

• Microorganisms are often organized in complex communities
• Metagenomics is the study of the metagenome, which is the 

collective genome in a microbial community

• In metagenomics, DNA is randomly sampled from the metagenome 
which is used to derive information about the present 
microorganisms and their biological functions.
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ACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGACGC
AAGTCTGATCCAGCCATTCCGTGTGCAGGACGAAGGCCTTCGGA

GTTGTAAACTGCTTTTGTACAGAACGAAAAGGTCTCTATTAATA
CTAGGGGCTCATGACGGTACTGTAAGAATAAGCACCGGCTAACG

ACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGACGC
AAGTCTGATCCAGCCATTCCGTGTGCAGGACGAAGGCCTTCGGA

CTCAGATCGTCGCTGTCTCTGCCAGTTAATCGCCATCTCTGCCA
GTTAATCGCCATCTCTGCCAGTTAATCGCTATCTCTGCCAGTTT

AATCGCCATCTCTGCCAGTTAATCGCCATCTCTGCCAGTTAATC
GCCATCTCTGCCAGTTAATCGCCATCTCTGACGAAATCCACCGC

CTCAGATCGTCGCTGTCTCTGCCAGTTAATCGCCATCTCTGCCA
GTTAATCGCCATCTCTGCCAGTTAATCGCTATCTCTGCCAGTTT

CTCAGATCGTCGCTGTCTCTGCCAGTTAATCGCCATCTCTGCCA
GTTAATCGCCATCTCTGCCAGTTAATCGCTATCTCTGCCAGTTT 7



One bacterial cell
• 1-5 megabases

of DNA (106 bp)
• 1 000-5 000 genes

1 gram of soil
• 100 million cells
• 10 000 species
• 100 terabases

of DNA (1014 bp)

Metagenomics: Data volumes
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Metagenomics – two approaches

Who are there? 
• Analysis of the present microorganisms and their taxonomic affiliation 

(species, genus, order, etc)
• Estimation of abundance and diversity – how many species are there, 

how common are they and do they differ between samples?

What are they doing? (‘gene-centric analysis’)
• Analysis of the present genes and pathways
• Estimation of gene abundances and functional analysis of their 

biochemical role.
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Metagenomics
Amplicon sequencing (’metabarcoding’)
• Sequencing of a specific genomic region of interest (‘barcode’)
• General idea: Focus on only on a specific genetic marker that provides 

information about the organism. The marker is sometimes referred to as a 
barcode

• The marker is randomly sequenced from all microorganisms in the sample.

Shotgun metagenomic sequencing
• Total DNA from a sample is sequenced
• General idea: Analyze the biological function by analyzing what genes that

are present.
• Random fragment from the entire metagenome is sequenced, including all 

of the genes in the present microorganisms
10



Amplicon sequencing

• Analysis starts from the total DNA 
present in a microbial community.

• The output is a large number of
reads from the same marker (i.e.
the same region) but from different 
microbial cells

• Amplification and sequencing of a 
specific barcode reduces the 
generated data volumes 

DNA sequence data

Sequencing of amplicons

Amplification of the barcode of interest

DNA extraction

Microbial community
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Amplicon sequencing - considerations

• The marker should be selected so that it
• Varies between genomes from different organisms
• Are flanked by conserved regions so that it can be easily amplified in as many 

species as possible
• The length matches the sequencing technique

• Commonly used barcodes
• The 16s ribosomal genes for bacteria
• The 18s ribosomal genes for eukaryotes
• The internal transcribed spaces (ITS) for fungi
• Other functional genes (e.g. nif-genes)
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• Part of the small ribosomal subunit (30S)
• Contains both highly conservative and ‘hypervariable’ regions.

Amplicon sequencing: the 16S rRNA gene

14



Amplicon sequencing – data analysis

Pre-processing OTU 
identification

Reads from 
amplicons

Results

OTU
annotation

Statistical 
analysis
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Operational 
taxonomic unit



Amplicon sequencing – Identification of OTUs

• An operational taxonomic unit (OTU) is a putative species formed by 
clustering sequences from amplicons.

• Sequences that are sufficiently similar are clustered together and 
assumed that they come from the same type of organism.

• Sequences that does not cluster with any other sequence are called 
singletons. These sequences are OTUs but are, in many cases, 
discarded since they are only observed once.

