
Final lecture - repetition
Introduction to bioinformatics (MVE510)

Autumn, 2020

1



Course organization - examination

The course is examined in two ways

1. Written exam, 14 January 2020

2. Approved reports from computer exercises. Exercise 1 is examined 
during the computer exercise. Exercise 2-4 requires a report that is 
handed in through PingPong.
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Common errors: substitutions

GGCGCTGGACTCTACAGCAGATGTGGAACTGGAGA        

CGCTGGGCTCTACATCAG

GGACTCTACAGCAGATGTGG

GACTCTACAGCAGATGTGGA

TCTACATCAGATGTGGAA

CAGCAGATGTGGAACTGGAG

Correct sequence

Sequence reads



Common errors: Insertions and deletions 
(‘indels’)

CTTCATAAGCTAGATGCCAGTTAA-CTGTCGAGAGG

CTAGATG-CAGTTAA-CTGTC  

AGATGCCAGTTAAACTGTCGA

ATGCCAGTTAA-CTGTCGAGA

TGCCAGTTAA-CTGTCGAGAG

TGCCAGT-AA-CTGTCGAGAG

Correct sequence

Sequence reads



Common errors: duplicates

• Duplicates are caused by sequencing the same DNA fragment 
multiple times. These reads all come from the same DNA molecule 
and does not describe the true diversity in the sample.

• Duplicates typically caused by biases in the amplification steps where 
certain DNA fragments are amplified with higher efficiency. More 
amplification often means more duplicates.

• In many applications, duplicates are important to remove to avoid 
incorrect and misleading results.



1a)

Substitution
• One nucleotide are incorrectly exchanged for another one

Indel
• A nucleotide is incorrectly inserted or deleted

Duplicate
• The same DNA fragment is sequenced several time. Often a result from biases 

in the amplification before sequencing. 

• Errors in the amplification step can appear in a subset of the duplicates and 
can be mistaken for mutations.
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Common errors: adapter contamination

• Most sequencing platforms adds adapters to the ends of the reads 

• Typically one of the adapters are sequenced and needs to be 
removed before analysis.

• However, if the DNA fragment is too short, the sequencing process 
can start to also sequence a part of the other adapter.

A B

Sequencing



1b)

Adapter contamination
• Result from sequencing DNA fragments that are too short. 

• The read will then include parts of the adapter in the end. 

• Can be a large issue when working with degraded DNA. 

• Needs to be removed in order to avoid errors in the down-stream analysis.
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Two main forms of alignment
Global alignment

Two sequences are aligned over their full length.

Local alignment

Two sequences are aligned based on their best 
matching subsequences.

Local alignments are used to match short sequence 
reads against long reference sequences.
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2) Two solutions

Alignment 1

CT-AG

CTCAG

Score: 20

Alignment 2

TCTAG

TC-AG

Score: 20
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Metagenomics
Amplicon sequencing (’metabarcoding’)

• Sequencing of a specific genomic region of interest (‘barcode’)

• General idea: Focus on only on a specific genetic marker that provides 
information about the organism. The marker is sometimes referred to as a 
barcode

• The marker is randomly sequenced from all microorganisms in the sample.

Shotgun metagenomic sequencing

• Total DNA from a sample is sequenced

• General idea: Analyze the biological function by analyzing what genes that 
are present.

• Random fragment from the entire metagenome is sequenced, including all 
of the genes in the present microorganisms
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Amplicon sequencing – data analysis

Pre-processing
OTU 

identification
Reads from 

amplicons

Results

OTU
annotation

Statistical 
analysis
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Amplicon sequencing – Identification of OTUs

• An operational taxonomic unit (OTU) is a putative species formed by 
clustering sequences from amplicons.

• Sequences that are sufficiently similar are clustered together and 
assumed that they come from the same type of organism.

• Sequences that does not cluster with any other sequence are called 
singletons. These sequences are OTUs but are, in many cases, 
discarded since they are only observed once.

