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Abstract
RNA-seq is a methodology for RNA profiling based on next-generation sequencing that enables to measure and
compare gene expression patterns at unprecedented resolution. Although the appealing features of this technique
have promoted its application to a wide panel of transcriptomics studies, the fast-evolving nature of experimental
protocols and computational tools challenges the definition of a unified RNA-seq analysis pipeline. In this review,
focused on the study of differential gene expression with RNA-seq, we go through the main steps of data processing
and discuss open challenges and possible solutions.
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INTRODUCTION
In every living organism, DNA encodes the whole

information needed to determine all the properties

and functions of each single cell. From this blueprint,

cells can dynamically access and translate specific

instructions through ‘gene expression’, namely, by

selectively switching on and off a particular set of

genes. The information encoded in the selected

genes is transcribed into RNA molecules, which in

turn can be translated into proteins or can be directly

used to finely control gene expression. Thus, the set

of RNAs transcribed in a certain condition and time

reflects the current state of a cell and can reveal

pathological mechanisms underlying diseases. More

interestingly, the study of differential gene expres-

sion enables the comparison of gene expression

profiles from different tissues and conditions to iden-

tify genes that play a major role in the determination

of the phenotype. For instance, the comparison of

healthy versus diseased tissues can provide new

insights over the genetic variables involved in

pathology.

In recent years, RNA-seq [1], a methodology for

RNA profiling based on next-generation sequencing

(NGS) [2], is replacing microarrays for the study of

gene expression. The sequencing framework of

RNA-seq enables to investigate at high resolution

all the RNAs present in a sample, characterizing

their sequences and quantifying their abundances at

the same time. In practice, millions of short strings,

called ‘reads’, are sequenced from random positions

of the input RNAs. These reads can then be com-

putationally mapped on a reference genome to reveal

a ‘transcriptional map’, where the number of reads

aligned to each gene gives a measure of its level of

expression.

The powerful features of RNA-seq, such as high

resolution and broad dynamic range, have boosted

an unprecedented progress of transcriptomics

research, producing an impressive amount of data

worldwide. To support this exponential growth

and to deal with the different steps of data analysis,

several computational tools have been developed and

updated at a fast pace. Nevertheless, the analysis
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scheme depicted above, which might seem simple at

first glance, is in fact far more complex and consists in

several processing steps.

In this review, we describe the current RNA-seq

analysis framework, focusing on each computational

step from read preprocessing to differential expres-

sion (DE) analysis. We review some of the most

promising methodologies available, along with their

underlying algorithmic strategies and mathematical

models, and identify the research topics that require

further investigation. We believe this work can

provide a broad overview of RNA-seq analysis and

can guide users to define and implement their own

processing pipeline. Moreover, the dissection of the

most challenging aspects of data analysis can help

users to select the best methods depending on the

characteristics of the specific study, considering both

the driving biological question and the actual data

features.

INVESTIGATING GENE
EXPRESSIONWITH RNA-SEQ
The transcriptome is the whole set of RNAs

transcribed from the genes of a cell. As discussed

above, their relative abundances reflect the level

of expression of the corresponding genes, for a spe-

cific developmental stage or physiological condition.

Although RNAs are not the final products of the

transcription–translation process, the study of gene

expression and differential gene expression can

unveil important aspects about the cell states under

investigation.

In past years, hybridization-based approaches such

as microarrays, were the most used solutions for gene

expression profiling and DE analysis, thanks to their

high throughput and relatively low costs [3]. These

technologies consist in an array of probes, whose

sequences represent particular regions of the genes

to be monitored. The sample under investigation is

washed over the array, and RNAs are free to hybrid-

ize to the probes with a complementary sequence. A

fluorescent is used to label the RNAs, so that image

acquisition of the whole array enables the quantifi-

cation of the expressed genes. Although widely used

in quantitative transcriptomics, these techniques have

several limitations [3, 4]:

� reliance on prior knowledge about the genome for

probe design;

� possibility to monitor only some portions of the

known genes and not the actual sequences of all

transcribed RNAs;

� high background levels due to cross-hybridization,

i.e. imperfect hybridization between quasi-

complementary sequences;

� limited dynamic range due to background noise

and signal saturation;

� need for normalization to compare data from dif-

ferent arrays.

