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Summary

Data generation and analysis are essential parts of systems biology. Today, large
amounts of omics data can be generated fast and cost-efficiently thanks to the
development of modern high-throughput measurement techniques. Their inter-
pretation is, however, challenging because of the high dimensionality and the often
substantial levels of noise. Integrative analysis provides a framework for analysis
of the omics data from a biological perspective, starting from the raw data, via
preprocessing and statistical analysis, to the interpretation of the results. By inte-
grating the data into structures created from biological information available in
resources, databases, or genome-scale models, the focus moves from the individ-
ual transcripts or proteins to the entire pathways and other relevant biochemical
functions present in the cell. The result provides a context-based interpretation of
the omics data, which can be used to form a holistic and unbiased view of biolog-
ical systems at a molecular level. The concept of integrative analysis can be used
for many forms of omics data, including genome sequencing, transcriptomics, and
proteomics, and can be applied to a wide range of fields within the life sciences.

1.1
Introduction

Systems biology is an interdisciplinary approach to biology and medicine that
employs both experimentation and mathematical modeling to achieve a better
understanding of biological systems by describing their shape, state, behavior, and
evolutionary history. An important aim of systems biology is to deliver predictive
and informative models that highlight the fundamental and presumably conserved
relationships of biomolecular systems and thereby provide an improved insight
into the many cellular processes [1]. Systems biology research methodology is a
cyclical process fueled by quantitative experiments in combination with mathe-
matical modeling (Figure 1.1) [2, 3]. In its most basic form, the cycle starts with
the formulation of a set of hypotheses, which is followed by knowledge generation
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Figure 1.1 Systems biology research
methodology. In the systems biology cycle,
novel hypotheses are first formulated, which
is followed by knowledge generation, model
construction, and model predictions, which,
in turn, leads to new biological insights. The
development of high-throughput techniques
have enabled rapid and cost-efficient gen-
eration of omics data from, for example,

genome sequencing, transcriptomics, and
proteomics. Integrative analysis provides a
framework where omics data is systemat-
ically analyzed in a biological context, by
data integration into known biological net-
works or other data resources, which enables
improved interpretation and easier integra-
tion into quantitative models.

and model construction where an abstract description of the biological system (a
model) is formulated and its parameters are estimated from data taken from the
literature. The final step is defined by model predictions, where the constructed
model is used to address the original hypotheses by providing a quantitative anal-
ysis of the system, which, in turn, generates new biological insight.

The development of high-throughput measurement techniques in the recent
years has resulted in an unprecedented ability to rapidly and cost efficiently
generate molecular data. Bioassays are today established for large-scale char-
acterization of genes and their expression at the different layers defined by the
central dogma: the genome, the transcriptome, and the proteome. The resulting
data, which in this chapter will be referred to as omics data, is however complex
because of its high dimensionality and is therefore hard to interpret and directly
integrate into quantitative models. The concept of integrative analysis is a
framework to systematically analyze the different components of omics data in
relation to their corresponding biological functions and properties. The resulting
biological interpretation can be used to form a holistic and unbiased view of
biological systems at a molecular level. Thanks to the comprehensiveness of the
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Figure 1.2 Description of the concept of
integrative analysis as a tool for reduction
of the dimension of omics data. Integrative
analysis starts with raw omics data, which
is typically affected by high levels of noise
and errors. Computational and statistical
approaches are first used to process the
data to produce a ranked list of genes that
are found to be of significant importance
in the experiment. The gene list is used as

input to the data integration, where known
biological information is used as a basis for
the interpretation of the data. During inte-
grative analysis, the dimension of the data
is significantly reduced, from potentially
millions of data points to a limited num-
ber of significant biological functions and
pathways, which considerably facilitates the
interpretation.

omics data, all components (i.e., genes, transcripts, or proteins) can be measured
simultaneously, which opens up opportunities for testing of existing hypotheses as
well as generation of completely new hypotheses of the studied biological system.

The process of integrative analysis can be divided into two main steps: data
processing and data integration (Figure 1.2). Integrative analysis starts from raw
omics data and ends with the biological interpretation, and during this process the
dimensionality of the data is reduced. The first step, the data processing, takes the
high-dimensional omics data, and by applying computational and statistical tools,
removes noise and errors while identifying genes and other components that con-
tain information significant for the experiment. The next step, the data integration,
uses the list of identified genes to pinpoint relevant functions and pathways by
integrating the data on top of a “scaffold” built using established biological infor-
mation collected from various resources and databases. The result, which is based
on the combined analysis of the genes with similar functional properties, has a
substantially reduced dimension, which considerably facilitates its interpretation.