• A commonly used similarity threshold used for 16S is 97%. Those 
sequences that have a similarity >97% are clustered together and are 
thus assumed to be from the same OTU.
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Amplicon sequencing – data analysis

Cluster

Singleton

Representative sequences
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Amplicon sequencing – Annotation of OTUs

>GY194060.4884.6412 Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;Unidentified
AGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAATACATGCAAGTAGAACGCTGAGGTTTGGTGTTTACACTAGACTGATGAGTTGCGAACGGGTGAGTAACGCGTAGGTAACC
TGCCTCATAGCGGGGGATAACTATTGGAAACGATAGCTAATACCGCATAAGAGTAATTAACACATGTTAGTTATTTAAAAGGAGCAATTGCTTCACTGTGAGATGGACCTGCGTTGTATTAGCT
AGTTGGTGAGGTAAAGGCTCACCAAGGCGACGATACATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCGGCA
ATGGACGGAAGTCTGACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGAGAAGAACGTTGGTAGGAGTGGAAAATCTACCAAGTGACGGTAACTAACCAG
AAAGGGACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTCTTTAAGTCTGAAGTTAAAGGCAGTGGCTT
AACCATTGTACGCTTTGGAAACTGGAGGACTTGAGTGCAGAAGGGGAGAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCT
GTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAGGTGTTAGGCCCTTTCCGGGGCTTAGTGCCGCAGCTAACGC
ATTAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTT
GACATCCTTCTGACCGGCCTAGAGATAGGCTTTCTCTTCGGAGCAGAAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCT
ATTGTTAGTTGCCATCATTAAGTTGGGCACTCTAGCGAGACTGCCGGTAATAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATG
GTTGGTACAACGAGTCGCAAGCCGGTGACGGCAAGCTAATCTCTTAAAGCCAATCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCACG
CCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTTAGGAGCCAGCCGCCTAAGGTGGGATAGATGATTGGG
GTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTG

>AC201869.46386.47908 Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Candidatus 
Regiella;Candidatus Regiella insecticola
AGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAGCGGCAGCGGGGAGTAGCTTGCTACTCTGCCGGCGAGCGGCGGACGGGTGAGTAAAGTCTGGGGAT
CTGGCTTATGGAGGGGGGTAACCATTGGAAACGGTGGCTAATACCGCATGATGTCGCAAGACCAAAGTGGGGGACTTTAGGGCCTCACGCCATAAGATGAACCCAGATGAGATTAGCTAGTAGG
TGCGGTAATGGCGTACCTAGGCGACGATCTCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGAAACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGC
GGAAGCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTAGGGTTGTAAAGCACTTTCAGCGGGGAGGAAGGCGGTAAGAGTAATATGCTTATCGATTGACGTTACCCGCAAAAGAAGCAC
CGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATCGGAATAACTGGGCGTAAAGGGCATGTAGGCGGTAAGTTAAGTCAGATGTGAAATCCCCGAGCTTAACTTGG
GAACGGCATTTGAGACTGGCGGGCTAGAGTTTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAGGACT
GACGCTGAGGTGCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTCGATTTGGAGGTTGTGGCCTAGTGTTATGGCGTCCGAAGCTAACGCGATAAAT
CGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCC
ACGGAATTGAGCAGAGATGCTTAAGTGCCTTCGGGAGCCGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTT
GTTGCCAGCGCGTGATGGCGGGAACTCAAAGGAGACTGCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAGTAGGGCTACACACGTGCTACAATGGCGCA
TACAAAGAGCGGCGAGCGTGCGAACGTAAGCGAACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGCTACG
GTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGCGGCAAAAGAAGTAGGTAGCTTAACCTTCGGGGGGGCGCTTACCACTTTGTGGTTCATGACTGGGGTGAAG
TCGTAACAAGGTAACCGTAGGGGAACCTGCGGTTG

Reference database – 16s
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Amplicon sequencing – OTU distribution

Unknown
Bacteria;Proteobacteria;Betaproteobacteria;Methylophilales;Methylophilaceae

Co
un

ts

OTUs

Bacteria;Bacteroidetes;Flavobacteria;Flavobacteriales;Flavobacteriaceae;Winogradskyella 
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Amplicon sequencing – statistical analysis

The OTU distribution are typically used to

• Compare differences between samples (‘comparative metagenomics’)
• What species are present in the gut of sick compared to healthy individuals?
• What species are affected in polluted environments?
• This analysis is very similar to the analysis of RNA-seq data.