• A commonly used similarity threshold used for 16S is 97%. Those 
sequences that have a similarity >97% are clustered together and are 
thus assumed to be from the same OTU.
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Amplicon sequencing – data analysis

Cluster

Singleton

Representative sequences
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Amplicon sequencing – Annotation of OTUs

>GY194060.4884.6412 Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;Unidentified

AGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAATACATGCAAGTAGAACGCTGAGGTTTGGTGTTTACACTAGACTGATGAGTTGCGAACGGGTGAGTAACGCGTAGGTAACC

TGCCTCATAGCGGGGGATAACTATTGGAAACGATAGCTAATACCGCATAAGAGTAATTAACACATGTTAGTTATTTAAAAGGAGCAATTGCTTCACTGTGAGATGGACCTGCGTTGTATTAGCT

AGTTGGTGAGGTAAAGGCTCACCAAGGCGACGATACATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCGGCA

ATGGACGGAAGTCTGACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGAGAAGAACGTTGGTAGGAGTGGAAAATCTACCAAGTGACGGTAACTAACCAG

AAAGGGACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTCTTTAAGTCTGAAGTTAAAGGCAGTGGCTT

AACCATTGTACGCTTTGGAAACTGGAGGACTTGAGTGCAGAAGGGGAGAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCT

GTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAGGTGTTAGGCCCTTTCCGGGGCTTAGTGCCGCAGCTAACGC

ATTAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTT

GACATCCTTCTGACCGGCCTAGAGATAGGCTTTCTCTTCGGAGCAGAAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCT

ATTGTTAGTTGCCATCATTAAGTTGGGCACTCTAGCGAGACTGCCGGTAATAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATG

GTTGGTACAACGAGTCGCAAGCCGGTGACGGCAAGCTAATCTCTTAAAGCCAATCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCACG

CCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTTAGGAGCCAGCCGCCTAAGGTGGGATAGATGATTGGG

GTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTG

>AC201869.46386.47908 Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacteriales;Enterobacteriaceae;Candidatus 

Regiella;Candidatus Regiella insecticola

AGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAGCGGCAGCGGGGAGTAGCTTGCTACTCTGCCGGCGAGCGGCGGACGGGTGAGTAAAGTCTGGGGAT

CTGGCTTATGGAGGGGGGTAACCATTGGAAACGGTGGCTAATACCGCATGATGTCGCAAGACCAAAGTGGGGGACTTTAGGGCCTCACGCCATAAGATGAACCCAGATGAGATTAGCTAGTAGG

TGCGGTAATGGCGTACCTAGGCGACGATCTCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGAAACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGC

GGAAGCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTAGGGTTGTAAAGCACTTTCAGCGGGGAGGAAGGCGGTAAGAGTAATATGCTTATCGATTGACGTTACCCGCAAAAGAAGCAC

CGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATCGGAATAACTGGGCGTAAAGGGCATGTAGGCGGTAAGTTAAGTCAGATGTGAAATCCCCGAGCTTAACTTGG

GAACGGCATTTGAGACTGGCGGGCTAGAGTTTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAGGACT

GACGCTGAGGTGCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTCGATTTGGAGGTTGTGGCCTAGTGTTATGGCGTCCGAAGCTAACGCGATAAAT

CGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCC

ACGGAATTGAGCAGAGATGCTTAAGTGCCTTCGGGAGCCGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTT

GTTGCCAGCGCGTGATGGCGGGAACTCAAAGGAGACTGCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAGTAGGGCTACACACGTGCTACAATGGCGCA

TACAAAGAGCGGCGAGCGTGCGAACGTAAGCGAACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGCTACG

GTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGCGGCAAAAGAAGTAGGTAGCTTAACCTTCGGGGGGGCGCTTACCACTTTGTGGTTCATGACTGGGGTGAAG

TCGTAACAAGGTAACCGTAGGGGAACCTGCGGTTG

Reference database – 16s
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Amplicon sequencing – statistical analysis

The OTU distribution are typically used to

• Compare differences between samples (‘comparative metagenomics’)
• What species are present in the gut of sick compared to healthy individuals?