The advent of NGS has revolutionized transcrip-

tomics and quickly established RNA-seq as the

preferred methodology for the study of gene expres-

sion [3, 5]. The standard workflow of an RNA-seq

experiment is described in the following. The RNAs

in the sample of interest are initially fragmented and

reverse-transcribed into complementary DNAs

(cDNAs). The obtained cDNAs are then amplified

and subjected to NGS. In principle, all NGS

technologies can be used for RNA-seq,

even though the Illumina sequencer (http://www.

illumina.com) is now the most commonly used

solution [6]. The millions of short reads generated

can then be mapped on a reference genome and the

number of reads aligned to each gene, called

‘counts’, gives a digital measure of gene expression

levels in the sample under investigation.

Although RNA-Seq is still under active

development, it is now widely used in place of

microarrays to measure and compare gene transcrip-

tion levels because it offers several key advantages

over hybridization-based technologies [3–5, 7–9],

such as:

� reconstruction of known and novel transcripts at

single-base level;

� broad dynamic range, not limited by signal

saturation;

� high levels of reproducibility.

The flexibility enabled by single-base resolution

probably represents the most powerful feature, as

it allows the quantification and sequencing of all the

transcripts present in a sample. Compared with micro-

arrays, that can only assay portions of transcripts cor-

responding to probes, RNA-seq leverages on

the sequencing framework to overcome the pure

quantification task, enabling new applications,

such as transcriptome profiling of non-model

organisms [10, 11], novel transcripts discovery [12],
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investigation of RNA editing [13, 14] and quantifica-

tion of allele-specific gene expression [15].

Despite all these newsworthy features and appar-

ently easy scheme of data analysis, RNA-seq studies

produce large and complex data sets, whose

interpretation is not straightforward [16, 17]. Data

analysis is further challenged by technical issues inher-

ent to the specific NGS technology, such as sequen-

cing errors in the output reads due to miscalled bases

[2], or to biases introduced by the different steps of

the RNA-seq protocol, such as amplification, frag-

mentation and reverse-transcription [18–20]. In

particular, protocol-specific bias may under- or

over-represent specific loci leading to biased results,

thus necessitating careful data quality control and nor-

malization. The latter issue is described in details in the

‘Count bias and normalization’ section. Nevertheless,

if a well-annotated reference genome or transcrip-

tome is available and if the aim of an RNA-seq

study is the detection of DE genes, a basic data pro-

cessing pipeline consists in the following steps: (i) read

mapping, (ii) counts computation, (iii) counts

normalization and (iv) detection of differentially ex-

pressed genes (Figure 1). More sophisticated pipelines

can be tailored on the specific need by considering the

addition of pre- and post-processing modules to be

used before and after read mapping.

ALGORITHMS FORREAD
MAPPING
The first computational step of the RNA-seq data

analysis pipeline is read mapping: reads are aligned to

a reference genome or transcriptome by identifying

gene regions that match read sequences. So far, many

alignment tools have been proposed [21, 22]. In all

cases, the mapping process starts by building an index

of either the reference genome or the reads, which is

then used to quickly retrieve the set of positions in

the reference sequence where the reads are more

likely to align. Once this subset of possible mapping

locations has been identified, alignment is performed

in these candidate regions with slower and more

sensitive algorithms [21, 23]. The available mapping

tools can be divided into two main categories based

on the methodology used to build the index: hash

tables or Burrows–Wheeler transform (BWT)

(reviewed in [24]).