• Estimate the biodiversity in a sample
• How many species are present?
• How are the species distributed?
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Amplicon sequencing – diversity

Alpha diversity
The diversity on the local level (in a habitat). This include, for example, 
diversity at a specific geographical site or in a specific individual.

Beta diversity
Diversity between habitats. This include, for example, the diversity 
between geographical sites or between individuals.

26



Alpha diversity
Let ௜ be the proportion of OTU .  
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Evenness
Shannon diversity index. Estimates the evenness of a distribution by 
calculating the entropy, 

௜ ௜

௡

௜ୀଵ

A higher value indicates a more uniform distribution.

Richness
Unique number of OTUs. Can easily be calculated by counting the 
number of OTUs where ௜ . 



Alpha diversity

Evenness
Simpson’s diversity index. Calculates evenness by estimating how likely 
that two randomly picked OTUs are from the same species.

௜
ଶ

௡

௜ୀଵ

The Simpson index is a value between 0 and 1. A higher value indicates 
a less uniform distribution (max value achieved if ௜ for some i).
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Diversity - an easy example
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Diversity - rarefaction
• The diversity indices are dependent on the sequencing depth.
• Examples

• A higher sequencing depth means more detected OTUs and therefore a 
higher richness.

• More detected OTUs means a higher Shannon index (maximum is log(N)
where N is the number of OTUs) 
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• In order to make indices between samples comparable they need to 
be rarefied, i.e. subsampled to the same sequencing depth.

1. Select a sequencing depth n.
2. For each sample, randomly sample n fragments without replacement.
3. Count new OTU abundances for the rarefied data.



Metagenomics
Amplicon sequencing (’metabarcoding’)
• Sequencing of a specific genomic region of interest (‘barcode’)
• General idea: Focus on only on a specific genetic marker that provides 

information about the organism. The marker is sometimes referred to as a 
barcode

• The marker is randomly sequenced from all microorganisms in the sample.

Shotgun metagenomic sequencing
• Total DNA from a sample is sequenced
• General idea: Analyze the biological function by analyzing what genes that

are present.
• Random fragment from the entire metagenome is sequenced, including all 

of the genes in the present microorganisms
31



Shotgun metagenomic sequencing –
data analysis

Pre-processing Gene 
quantification

Shotgun
reads

Results

Normalization

Statistical 
analysis
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Shotgun metagenomics - gene quantification

Direct binning of metagenomic reads
• Search each metagenomic fragments for the presence of genes.
• A vast number of the microbial genes are not present in the 

databases. The search therefore requires sensitive aligners and 
approximate matches are often accepted. 

• Requires relatively long reads (preferably >500bp) and not generally 
possible to do for short reads ( genes that are well-conserved are 
easier to identify shorter reads).

• ‘Bins’ are finally formed by counting the number of reads for each 
type of gene.
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Shotgun metagenomics - direct binning

Identification of 
genes

Sorting and 
counting

Shotgun reads
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Shotgun metagenomics - gene quantification

Reference-guided binning
• Guided binning uses an annotated reference database that contains 

the genomes of the microorganisms present in the sample.
• Each metagenomic fragment is mapped against the reference 

database.
• ’Bins’ are formed by counting the number of reads matching each

type of gene present in the genomes.
• Typically done for data with short reads (<500bp).
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Shotgun metagenomics - reference-guided binning

Mapping and countingReference

Identification of genes
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Shotgun metagenomics - gene quantification

Commonly used reference databases for guided binning
• Genomes

• >10k completely sequenced and >400k partially sequenced bacterial 
genomes are available in the repositories. High bias towards pathogenic 
bacteria and many environmental bacteria are missing.

• Gene catalogues
• Available for the human microbiome and contains today around 10 million 

genes. 

• De novo assembly of the metagenome
• Longer sequences are created directly from the metagenomic data. Often the 

only choice for environmental metagenomes. 
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Shotgun metagenomics - normalization
Data from different metagenomic samples are not directly 
comparable
• Differences in sequencing depth
• Systematic effects caused by

a) Variation in sampling and preparation
b) The quality sequencing
c) Systematic errors introduced in the sequencing (e.g. GC-bias)
d) Taxonomic composition

Normalization is necessary to make samples comparable. 
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Normalization – example of systematic effects
Metagenomic sequencing of river sediments 
upstream and downstream of a waste water
treatment plant. 