Many studies in the life sciences aim to understand biological systems, often
in relation to a perturbation caused by, for example, disease, genetic variability,
changes in environmental parameters, or other factors introduced through labora-
tory experiments. A commonly used measurement technique is transcriptomics,
where the transcriptional response is analyzed and the genes that are differen-
tially expressed between investigated conditions are identified. In this setting, the
data integration shifts the focus from what genes are differentially expressed to
providing a biological context where activated and repressed pathways, functions,
or subnetworks can be identified. This provides a more relevant view of the data,
which paves the way toward more sound and detailed biological conclusions.
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In this chapter, we provide a broad overview of integrative analysis of omics
data. We will describe the general concept of integrative analysis and provide
an outline of the many associated computational steps. It should, however, be
pointed out that this topic has been extensively researched during the recent
years and – due to the scope of the topic at hand – we will not be able to cover all
aspects and details in a single chapter. We have therefore provided a comprehen-
sive set of references throughout the text, which are the recommended starting
points for further reading. Also, our main focus throughput this chapter will be on
data generated by techniques from genomics, transcriptomics, and proteomics.
This means that other types of data, which are commonly encountered in systems
biology, such as metabolomics and lipidomics, will receive little attention, and
here we instead refer the reader to the recent reviews by Robinson et al. [4] and
Kim et al. [5].

The chapter is organized as follows. Section 1.2 contains an overview of some
the types of omics data that are commonly used in integrative analysis. This is
followed by Section 1.3, where we focus on the data processing, starting from
the quality assessment of the raw data to statistical analysis. Section 1.4 explains
the concepts of data integration and describes the different approaches and data
resources that can be used. We end the chapter with an outlook discussing future
challenges related to the continuous growth of biological information.

1.2
Omics Data and Their Measurement Platforms

In this section three commonly used types of omics data will be described,
namely genome sequencing, transcriptomics (RNA sequencing and microarrays),
and mass spectrometry (MS)-based proteomics.

1.2.1
Omics Data Types

Genome sequencing is used for determining the order of the complete set of
nucleotides present in an organism. The comparative analysis of the genome of a
strain or a multicellular organism in relation to a reference genome is referred to
as “resequencing,” which enables identification of the complete genotype and its
variation between individuals. This includes both small mutations, such as single
nucleotide polymorphisms (SNPs) and short insertions/deletions (indels), and
larger structural variations such as genome rearrangements and copy number
alterations [6]. The resulting information, containing a list of all identified genetic
variants, is often subjected to integrative analysis in order to provide a biological
context where the genotype can be linked to a phenotype [7]. Whole-genome and
exome resequencing are important techniques for the study of human disease
[8], and in, for example, cancer, the set of germline and somatic mutations are
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often good predictors of the tumor phenotype, including aggressiveness, ability
to metastasize, and drug resistance [9].

Transcriptomics is the large-scale analysis of gene expression at the transcript
level. Modern transcriptomics is based on RNA-seq, which is the process
where RNA is reversed-transcribed into complementary DNA (cDNA) and
then sequenced en masse [10]. From the resulting data, the relative abundance
of expressed mRNA and other functional noncoding RNA can be estimated.
RNA-seq can also provide detailed information about alternative splicing and
expression of isoforms as well as antisense transcription [11]. Analogous to
transcriptomics, proteomics is the study of the gene expression but at the
protein level. Large-scale proteomics data is generated by bottom-up tandem MS
(shotgun proteomics), where a mixture of proteins extracted from a sample is
first enzymatically digested (using, e.g., trypsin) followed by peptide separation
using liquid chromatography. The peptides are then subjected to two consecutive
mass spectrometry runs where the individual peptides are first separated and
then fragmented to generate a set of mass spectra. The resulting data provides
information about the peptide sequences and their relative abundance in the
sample [12]. Proteomics can also be used to study post-translational modifica-
tions, such as phosphorylation and ubiquitination [13]. Integrative analysis of
transcriptomic and proteomic data has long been popular to study and interpret
differences in gene expression between tissues and individuals, as well as medical,
environmental, or experimental conditions [14, 15].

1.2.2
Measurement Platforms

The recently introduced next-generation sequencing (NGS) technology has revo-
lutionized large-scale characterization of DNA [16]. In contrast to the traditional
Sanger sequencing, which is inherently a serial process, NGS is massively parallel
and can characterize billions of DNA fragments simultaneously. This has enabled
rapid and cost-efficient generation of vast volumes of DNA sequence data, and,
consequently, genome resequencing and transcriptomics are today almost exclu-
sively based on NGS. There are several NGS platforms available, and they all have
differences in their performance and characteristics [17]. The Illumina platform
uses a sequencing-by-synthesis approach where fluorescence-tagged nucleotides
are consecutively incorporated to form the reverse strand of single-stranded
DNA fragments. Each incorporated base is registered using a camera, which
provides information about the nucleotide sequence of billions of fragments
simultaneously. The Illumina sequencing technique has a high throughput, where
one single run can generate more than 1 terabase of sequence data. The length
of the generated reads are however relatively short (currently 100–300 bases)
[18]. The IonTorrent platform also applies sequencing-by-synthesis scheme, but
the incorporated bases are instead registered by semiconductor measurement
of fluctuations in pH resulting from the release of hydrogen ions [17]. The
IonTorrent platform provides quick sequencing runs and can generate reads
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up to 400 bases but has a lower throughput that the Illumina platform. A third
commonly used platform is Pacific Bioscience (PacBio), which uses a sequencing
technique where fluorescence pulses of the incorporated tagged nucleotides
are detected in real time [18]. PacBio can generate sequence reads up to 20 000
bases but has still a limited throughput compared to the Illumina and IonTorrent
platforms [19].