The hash table is a common data structure for

indexing complex data sets so to facilitate rapid

string searching. Mapping tools can build hash

tables either on the set of input reads or on the

reference, considering all subsequences of a certain

length k (k-mers) contained in the considered

sequences. In the hash table, the key of each entry

is a k-mer, while the value is the list of all positions in

the reference where the k-mer was found. The two

solutions have different advantages and drawbacks

[21, 23]. For instance, building hash tables of the

reference requires constant memory, for a given ref-

erence and parameter set, regardless of the size of the

input read data. Conversely, building hash tables of

reads typically requires variable but smaller memory

footprint, depending on the number and complexity

of the read set. However, this latter solution may

require longer processing time to scan the entire ref-

erence sequence when searching for hits, even if the

input read set is small, and is not suited for parallel-

ization [21].

BWT [25] is a reversible string rearrangement that

encodes the genome into a more compact represen-

tation, leveraging on redundancy of repeated subse-

quences. Methods based on BWT create an index of

the BWT, called ‘FM-index’, that can be used to per-

form fast string searching in a reduced domain of

available subsequences, without scanning the whole

genome [26]. The combination of BWT and FM-

index ensures both limited memory and space occu-

pancy, but requires longer computational time for

index construction than hash-based methods.

However, since the index has to be constructed

only once for a given reference and precomputed

indexes for several model genomes are already avail-

able, this aspect has minimum impact on the total

computational time. Conversely, the strategy used

to extend the first partial high-quality hits identified

thanks to hash- or BWT-based indexes into full-read

alignments has a major impact on algorithm perform-

ance. Usually, hash-based algorithms implement a

‘seed-and-extend’ approach [24] leveraging on a

bounded version of the Smith–Waterman (SW) algo-

rithm [27]. BWT-based solutions sample substrings of

the reference using the FM-index and then accom-

modate inexact matches by tolerating some mis-

matches, up to a certain threshold [27]. BWT

implementations, which were developed for short

(<50 nt) read alignment, impose very stringent con-

straints on inexact matches, which make them much

faster than hash-based approaches, but less sensitive

[21, 28]. As NGS technologies are producing increas-

ingly longer reads (>100 nt), mapping tools are im-

plementing hybrid solutions, which exploit the
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efficiency of BWT and ‘FM-index’ for seeding and

then perform alignment extension with SW-like

algorithms [29–33].

Besides the specific indexing and string-

matching approach implemented, differences in

mapping solutions can be due to algorithmic

strategies and heuristics specifically implemented to

map reads:

� having no perfect matches with the reference;

� obtained with paired-end sequencing;

� generated from exon–exon junctions.

Owing to the presence of sequencing errors

in NGS data, mapping algorithms must allow imper-

fect alignments. By tolerating a certain number of

mismatches, they are able to increase the percentage

of mapped reads [21]. The available tools implement

very different mismatch policies but, in general, allow

the user specifying customized parameter settings.

However, the mismatch policy strongly impacts on

both mapping accuracy and computational perform-

ance, and the definition of its best configuration is not

trivial [21, 22].

Besides systematic errors, the sequenced organism

can present true single-nucleotide polymorphisms

(SNPs), which result in nucleotidic differences

between the reads and the reference. The flexibil-

ity/stringency given by the mismatch policy adopted

is thus important to correctly map these reads, as

reads having one or more SNPs have a lower

probability of being mapped [28].

Figure 1: DE analysis from RNA-seq data: computational steps and main methodological challenges.
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In addition to SNPs, reads can contain small

insertions or deletions (indels). Algorithms that do

not perform gapped alignment often fail to align

reads containing indels [34]. Early NGS read

mapping tools avoided or limited gaps in the

alignment because of the computational complexity

of choosing an indel location, but more recent soft-

ware versions accommodate gapped alignment.

Algorithms that do not perform gapped alignment

have lower mapping accuracy, resulting in a signifi-

cant reduction of the number of correctly mapped

reads in correspondence of regions surrounding

indels [35].

Another difference comes from the ability to map

paired-end reads. Unlike conventional single-end

sequencing, which can read only one end of each

DNA fragment, paired-end protocols enable to se-

quence both ends, generating two reads per frag-

ment. The information about the expected distance

of the reads sequenced from these two ends, esti-

mated from the distribution of fragment lengths,

can be exploited to increase mapping or assembly

accuracy. Paired-end reads are particularly useful to

solve repeats, as they can cover long genomic regions

(up to 20 kb), possibly extending into univocally

determined sequences flanking the repeated ones.