• What species are affected in polluted environments?

• This analysis is very similar to the analysis of RNA-seq data.

• Estimate the biodiversity in a sample
• How many species are present?

• How are the species distributed?
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3a)

The analysis of amplicon sequencing data includes 1) preprocessing, 2) 
OTU identification, 3) OTU annotation and 4) statistical analysis.

1. The preprocessing is used to remove and/or trim reads with low 
quality. Reads with a high number of sequencing errors can otherwise 
be interpreted as new species. 

2. In the OTU identification step, reads are clustered based on similarity 
to form OTUs which constitutes potential species. A cut-off of 3% 
sequence similarity is often used and sequences that have a similarity 
of 97% or more are thus considered to come from the same species. 
Reads that do not cluster are called singletons. A representative 
sequence (e.g. the longest sequence) is used to represent each cluster.
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3a)

3. In the third step, the OTUs are annotated by comparing them (e.g.
the representative sequence) against a reference database. The 
reference database consists of sequences with a known taxonomic 
affiliation, i.e. we have some knowledge from which species the 
sequence come from. Dependent on the match to the reference we can 
annotate each OTU to various taxonomic ranks. Some OTUs may not 
have a match and are therefore considered to be unknown.

4. In the final steps, the data is statistically analyzed. This can include 
comparison of the counts of OTUs between samples (comparative 
metagenomics) or to investigate the diversity in one or several samples. 
This steps requires that the data is normalized to make it comparable 
(e.g. using rarefaction).
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Alpha diversity
Let 𝑝𝑖 be the proportion of OTU 𝑖 = 1,… , 𝑛.  

25

Evenness

Shannon diversity index. Estimates the evenness of a distribution by 
calculating the entropy, 

𝐻 = −

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖

A higher value indicates a more uniform distribution.

Richness

Unique number of OTUs. Can easily be calculated by counting the 
number of OTUs where 𝑝𝑖 > 0. 



Alpha diversity

Evenness

Simpson’s diversity index. Calculates evenness by estimating how likely 
that two randomly picked OTUs are from the same species.

𝜆 =

𝑖=1

𝑛

𝑝𝑖
2

The Simpson index is a value between 0 and 1. A higher value indicates 
a less uniform distribution (max value achieved if 𝑝𝑖 = 1 for some i).
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Diversity - an easy example
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3b)

Richness measures how many species that are present in a sample and 
evenness how even their abundances are distributed. A sample can 
have high richness and low evenness and, vice versa, low richness but 
high evenness.

Richness can be estimated by counting the number of different species 
(OTUs) that are found in a sample. Evenness can be estimated using 
Shannons index (measure the ‘distance’ to a uniform distribution). A 
high Shannon means a more uniform abundance distribution. Another 
way to measure evenness is to use the Simpson index, which measures 
the probability that we get the same species if we take two reads. Note 
that all these diversity indices are influenced by sequencing depth and 
rarefication of the data is therefore necessary.
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Correcting for multiple testing means 
controlling the number of false positives!

Performing 𝑚 tests at a level 𝛼 where H0 is true
result in 𝑚 × 𝛼 false positives (in average).

Multiple testing

Assume that we perform 𝑚 tests.



4a)

The multiple testing problem arise when several statistical hypotheses 
is tested. For each test, the probability for false positives will increase. 
In fact, if 𝑚 hypotheses are test at a significance level of 𝛼 we expect to 
have 𝑚 × 𝛼 false positives in average. The false positives can, if not 
properly handled, lead to incorrect interpretation of the results.
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Multiple testing - FWER

Family-wise error rate (FWER)

The probability of at least one false positive, i.e.