Similar to those of DNA sequencing technology, the performance and through-
put of MS-based proteomics have increased drastically during the last decade.
This is a result of the improvements in and optimization of the many of the steps
in the proteomics workflow. In particular, improved protein digestions through
the use of multiple proteases, optimized chromotographic peptide separation,
and novel instrumentation with higher resolving power and scan speed have
significantly increased the performance – both with respect to sequencing depth
and proteome coverage [20]. As a consequence, MS-based proteomics can today
be used to identify >10 000 unique proteins in a single sample using low volumes
of starting material and thus generate a comprehensive snapshot of the proteome
[21, 22].

Microarray technology, first introduced 20 years ago, is based on fluorescence-
tagged cDNA that is hybridized to unique gene-specific probes distributed over
a chip. A laser scanner is used to extract information about the amount of DNA
captured by each probe. Microarrays were previously popular, for example,
for large-scale transcriptomics and identification of SNPs but have, compared
to NGS-based techniques, lower resolution and are plagued by high technical
variation and systematic error [23, 24]. Even though the microarray measurement
technology has to a large extent been superseded, there is a large accumulated
body of microarray data present in the public repositories that can be subjected
to integrative analysis [25]. There is a vast literature regarding all steps of the
processing of microarray data, and it will therefore be less extensively covered in
this chapter [26, 27].

1.3
Data Processing: Quality Assessment, Quantification, Normalization, and Statistical
Analysis

All forms of omics data need to be computationally processed before any biologi-
cal conclusions can be reached. Data processing, which is the first main step of the
integrative analysis, can be split into four parts: (i) quality assessment, (ii) quantifi-
cation, (iii) normalization, and (iv) statistical inference, all of which are necessary
to ensure a reliable end result (Figure 1.3). While data processing shares concep-
tual similarities between data types, there are also important differences related
to the measurement platforms and their error patterns. In this section, we will
describe the purpose of each of the four parts and provide references for suitable
tools and software. The key methods for the different analysis steps have been
summarized in Table 1.1.
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Figure 1.3 Overview of data processing,
which start with raw omics data and pro-
duces a list of significant genes. Data pro-
cessing is divided into four main steps: qual-
ity assessment, quantification, normalization,
and statistical analysis. Omics data types
have important differences related to their

measurement platforms and their error pat-
terns, and different data processing methods
are therefore necessary. For each data type,
the figure summarizes the most important
parts of the analysis in each of the process-
ing steps. For examples of available methods
for each step, see Table 1.1.

1.3.1
Quality Assessment

DNA sequencing and tandem MS are inherently noisy, and the generated data
contain errors and irregularities. If not properly removed, erroneous informa-
tion can propagate through the consecutive analysis steps and into the final
results. Quality assessment of high-throughput data is therefore a vital step and
should always be performed. The nature of the errors is heavily dependent on
the specific bioassay and its biochemical properties, and methods for quality
assessment should therefore be selected based on the applied measurement
platform.

In high-throughput DNA sequencing, the most common type of error is
incorrect base calls introduced during the sequencing process [45]. The charac-
teristics of the errors differ between the sequencing platforms: while the Illumina
platform is almost exclusively associated with incorrect substitutions [46], the
IonTorrent and PacBio platforms are dominated by insertions and deletions,
often within homopolymeric regions [47]. Furthermore, the reliability of the
sequencing process typically decreases along the processed DNA fragments,
in some cases leading to substantially decreased quality at the end of the
sequenced read. The general strategy for quality assessment of sequence data is
therefore to exclude bases that are likely to be inaccurate, either by trimming
the end of the generated sequence reads or by completely discarding reads
from the analysis. The exclusion is based on a base-specific quality score that
is provided by all sequencing platforms, which estimates the probability of a
sequenced base being incorrect. Quality score thresholds can be used to tune
the stringency of the quality assessment in relation to the application at hand.
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Table 1.1 Examples of key methods for processing of omics data.

Method Purpose Type of data

Quality assurance and filtering
FASTX toolkit Quality control and filtering Genomics, transcriptomics
Trim Galore! Quality filtering and removing

adapters
Genomics, transcriptomics

NGS QC Toolkit [28] Quality control and filtering Genomics, transcriptomics
Spectrum quality [29] Filtering of MS spectra Proteomics

Quantification
BWA [30] Mapping of reads to reference Genomics, transcriptomics
Bowtie2 [31] Mapping of reads to reference Genomics, transcriptomics
TopHat [32] Splice-aware mapping of reads

to reference
Transcriptomics

Star [33] Splice-aware mapping of reads
to reference

Transcriptomics

SEQUEST [34] Matching MS spectra to a
database of full-length peptides

Proteomics

MASCOT [35] Matching MS spectra to a
database of full-length peptides

Proteomics

InsPecT [36] Matching MS spectra to a
database of peptide patterns

Proteomics

Normalization
RPKM/FPKM [37] Normalization by transcript

length and total abundance
Transcriptomics

Upper quartile
normalization [38]