Moreover, they can be particularly useful for the

identification of alternatively spliced isoforms and

for the detection of fusion transcripts in cancer

samples [36]. However, if an RNA-seq study is

more focused on the quantification of (differential)

gene expression than on the reconstruction of the

exact transcript sequences, particular attention must

be paid to ensure that the strategy for paired-end

reads mapping is not too stringent, as it may result

in a reduced number of mapped reads [21] and pos-

sibly in biased expression estimates.

Unlike tools for genome-sequencing data

mapping, algorithms developed for RNA-seq may

have to handle ‘spliced reads’. Splicing is a post-

transcriptional modification underwent by most of

RNAs transcribed in eukaryotic organisms. During

splicing, non-coding regions (introns) are removed

and coding sequences (exons) are concatenated

together. Although the order of exons is always pre-

served, some exons can be removed along with

introns, giving rise to different RNAs. This process,

called ‘alternative splicing’, enables to produce

different protein isoforms starting from the same

gene. Thus, RNAs in eukaryotes can give rise to

spliced reads that span exon–exon junctions and

that cannot be directly mapped onto the genome,

where exons are separated by introns. To map

these spliced reads back to the genome, algorithms

for RNA-seq data analysis must handle spliced align-

ment (Figure 2A). Generally, simple gapped

alignment is not sufficient to account for introns

because they can span a wide range of lengths [34].

To align spliced reads, many tools implement a two-

step procedure: first, reads are mapped to the

genome and used to identify putative exons; then,

candidate exons are used to build all possible exon–

exon junctions, which are considered for mapping

the spliced reads that failed to map in the first step

(e.g. [37, 38]).

Despite attempted in several works, the assess-

ment and comparison of mapping algorithms,

especially for RNA-seq reads, is not straightforward

[17, 22, 39]. Ideally, the perfect algorithm would

find, for each read, its true genomic source.

However, the presence of sequencing errors, repeats

and genetic variants, greatly increases uncertainty in

read mapping and even challenges the definition of

‘correct mapping’ [21]. Moreover, the different

features of the input data and the possibility to

greatly change the parameter settings add further

variability to the results [21]. In this scenario, it is

impossible to identify the best tool, but the top per-

formers have to be selected with respect to the spe-

cific application and input data, depending on the

biological question under consideration [16, 21].

For instance, aligners that are suited for transcript

quantification, might not be precise enough to

study SNPs or RNA editing events.

COUNTS:THE DIGITALMEASURE
OF GENE EXPRESSION
After mapping, the reads aligned to each coding unit,

such as exon, transcript or gene, are used to compute

counts, so to give an estimate of its expression level.

The most used approach for computing counts con-

siders the total number of reads overlapping the

exons of a gene. However, even in well-annotated

organisms, a fraction of reads map outside the

boundaries of known exons [40]. Thus, an alterna-

tive strategy considers the whole length of a gene,

also counting reads from introns. Moreover, if

correctly handled in the mapping step, spliced reads

can be used to model the abundance of different

splicing isoforms of a gene [41, 42]. Particular atten-

tion should be paid to genes with overlapping
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sequence. The ‘Union-Intersection gene’ model

considers, for each gene, the union of the exonic

bases that do not overlap with the exons of other

genes [9]. Htseq-count implements instead a more

flexible approach, which lets the user selecting the

desired model for read counting in the presence of

overlapping features [43]. Unlike the methods

described so far, ‘maxcounts’ approach does not

compute the sum of aligned reads, but estimates

the expression level of each exon or single-isoform

transcript as the maximum read coverage reached

along its sequence [44]. This approach can be easily

used for RNA-seq studies on prokaryotes, where

transcripts are not subjected to splicing, while re-

quires further research to define transcription

models in eukaryotes that can be used for combining

‘maxcounts’, computed at exon level, into a measure

of gene or transcript expression. Although the final

strategy has the potential to significantly change

expression estimates, limited research has been

carried out to assess and compare the available

approaches [16].