56%

36%

1%
7%

Downstream Skövde

87%

7%
3% 3%

Upstream Skövde

Bacteria
Virus
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Shotgun metagenomics - normalization

Commonly methods for normalization are
• Counts per million reads (CPM)
• Reads per kilobase per million (RPKM)
• Median
• Upper quartile
• TMM
• Reference gene (e.g. 16s)

Methods developed for RNA-seq data may not work as reliable on 
shotgun metagenomic data.
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The nature of shotgun metagenomic data
High dimensional
Many genes present within a single community

• Thousands of functional features (e.g. PFAM, TIGRFAM)
• Millions at a higher resolution (e.g. genes in a catalogue)

Example: Human gut metagenomes from 1000 individuals contains 10 
million unique genes. Diversity in many environmental community is 
estimated to be 10-fold higher.

Few samples
The number of samples are few (often <10) due to

• Costs associated with sequencing and sample preparation
• Sequencing depth is prioritized over biological replication
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The nature of shotgun metagenomic data
Very high variability
Metagenomic data has an innate variability form randomly selecting 
DNA fragments. 
Additional technical noise comes from 

• DNA extraction and sample preparation
• Sequencing errors
• Binning errors

Biological noise comes from variation between microbial communities
• Variation in species composition
• Variation between genotypes

The variability is typically higher than in RNA-seq data.
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Identification of differentially abundant genes

Three approaches
1. Methods based on normal assumptions

• Can use the flexibility of models based on the normal distribution
• Will always results in approximation and thus sub-optimal performance
• Hard to find a transformation that is suitable for all genes

2. Methods based on non-parametric methods
• Robust against model assumptions
• Requires a larger number of samples
• Can be highly sensitive against ties, which are common for gene with few counts.

3. Methods based on count distributions
• The correct statistical nature of the data is described
• Complicated models that requires assumption about the mean-variance relationship
• Computationally more expensive (but usually manageable) 43



Statistical analysis: DESeq2
• An R-package for analysis of overdiserpsed count data. Originally 

developed for RNA-seq data.
• Implements

• Robust normalization method called REL that have high similarities to TMM
• A statistical model that have many similarities to the negative binomial 

distribution.
• Robust estimation of gene-specific overdispersion (shrinkage)

• Can handle many experimental designs, including comparisons of 
groups, regression and ANOVA-like analyses.

• Easy-to-use, well-tested and have reliable performance for many 
datasets.

• https://www.bioconductor.org/packages/release/bioc/html/DESeq2.
html
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Computer exercise 4:
Analysis of sediments exposed to 
oil
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Computer exercise 4

• Deepwater Horizon oil spill in 
the Mexican Gulf

• Samples taken from sediment 
close and far away from the 
borehole

• Overall goal is to assess the 
environmental impact of oilspill
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Computer exercise 4

Aims
1. Which species/OTUs are 

present in the samples? 
2. How does the species 

composition and diversity 
compare between samples?

3. Are there biological functions 
that differ between polluted 
and clean environments?
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Computer exercise 4

Study design
• 6 sampling sites

• 3 highly contaminated
• 3 less contaminated

• 16S rRNA amplicon data
• Shotgun data
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Summary

• Metagenomics is the study of the metagenome by random sampling 
of DNA fragments.

• Metagenomics can be performed by
• Sequencing of specific genomic regions that are amplified by PCR (amplicons)
• Sequencing of random fragments form the entire metagenome (shotgun)

• Amplicon data is analyzed by clustering the reads into OTUs which are 
then annotated.

• The OTU abundance distribution can be used for comparisons 
between samples and for estimation of the biodiversity.

49



Summary

• Analysis of shotgun metagenomic data includes
• Gene quantification
• Normalization
• Identification of differentially abundant genes

• Count models can be used to specifically model the discrete nature of 
metagenomics (and RNA-seq) data. These models are however often 
non-standard and implemented in specific R-packages.

• Many methods used in RNA-seq can be applied to shotgun 
metagenomics and vice versa.
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