Normalization of transcript
abundance

Transcriptomics

Trimmed mean of
M-values (TMMs) [39]

Normalization of transcript
abundance

Transcriptomics

Linear regression
normalization [40]

Normalization of peaks in MS
spectra

Proteomics

Statistical analysis
GATK toolkit [41] Identification of significant

genotype variants
Genomics

MuTect [42] Identification of somatic point
mutations in cancer

Genomics

edgeR [39] Identification of differentially
expressed genes

Transcriptomics

deSeq2 [43] Identification of differentially
expressed genes

Transcriptomics

QPROT [44] Identification of differentially
expressed genes at the protein
level

Proteomics

RPKM/FPKM – Reads/fragments per kilobase per millions of mapped reads
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Multiple algorithms have been developed for quality assessment of sequence data
for the different platforms, for example, the FASTX toolkit (http://hannonlab
.cshl.edu/fastx_toolkit/), Trim Galore! (http://www.bioinformatics.babraham
.ac.uk/projects/trim_galore/), and NGS QC Toolkit [28]. In addition to quality
filtering, several of these methods can also remove other types of inconsis-
tencies in the sequence data, such as adaptor contamination and duplicated
reads.

Tandem MS generates a large number of spectra, of which only a small propor-
tion corresponds to identifiable peptides. The major part is, instead, dominated
by spectra with lower quality, which provide no, or in the worst case ambiguous,
information and may result in false positives in the downstream analysis [48]. The
quality of each spectrum can therefore be assessed based on its characteristics,
such as peak intensity, peak distance, and signal-to-noise ratio, either using statis-
tical models or unsupervised machine learning algorithms [29, 49]. Spectra that
are deemed to not pass a prespecified quality threshold are excluded from further
analysis.

1.3.2
Quantification

The quantification step transforms the quality-assessed raw data into quantitative
values describing the abundance of the genetic variants, transcripts, or proteins.
In genome resequencing, this is a two-step process in which the reads are
matched first to a reference genome to identify their correct position, typically
using computationally efficient alignment-free mapping algorithms (e.g., BWA
or bowtie2) [30, 31]. This is often followed by a more sensitive realignment step,
where reads in regions with a high dissimilarity between the sequenced and
reference genomes are realigned [50]. From the resulting alignment, differences
between the sequenced and reference genomes can be identified and their relative
abundance of variants estimated.

Quantification of RNA-seq is done through a process called binning, where the
sequenced reads are first mapped to a reference that is annotated with any feature
that may be of interest in the study (i.e., the reference containing “bins”). The rela-
tive abundance of each bin is then derived based on the number of matching reads
[51]. The reference is often the genome from the studied organism, and the map-
ping needs therefore to be done using algorithms that are splice-aware and can
correctly align reads that extend over exon boundaries (e.g., TopHat or STAR)
[32, 33]. After mapping, the quantification can be done for genes, isoforms, or
single exons based on the number of matching reads [51, 52]. If no suitable refer-
ence genome is available, a reference can be assembled de novo from the generated
sequence data [53].

Proteomics data is quantified by matching the measured spectra against a com-
prehensive database with theoretical spectra calculated from known peptides.
A similarity score is used to measure the similarity between the measured and
the theoretical spectra and, based on the score, a best match is identified [12].
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The matching can be done either for complete peptides (using methods such
as SEQUEST or MASCOT) or tag-wise based on sub-peptide patterns (using,
e.g., Inspect), which also enables identification of peptides that are not in the
database [54]. Next, the identified peptides are matched to full-length proteins,
and the abundance of each protein is calculated based on the number of matching
spectra. Alternatively, proteomics data can be quantified based on labeling where
the intensity of each spectrum is compared to a spiked internal standard of
known quantity [12].

1.3.3
Normalization

Omics data exhibit large variations and biases, of which a substantial part is of
technical nature introduced by the measurement techniques and the sensitive
experimental steps necessary for sample preparation. The purpose of normaliza-
tion is to remove this unwanted variability in order to make the data more uniform
and comparable. This is especially important for transcriptomics and proteomics
where data is often generated in a comparative setting using multiple technical
and/or biological replicates.

A large and common source of bias in sequence-based transcriptomics is the
varying sequencing depth between the samples. The number of counts for a par-
ticular transcript or protein thus cannot be directly compared within or between
samples without first relating it to the total number of generated sequence reads.
The RNA-seq counts can be transformed into RPKM values (reads per kilobase
per million mapped reads) by normalizing the number of counts with the total
number of fragments and the length of the transcript [37]. Studies have, how-
ever, demonstrated that the total number of reads is not robust against larger
changes in the transcriptome. Highly expressed genes, such as actin or the riboso-
mal proteins, constitute a sizeable part of the total transcriptome, and differences
in their abundance between the samples will affect the total number of fragments
and thereby introduce biases. It is therefore recommended that the total num-
ber of reads is replaced with a robust alternative such as the upper quartile (UQ)
of the transcript abundance distribution [38]. Another alternative is to apply the
trimmed mean of M-value algorithm (TMM), which robustly estimates sample-
specific scaling factors to ensure that the vast majority of the genes are not dif-
fering in expression between the samples [39]. Even though the UQ and TMM
algorithms are more robust than normalizing with the total number of reads, they
still explicitly assumes that only a small proportion of the transcripts are differ-
entially expressed between the samples (e.g., <30% for TMM) and may otherwise
perform suboptimally.