As explained above, quantification of gene

expression from RNA-seq data is typically imple-

mented in the analysis pipeline through two

computational steps: alignment of reads to a refer-

ence genome or transcriptome, and subsequent

estimation of gene and isoform abundances based

on aligned reads. Unfortunately, the reads generated

by the most used RNA-Seq technologies are gener-

ally much shorter than the transcripts from which

they are sampled. As a consequence, in the presence

of transcripts with similar sequences, it is not always

possible to uniquely assign short reads to a specific

gene. In particular, the human genome contains

duplicated and paralogous genes with high sequence

similarity, and interspersed or tandem repeats that

are likely to produce similar or identical short reads

[38, 45, 46]. Thus, NGS data arising from repeated

regions have to be handled properly in order not to

bias the results [46–48]. RNA splicing makes

transcriptome reconstruction even more challenging,

as it generates alternatively spliced isoforms of the

same gene that share a large part of their sequence

and can be hardly assigned to one specific isoform. As

a consequence, a non-negligible fraction of

RNA-seq reads are ‘multireads’: reads that map

with comparable fidelity on multiple positions of

the reference. The fraction of multireads over total

mapped reads depends on transcriptome complexity

Figure 2: Examples of RNA-seq issues. (A) Spliced-reads mapping. Sequenced transcripts can produce spliced
reads, generated in correspondence of exon^ exon junctions. To be correctly mapped on the genome, where exons
are separated by introns, spliced reads must be broken into shorter strings. (B) Length bias. Longer genes are
more likely to generate more reads than shorter ones with similar expression levels. (C) Differences in library size
composition. Example of a count data set where samples A and B have the same number of reads (dB¼ dA), but dif-
ferent library compositions. The first 99 genes have the same counts in each sample (40 and 50 in sample A and B,
respectively). In sample B, the reads available for most of the genes are ‘consumed’ by gene 100, which has very
high expression. Library sizes can be computed excluding gene 100, to reflect the real sequencing state available
for most of the genes in sample B (dB¼ 0.8dA).
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and read length, varying from 10 to >50% [38, 45].

When considering reads mapping on multiple

isoforms of the same gene, this percentage exceeds

70% [45].

One of the first strategies proposed for handling

gene multireads was that of simply discarding them,

so to estimate gene expression considering only

uniquely mapping reads [1, 49]. Owing to the

likelihood of assigning multireads to the wrong

genomic location, introducing further bias in the

results, multireads filtering is a commonly used

approach in the analysis of RNA-seq and NGS

data in general [46]. However, in RNA-seq studies,

where the aim is both the reconstruction of

transcripts sequences and the quantification of their

relative abundances, discarding multireads causes an

information loss and a systematic underestimation of

expression levels in correspondence of repetitive re-

gions. An alternative strategy reduces data loss by

allocating multireads considering the coverage

given by uniquely mapping reads and obtains expres-

sion estimates that are in better agreement with

microarrays [8]. Ji et al. propose a more sophisticated

approach that takes also into account the mismatch

profiles between the unique reads and the sequence

of the genomic locations they are aligned to [50].

Their method called BM-Map, calculates the pos-

terior probability of mapping each multiread to a

genomic location considering three sources of infor-

mation: the sequencing error profile, the likelihood

of true polymorphisms and the expression level of

competing genomic locations. Conversely, the ‘pro-

portional’ method described above only considers

the latter information. The mismatch profile is also

taken into consideration by MMSEQ [45], which

estimates both isoform expression and allelic

imbalance, namely expression differences between

different alleles of the same gene or isoform. A

two-step alignment procedure is used to reduce the

uncertainty in read mapping. First, mismatch profiles

are used to build a sample-specific transcriptome

whose genotype can be different from that of the

reference sequence. Then, once the reference

transcriptome is updated considering the genotype,

reads are realigned to estimate isoform expressions

and allelic imbalance. More recent methods, such

as RSEM, define a probabilistic model of

RNA-Seq data and calculate maximum likelihood

estimates of isoform expression levels using the

Expectation-Maximization algorithm [38, 51]. True

mappings are identified leveraging on the

information provided by the distribution of sequen-

cing errors, fragment lengths and read coverage

across transcripts, modeled as random variables and

estimated from the data.