FWER = Prob(𝑉 > 0)

Under the null hypotheses (H0 is true for the 𝑚 tests)

Prob 𝑉 > 0 = Prob at least one false positive = 1 − (1 − 𝛼)𝑚



The Bonferroni correction

Algorithm: Bonferroni correction

Divide the significance level 𝛼 (p-value cut-off) by the number of 
performed test (i.e. 𝑚). 

It can be shown that Bonferroni corrected p-values always control 
the Family Wise Error Rate (using Boole’s inequality).

A Bonferroni adjusted p-value can be calculated by multiply each p-
value with the number of performed tests (i.e. 𝑚).

Interpretation: If we perform 𝑚 tests and use the significance cut-off 
𝛼/𝑚, then Prob 𝑉 > 0 ≤ 𝛼.



4b)

The familiy-wise error rate (FWER) is the probability that we have at 
least one false positive. By controling the FWER (make sure that it is 
below a certain value), we will limit the number of false positives.

The Bonferroni correction method controls the FWER. The method can 
either modify the significance level by dividing it by the number of 
tests. Alternatively, the p-values can be adjusted by multiplying them 
with the number of tests. The Bonferroni method ensures that the 
FWER is then below the significance level. Note, however, that this 
method often is considered to be too conservative. 
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4c)

Original p-values: 

7×10-12, 2×10-11, 3×10-9, 3×10-8 and 7×10-7.

Number of tests: 10,000,000

Adjusted p-values:

7×10-5, 2×10-3, 3×10-2, 3×10-1 and 1.

Number of significant tests after adjustment: 2
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Direct binning

Identification of 
genes

Sorting and 
counting

Shotgun reads
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Gene quantification

Direct binning of metagenomic reads

• Search each metagenomic fragments for the presence of genes.

• A vast number of the microbial genes are not present in the 
databases. The search therefore requires sensitive aligners and 
approximate matches are often accepted. 

• Requires relatively long reads (preferably >500bp) and not generally 
possible to do for short reads ( genes that are well-conserved are 
easier to identify shorter reads).

• ‘Bins’ are finally formed by counting the number of reads for each 
type of gene.
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Reference-guided binning

Mapping and countingReference

Identification of genes
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Gene quantification

Reference-guided binning

• Guided binning uses an annotated reference database that contains 
the genomes of the microorganisms present in the sample.

• Each metagenomic fragment is mapped against the reference 
database.

• ’Bins’ are formed by counting the number of reads matching each
type of gene present in the genomes.

• Typically done for data with short reads (<500bp).
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5a) The purpose of binning is to quantify gene abundances. This is done by 
placing reads in different ‘bins’ depending on their gene or gene function. 
The number of genes in each bin is a measure of the gene abundance.

Direct binning tries to identify genes directly from the reads. This approach is 
only applicable to reads that are of substantial length so they contain a 
substantial part of the gene. 

Reference-guided binning uses a reference. The approach is similar to RNA-
seq, where each read is mapped to the reference. By using an annotation of
the reference, we can see what gene it contains and, based on the number
of matching reads, quantify the abundances of these genes in the 
metagenome. 

If you have very short reads, reference-guided binning should be used.
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Normalization

Data from different metagenomic samples are not directly 
comparable

• Differences in sequencing depth

• Systematic effects caused by
a) Variation in sampling and preparation

b) The quality sequencing

c) Systematic errors introduced in the sequencing (e.g. GC-bias)

d) Taxonomic composition

Normalization is necessary to make samples comparable. 
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Normalization – example of systematic effects

Metagenomic sequencing of river sediments 
upstream and downstream of a waste water 
treatment plant. 

56%

36%

1%
7%

Downstream Skövde

87%

7%
3% 3%

Upstream Skövde

Bacteria

Virus
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5b) Shotgun metagenomic data is affected by a wide range of 
systematic bias that make it hard to compare gene abundances, both 
between and within samples. Such systematic errors include for
example, differences in sequencing depth and gene length. 
Normalization is used to remove these biases and thereby reduce the
overall data variability. This makes it easier to identify differentially 
abundant genes.