Considerable systematic and random biases are introduced between the MS
runs, which makes normalization of proteomics data important [55, 56]. A
common approach is to correct the ion intensities in the spectra, either based
on specific peaks from housekeeping genes (“housekeeping peaks”) or based on
the data of all or the majority of the quantified peptides detected in the sample.
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Evaluations have shown that methods that use regression-based correction of
peak abundance [40, 55], normalization of the empirical quantiles between the
replicates [44], and scaling based on the total ion intensity in relation to the
total protein length all have good and robust performance for several types
of proteomics datasets [56]. Many of the normalization techniques originally
developed for correcting gene expression microarrays have also been shown to
be suitable for proteomics data [57].

1.3.4
Statistical Analysis

Omics data is high dimensional where thousands of features (e.g., genetic variants,
transcripts, or proteins) are measured simultaneously and where only a minority
of them contain information that is valuable for the study. Statistical analysis aims
to reduce the dimension of the data by distinguishing between the biologically rel-
evant features and the features that mainly contain noise. However, the high levels
of technical and biological variability, in combination with the often limited num-
ber of replicated samples, make the statistical analysis challenging, and dedicated
methods are therefore necessary.

In genome resequencing, statistical analysis is based on calling of genetic
variants, that is, identifying the true differences between the sequence and
reference genome. Resequencing data contains millions up to billions of data
points while the number of true variants may be very few, and a major challenge is
therefore to avoid false positives. For resequencing of single individuals or clones,
calling is done in discrete steps depending on the ploidy of the investigated
organism (e.g., homozygosity and heterozygosity variants for a diploid genome).
A statistical score is calculated for each variant depending on the likelihood
of the mutation being true and not explained by random sequencing errors.
Commonly used variant callers are UnifiedGenoTyper or the HaplotypeCaller
in the GATK package, which use Bayesian models to calculate the most likely
genotype [41], but alternative methods have also been developed [58]. For the
analysis of cancer tissues, where the sample is often heterogeneous and contains
multiple clones with different configurations of somatic mutations, calling is
instead done based on the relative frequency of each variant. This is in essence a
harder problem since somatic mutations may occur at very low abundance, and,
in order to minimize the number of false positives, the calling of variants is often
done in a pairwise setting using both tumor and normal tissue from the same
individual [42].

For RNA-seq and proteomics data, the analysis is done featurewise, where the
transcripts or proteins are statistically assessed individually. Statistical methods
that specifically describe the complex variance structure of the data are necessary
to distinguish between features with a true effect and features with random pat-
terns caused by the biological and technical variability. Furthermore, the counting
of sequence fragments and peptides results in discrete data, which needs to be
described by non-normal statistical models (e.g., generalized linear models). The
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estimation of the feature-specific variability is also hard, especially when only a few
replicates are available, and robust estimators, often implemented in an empirical
Bayesian setting, are typically applied. These modeling approaches have been
implemented in several methods for the identification of differentially expressed
genes from RNA-seq and proteomics data (e.g., edgeR, deSeq2, QPROT)
[39, 43, 44].

1.4
Data Integration: From a List of Genes to Biological Meaning

The data processing and analysis described in the previous section results in a
“gene list” consisting of variants, transcripts, or proteins that are deemed statisti-
cally significant and thus contains relevant biological information. The next main
step of the integrative analysis, namely data integration, is to analyze this gene
list from a biological and biochemical point of view. This is, however, a nontriv-
ial undertaking because the data still has a high dimensionality where the num-
ber of significant features often is in the range of 100–1000. The aim of the data
integration is to systematically put the list of features into context and identify
specific biological functions that are of importance in the experiment. In this pro-
cess, the dimension of the data is further reduced, which enables a more detailed
and refined biological interpretation. For example, in a transcriptome experiment,
the integrative analysis can combine the differentially expressed transcripts with
information from external data resources to identify activated pathways or reg-
ulated functional subsystems. As an example, Väremo et al. [59] integrated tran-
scriptome data from patients with type 2 diabetes into a human metabolic network
in order to find markers for diabetes. In another study, Delmotte et al. [60] ana-
lyzed transcriptomics and proteomics data from the bacterium Bradyrhizobium
japonicum living in symbiosis with the soy bean plant Glycine max. The combined
transcriptome and proteome data was integrated into a database with 15 different
gene functional categories to facilitate the interpretation of the data. Integrative
analysis is also commonly used to interpret resequencing data, and one example is
the analysis of the genetic signatures in the Greenland Inuit population in relation
to diet and climate adaptation [61].

Gene set analysis (GSA) is the most common type of integrative analysis, where
predefined gene sets are used as the basis of integration. A gene set is a collection
of genes that share a common attribute, property, or function. The gene sets are
defined a priori from information collected from various biological databases and
resources. Many of the methods for finding significant gene sets were originally
developed for microarray analysis, before the era of NGS, but are also applicable
for integrating omics data generated by newer measurement platforms [62]. In
this section, we will first describe how gene set collections can be constructed
from different databases, and then present and explain the different methods
for GSA.
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1.4.1
Data Resources for Constructing Gene Sets

Gene sets contain the a priori information in the GSA and are typically defined
from biological information present in databases and biological networks
(Table 1.2). We will describe the properties of the most commonly encountered
data resources in more detail.

1.4.1.1 Gene Ontology Terms

The Gene Ontology (GO) is a bioinformatics resource that provides a classifi-
cation of genes into different terms based on three main categories: biological
process (BP), molecular function (MF), and cellular compartment (CC) [63].
The GO terms are organized in a hierarchical structure according to a directed
acyclic graph (DAG), meaning that a more specific GO term has one or more
parent terms defining related and more general classes. The terms are general
in the sense that they are the same regardless of the organism. For many model
organisms, such as human or yeast, the gene to GO term association can be
downloaded from www.geneontology.org, or from organism-specific databases
(such as www.yeastgenome.org). For organisms that are lacking a gene to GO
term relationship, the GO term annotation can be inferred by comparing the gene
sequences with gene sequences from closely related model organisms, using, for
example, Blast2GO [69]. GO provides a many-to-many mapping, where several
genes can be classified into a single GO term and a single gene can be annotated
with multiple GO terms. The genes associated with a specific GO term defines a
corresponding gene set.

1.4.1.2 KEGG and Reactome

The Kyoto Encyclopedia of Genes and Genomes (KEGG) [65] (www.kegg.jp) is a
resource where genes have been organized into different biological pathways. The
main focus of KEGG is on metabolic pathways, but it also contains descriptions
of other biological functions such as transporters and pathways involved in the
cellular response to stress. KEGG has also defined KEGG orthologies (KO), which
are coupled to the pathways and defined based on orthologous groups of genes,

Table 1.2 Examples of data resources containing gene sets and biological networks.

Biological resource Type of gene sets Supported
organisms

References

Gene ontology terms Ontology Many [63, 64]
KEGG pathways Pathways Many [65]
Reactome pathways Pathways Only human [66]
Genome-scale metabolic
models (GEMs)

Subsystems/pathways,
metabolites

Limited [67]

Transcription factor binding Transcriptional regulation Many [68]
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that is, genes in different organisms with the same origin which are therefore likely
to share the same function. This makes the KEGG pathways applicable to a wide
range of evolutionarily distant organisms. From a KEGG pathway, gene sets can
be formed by considering all its associated genes defined in a specific organism. In
addition to KEGG, the Reactome database also can categorize human genes into
pathways [66].

1.4.1.3 Genome-Scale Metabolic Reconstructions
Genome-scale metabolic reconstructions (GENREs) are detailed descriptions of
a cell’s metabolism [70] containing genes, metabolites, and reactions. A reaction
normally represents a biochemical reaction that converts reactants to products,
and it can be catalyzed by one or more enzymes (either as a complex or as isoen-
zymes). The genome-scale reconstruction can be converted into a mathematical
model, called the genome-scale metabolic model (GEM), which can be used to
simulate the metabolism under different conditions. There are many genome-
scale metabolic models available, for many different species including human
[71], yeast [72], and the bacterium Escherichia coli [73]. A comprehensive list of
reconstructed GEMs for different species can be found at http://systemsbiology
.ucsd.edu/InSilicoOrganisms/OtherOrganisms [74] and http://biomet-toolbox
.org/index.php?page=models [75]. The interpretation of high-throughput data
using integrative analysis is an important application for GEMs. For human
metabolism, different types of omics data (e.g., transcriptomics, proteomics, and
metabolomics) have been integrated into a general metabolic network to create
tissue-specific models [76, 77]. There exist several tools for constraint-based
simulations of GEMs [78, 79]. However, in order to use the GEM as a scaffold
for integrative analysis and GSA, simulations are not necessary. Instead, the
topology of the metabolic network as described by the GEM can be used. Since
GEMs are detailed descriptions of the metabolism, the genes, metabolites, and
reactions can be divided into parts corresponding to different pathways and
model subsystems. Gene sets for the integrative analysis can then be created from
the associated genes [80]. Another way to form gene sets is to consider genes
that share a common metabolite in the metabolic network (either as a reactant
or product) [81]. For a review on omics data integration into GEMs, we refer the
reader to Hyduke et al. [82].

1.4.2
Gene Set Analysis

The general approach to GSA is to analyze gene sets based on the significance of
their associated genes. The process is demonstrated in Figure 1.4. A list of signif-
icant genes is obtained from the statistical analysis together with a gene-specific
measure of significance, typically a p-value. If information about the direction of
the effect is available (e.g., up- and downregulation of transcripts), it can also be
used together with the p-value as input to the GSA, which enables separate anal-
ysis of up and down responses. A gene set significance value is then derived based
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Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6

Feature ranking list

GSA

Gene set definition

Significant gene sets

Figure 1.4 Concept of gene set analysis
(GSA), which is the most common type of
integrative analysis. The input to the GSA is
a ranked list of significant genes identified
in the statistical analysis part of data pro-
cessing. During the GSA, each gene together

with its p-value is integrated into an a pri-
ori defined gene set. A significance score is
used to identify gene sets with biological
functions that are significantly enriched in
the gene list.

on the value of the score compared to a null model (e.g., a model assuming no
effects between the studied conditions). A wide range of methods for GSA have
been proposed applying different ways to calculate the gene set score and its sig-
nificance (Table 1.3) [91]. These methods can be divided into list-based methods,
which use a nonordered list of significant genes without any quantitative infor-
mation about their significance, and rank-based methods, which use all genes
analyzed in the experiment together with their respective p-values.