One type of systematic error present in metagenomic data but typically 
not in transcriptomic data is differences in taxonomic composition. The 
proportion of eukaryotes, viruses and bacteria can differ between 
samples. These differences in taxonomic composition, will then affect 
the relative abundance of all bacterial genes. If not removed, this can 
significantly increase the variability thus reducing the statistical power. 
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Unsupervised methods

• In this course we will look at two main methods for unsupervised 
data analysis

• Clustering
• Aims find groups of samples or genes (‘clusters’) that are ‘similar’.

• Two important methods: Hierarchical clustering and K-means clustering.

• Principal component analysis (PCA)
• Used for exploration and visualization of high-dimensional data

• Identifies the dimensions with highest variability. These are used to represent 
the data at a lower dimension (e.g. in two dimensions).
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Hierarchical clustering

• Hierarchical clustering builds a hierarchy describing the similarity 
between clusters

• Agglomerative: All samples starts as individual clusters which are 
merged together (aggregated) according to
• A distance measure describing the separation between data points

• A linkage criterion measuring the distance between clusters

• Divisive: All samples starts in a single large cluster which is then 
successively divided

• The number of clusters are then defined based on a minimum 
similarity threshold
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Principal component analysis (PCA)

• Method used for exploration and visualization of high-dimensional 
data

• The main principle: Identify the dimensions of the data that explains 
as much variability as possible. These dimensions are defined by 
principal components.

• The data can then be projected on a set of the to principal 
components (often two) which results in a reduction of the 
dimensionality

• PCA is often used to identify patterns in the data. However, PCA does 
not assign each data point to a cluster.
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6a) Clustering and PCA are both unsupervised methods. The aim of
clustering is to identify clusters, i.e. group of genes or samples that 
shows similar patterns in the data. The aim of PCA is to produce a low-
dimensional representation of the data. This can, for example, be used 
to visualize high-dimensional data is 2d- or 3d- plots. Since high 
variability sometimes corresponds separation of data-points, PCA is 
useful to identify heterogeneity of the data. Note however, that PCA 
does not explicitly identify clusters.

One example when clustering is used is to identify subgroups of 
samples in cancer research based on transcriptomics data. Here, each 
subgroup can correspond to different properties of the tumors.

One example where PCA is used is to analyze patterns from amplicon
sequence data. Here, the PCA can be used to visualize the relationship 
between samples and thus demonstrate there relationships.
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Euclidean distance

𝑑 𝑥, 𝑦 = 

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2

Manhattan distance

𝑑 𝑥, 𝑦 =

𝑖=1

𝑛

|𝑥𝑖 − 𝑦𝑖|

𝑥

𝑦

𝑥

𝑦
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The linkage criterion calculates the similarity between clusters.

Single linkage

Complete linkage

Linkage criteria

𝐷 𝑋, 𝑌 = min
𝑥∈𝑋,𝑦∈𝑌

𝑑(𝑥, 𝑦)

𝐷 𝑋, 𝑌 = max
𝑥∈𝑋,𝑦∈𝑌

𝑑(𝑥, 𝑦)
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Hierarchical clustering

Algorithm: Agglomerative hierarchical clustering

1. Calculate a distance matrix containing the pair-wise distance 
between all data point

2. Let each data point be a cluster

3. Identify the most similar clusters 𝑋 and 𝑌 according to a linkage 
criterion. 

4. Merge 𝑋 and 𝑌 into a new cluster. Update the distance matrix.

5. Goto 3 if the number of clusters are more than 2.

56



6b) Hierarchical clustering can be either agglomerative or divisive. In 
agglomerative clustering, each data-point starts as its own cluster. 
These are then merged successively. The distance between data-points 
are measured using a distance metric (e.g. Euclidean or correlation). 
The distance between clusters is measured using a linkage criterion 
(e.g. single linkage or complete linkage). 