Table 1.3 Examples of methods for GSA.

Method Type References Online resources/
packages

Overenrichment test List-based [83] David, GOstats
Gene set enrichment
analysis (GSEA)

Rank-based [84] www.broadinstitute.org/gsea/

Combination of p-values Rank-based [85] Piano, www.biomet-toolbox.org/
Minimum
hypergeometric score
(GOrilla)

Rank-based [86] http://cbl-gorilla.cs.technion.ac.il/

GeneTrail List-based or
rank-based

[87] http://gene-trail.bioinf.uni-sb.de

Enrichr List-based [88] http://amp.pharm.mssm.edu/Enrichr/
SAFE Rank-based [89] https://www.bioconductor.org/packages/safe/
MaxMean statistics Rank-based [90] —
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1.4.2.1 Gene Set Overenrichment Tests

One of the most common ways of finding significant gene sets is to perform an
overenrichment test to assess whether there is an over-representation of genes
from the gene set among the set of significant genes. In its most basic form, the
enrichment test requires the user to provide a p-value cut-off to define which
features that are considered significant. Then, for each gene set, the proportion of
significant and nonsignificant features associated with the gene set is calculated
and, under the assumption of independence between genes, a gene-set-specific
p-value is derived from a hypergeometric distribution or by applying Fisher’s
exact test [92]. The resulting p-value describes the probability that an enrichment
at least as extreme as what is observed in the data happens purely due to chance.
Several tools that apply the overenrichment test are available, especially for GO
term overenrichment, such as the web-based tool DAVID [93], the Cytoscape
plugin BiNGO [94], and the R-package GO-stats [95]. Several generalizations of
the overrepresentation test have also be developed, for example, topGO, which
implements procedures that utilize the dependences from GO DAG to reduce
the false positive rate, and GO-Bayes, which improves the inference of each
gene set by incorporating prior information from functionally similar GO terms
[96–98].

1.4.2.2 Rank-Based Enrichment Tests

Rank-based methods take advantage of all genes analyzed in the experiments
together with their significance score (e.g., p-value or effect estimate); a user-
defined significance cut-off is thus not necessary. Rank-based methods make
therefore explicit use of the complete rank list, including both significant and
nonsignificant genes. The general approach of rank-based GSA is to calculate a
score for each gene set based on the significance scores of all its genes compared
to the significance scores of the genes that are not part of the gene set. A high
gene set score means that the genes in the gene set have, compared to the other
genes in the gene list, high significance scores and are thus enriched at the
top of the gene list. One of the first methods for rank-based GSA is the gene
set enrichment analysis (GSEA), which was first introduced by Mootha et al.
[99] and further refined by Subramanian et al. [84]. Mootha and coauthors
used GSEA for integrative analysis of the transcriptional response of human
muscle cells in diabetics, where they showed that the genes involved in oxidative
phosphorylation were coordinately downregulated relative to the controls. For
each gene set, GSEA calculates an enrichment score by walking down the ranked
gene list and summing the contribution of each gene. The contribution of each
gene is either positive or negative depending on whether it is a part of the gene
set or not. A enrichment p-value is derived based on the highest value of the
enrichment score using permutations of samples or genes [84].

Another way of obtaining the significance of a gene set is to combine the
p-values of the involved genes using Fisher’s method [100]. The p-values for all
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genes in the gene set are combined using the following formula:

X = −2
k∑

i=1
log(pi)

where pi are the individual p-values for each gene, and k is the number of genes
in the gene set. Under the assumption of independence, a gene set p-value can be
calculated from the chi-square distribution with 2k degrees of freedom. Stouffer’s
method is similar to Fisher’s but it first converts the p-values into Z-scores, which
are then summed into a gene set score: a corresponding gene set p-value can then
be calculated from the normal distribution. Fisher’s and Stouffer’s methods are
implemented in the R-package Piano [85], which can also be accessed as an online
resource at www.biomet-toolbox.org [101].

There are also several other online tools that can be used for GSA together with
both predefined and user-defined gene sets. For example, the web service GOrilla
(http://cbl-gorilla.cs.technion.ac.il/) [86] performs GSA based on a ranked list of
genes using a generalization of Fisher’s exact test and provides a visualization of
the significant gene sets in the GO structure. GeneTrail (http://genetrail.bioinf
.uni-sb.de/) employs a wide range of databases for defining the gene set and lets
the user choose between a hypergeometric list-based test or GSEA [87].

1.4.3
Networks and Network Topology

The gene-to-gene set relationships can also be considered as a biological network,
or a graph, where genes (nodes) are connected (with edges) if they share a com-
mon property or function. Biological networks play an important part in systems
biology and are often used to describe protein–protein interactions [102], inter-
actions between transcription factors and genes, and transcriptional coexpression
relations between genes. The organization and topology of many biological net-
works have been shown to follow a scale-free distribution, meaning that there are
both highly connected genes (“hubs”) and genes with only a few connections [103].
The genes that serve as hubs are often of primary importance in the system. By
constructing an interaction network from the omics data, or by integrating the
data to an existing network, the condition-specific properties of the system can
be identified. One important application is to find key components or highly con-
nected modules in the data, that is, genes or proteins that interact with a large
number of other components. This has, for example, been used to identify genes
crucial to the development of disease [104].

One way to identify network modules is to use unsupervised clustering to iden-
tify genes that are coexpressed or contain genetic variants in a large number of
samples. However, this approach does not take advantage of any a priori informa-
tion about the properties of the biological networks. Instead, modules can also be
identified using integrative analysis where data is integrated on top of a biologi-
cal network constructed from resources such as KEGG or GEMs. In contrast to
GSA, network-based integrative analysis provides information about important
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parts of the network instead of only finding significant sets of genes. Several dif-
ferent methods for identification of context-specific, highly connected modules
in biological networks have been developed. For example, the reporter subnet-
work algorithm [81] aims to find differentially expressed modules by converting
the p-values from transcriptomics experiments to Z-scores and overlay the scores
on top of a genome-scale metabolic model. ActiveModules [105] is a Cytoscape
[106] plugin that finds differentially expressed modules in protein–protein inter-
action networks or protein–DNA interaction networks, also by using Z-scores.
GiGa [107] is another Cytoscape plugin that uses the ranking list of individual
genes to find differentially expressed modules. We refer the reader to the papers
by Ideker and Krogan [108] and Kristensen et al. [109] for more complete reviews
of the available methods.

1.5
Outlook and Perspectives

The development of high-throughput techniques, in particular NGS, has resulted
in an explosion of biological information contained in biological databases.
Genome databases, such as GenBank (NCBI), have grown in terms of the number
of contained sequences, and in early 2015 GenBank reported that their database
contains genomic sequences from at least 300 000 species [110]. In addition to
submitted genomic sequences, other forms of experimental data are accumulat-
ing in various repositories. One example is the cancer genome atlas, TCGA [111],
which collects genomics, transcriptomics, proteomics data, and other types of
data relevant for the study of a wide range of cancer types. The development of
NGS techniques has also facilitated the study of new organisms by providing
cost-efficient approaches for de novo characterization of the genomes and
transcriptomes. As a consequence, model organisms can, in many situations, be
replaced by a more relevant nonmodel organism. Despite the many challenges in
storing and handling large amounts of data, the availability of high-throughput
data opens up new possibilities for researchers to gain new insights into their
fields. Systems biology, as a field where understanding of the biological system
is the main focus, provides the means to take advantage of the vast amount of
biological information that is currently generated. This makes integrative analysis
an increasingly important tool for data-driven biological and medical research,
which will provide biological interpretations to the rapidly accumulating volumes
of omics data.

The increasing amount of information and data available in public reposito-
ries leads to two important considerations when it comes to biological knowl-
edge retrieval and data mining. The first consideration is related to data reliability.
Gene sets for integrative analysis are constructed under the assumption that the
gene associations are true. It is therefore of essence that the databases used for
gene set construction are of high quality and provide information as error-free
as possible. Many databases ensure a low error rate through manual curation or
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by incorporating only components, annotations, and interactions that have been
experimentally verified. There are, however, also databases that have less strict
quality criteria and may contain putative interactions and hypothetical functional
information. For integrative analysis, it is of vital importance to use information
and associations that are as correct as possible. Otherwise, false relationships can
be introduced, which can result in erroneous interpretations and incorrect biolog-
ical conclusions. An important future challenge is therefore to grow the databases
by incorporating all the newly generated information and at the same time keep
and further improve the quality and veracity of the data.

The second consideration is the need for standardization of databases and their
content. Today, genes and other features may be associated with different types
of nomenclatures and therefore have different names in different databases. In
some cases, there are translations available between databases and nomenclatures,
meaning that, for example, the gene identifier in one database can be mapped to a
gene identifier from another database. However, if such translations are missing, it
is not possible to utilize a large part of the information that is available in databases
or to use the information as scaffolds in integrative analysis. This is also of impor-
tance when constructing GEMs where information of genes and reactions needs
to be extracted from multiple data sources. For genes, only a few model species
(e.g., human and yeast) have adapted universally accepted nomenclatures. Simi-
larly, for small molecules, such as metabolites, there is no standard naming, but
chemical identifiers such as ChEBI [112] or INCHI codes [113] are often used
to identify metabolites, which can be useful when comparing or merging sev-
eral different models. Thus, increased standardization of molecular databases is
crucial to ensure easy and painless access of biological information and, hence,
efficient integrative analysis of omics data in as many types of biological systems as
possible.
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