First a distance matrix, describing the pair-wise distances between all 
clusters are calculated.  In each step, the algorithms identifies the
clusters with the lowest distance. These clusters are then merged and 
the distance matrix is updated. This is repeated until all data-points are 
in one single cluster. The process can be visualized as a dendrogram, 
which can be used to select a suitable number of clusters. 
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The RNA-seq process

Extracted 
RNA (total 
or mRNA)

GATAGTACGGT

AATACGATAAA

ACGATAGGTAC

ACGTACGTGAC

CGGATATCCAT

TAAATTTAACG

AATACGATAAA

Sequencer ReadsComplementary 
DNA (cDNA)

Reverse 
transcription



7a) RNA-seq works by randomly selecting RNA-fragments, which are 
reverse-transcribed and sequenced. The resulting reads corresponds 
thus to random positions of the RNA expressed in the sample. For a 
particular gene, the number of reads is a measure of its abundance. 
This is derived by mapping the reads to a reference, and counting the 
number of reads matching each read.
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Common references

• Genome
• Requires high quality genome assembly

• The mapper needs to be able to handle splicing (splice-aware)

Garber et al, Computational methods for transcriptome annotation and quantification using RNA-seq, Nature Methods 8(6) 2011.

Exon 1 Exon 2

Quantification of gene abundances

• De novo assembled transcriptome
• Construction of the transcripts from the sequence data

• Hard to identify splicing. Representing mainly mature spliced transcripts.



Gene quantification

• Count the total number of fragments for each gene

Exon quantification

• Counting the number of fragments for each exon.

• Splicing can be identified from fragments mapping junctions

Isoform quantification 

• Estimates the abundance for each isoform. 

• Requires mathematical models and complementary data such as a 
database of known splice variants.

Quantification of gene abundances



7b) In RNA-seq, the quantification can be done at different resolution. 
When quantifying the overall expression of a gene, we count all reads 
matching any part of the gene.

It is also possible to quantify individual exomes. In this case, we 
calculate the number of reads for each exome. This enables 
identification of specific splicing patterns. 

It is finally possible to quantify the expression of specific isoforms. An 
isoform is a protein variant created by combining specific exons. By 
using a database of known isoforms, it is possible to based on 
information where the reads are mapping, predict abundance of the 
individual isoforms. This process is however complex and not possible 
to do accurately in species that lack information about the isoforms.
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RNA-seq data is semiquantitative

Sample 1 Sample 2

Gene 1 10 10

Gene 2 10 10

Gene 3 10 10

Gene 4 10 10

Gene 5 10 10

Total 50 50

Sample 1 Sample 2

Gene 1 0.2 0.2

Gene 2 0.2 0.2

Gene 3 0.2 0.2

Gene 4 0.2 0.2

Gene 5 0.2 0.2

Total 1 1

Counts Proportions



RNA-seq data is semiquantitative(!!)

Sample 1 Sample 2

Gene 1 10 30

Gene 2 10 5

Gene 3 10 5

Gene 4 10 5

Gene 5 10 5

Total 50 50

Sample 1 Sample 2

Gene 1 0.2 0.6

Gene 2 0.2 0.1

Gene 3 0.2 0.1

Gene 4 0.2 0.1

Gene 5 0.2 0.1

Total 1 1

Counts Proportions

Up-regulated
gene



7c) RNA-seq data is semiquantitative, which means that even if we can 
quantify gene abundances, we can only do this in relation to the 
abundances of other genes. Information about the absolute 
abundance, i.e. how many RNA molecule present in the sample, is not 
measured.

This has important consequences in how me interpret RNA-seq data. In 
particular, an increase of gene expression identified in RNA-seq can 
either be a result on a large number of RNA molecules for that specific 
genes or, alternatively, a decrease of RNA molecules of one of several 
other genes. Similarly, a decrease in measured gene expression could 
corresponds to a lower number of RNA molecules for the specific gene 
or an increase in RNA-molecules in one or several other genes. This 
means that we can not relate the differences that we see to absolute 
changes in RNA-molecules, which makes RNA-seq data hard to 
interpret.
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