COUNT BIASAND
NORMALIZATION
After the first optimistic expectation of a relative ease

of analysis of RNA-seq data [3], many works have

highlighted the need for a careful normalization

of count data before assessing differential gene ex-

pression [9, 52–56] to correct for different sources of

bias.

The first bias to be taken into account is the

‘sequencing depth’ of a sample, defined as the total

number of sequenced or mapped reads. Let A and B
being two RNA-seq experiments with no differen-

tially expressed genes. If experiment A generates

twice as much reads as experiment B, it is likely

that the counts from experiment A will be doubled

too. Hence, a common practice is that of scaling

counts in each experiment j by the sequencing

depth dj estimated for that sample. In early works

dj was computed by counting the total number of

reads sequenced or mapped in sample j (global scal-

ing) [8, 49]. More recent approaches consider counts

depending on the whole RNA population of the

sequenced sample [57–59]. For instance, if there is

a set of highly expressed genes in a sample, it will

inevitably ‘consume’ the available reads, so that the

expression level of the remaining genes will be

underestimated [58]. A similar issue may result

from the presence of contaminants. When a re-

stricted set of highly-expressed genes accounts for

the largest part of total counts, as happens in most

of RNA-seq assays, global scaling techniques only

capture and correct for differences related to these

high-count genes (Figure 2B) [9, 59]. Bullard et al.
propose a quantile normalization similar to that

used for microarray preprocessing [60] and an alter-

native global scaling that adjusts counts distributions

with respect to their third quartile, so to reduce the

effect of high-counts genes [9]. More generally,

slightly different normalizations can be defined

by selecting different count quantiles [61].

Robinson and Oshlack et al. [58] propose the

‘Trimmed Mean of M-values’ (TMM) normalization

to account for differences in library composition

between samples. To reduce bias due to high-

count genes, TMM is computed removing the
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30% of genes that are characterized by the most

extreme ‘M-values’ (i.e. log-fold-changes) for the

compared samples. This normalization factor is then

used to correct for differences in library sizes. Li et al.
[59] propose a novel normalization method that as-

sumes a Poisson model of counts and estimates the

sequencing depth on a set of genes that are not

differentially expressed. A Poisson goodness-of-fit

statistic is used to determine which genes belong

to this restricted set. In the R package ‘DESeq’ [62],

the ratios between gene-wise counts in each sample j
and the geometric mean of gene-wise counts across all

samples are calculated, and the library size is computed

as the median of these ratios across genes. Different

studies (e.g., [44, 61]) indicated TMM and ‘DESeq’

methods as the most effective approaches for library

size normalization. However, if the common assump-

tion that the compared samples contain similar

amount of RNA does not hold, count normalization

methods are ineffective, and calibration techniques

leveraging on spike-in RNA measurements can be

used [63].

RNA-seq counts also show a gene length bias: the

expected number of reads mapped on a gene is

proportional to both the abundance and length of

the isoforms transcribed from that gene. Indeed,

longer genes produce more reads than shorter ones

(Figure 2C), resulting in higher power for DE

detection [9, 16, 64]. To reduce this bias,

Mortazavi et al. [8] propose to summarize mapped

reads as ‘Reads Per Kilobase of exon model per

Million mapped reads’ (RPKM), computed dividing

the number of reads aligned to gene exons by the

total number of mapped reads and by the sum of

exonic bases. An analogous measure is given by

‘Fragments Per Kilobase of exon per Million frag-

ments mapped’ (FPKM) [41], which account also for

paired-end data and estimate transcript abundances in

terms of expected number of fragments, from which

single-end and paired-end reads arise in a RNA-seq

experiment. RPKM and FPKM are defined so to

reduce both differences in library size and length

bias. Other methods estimate and correct the

dependence of counts on gene length and other

sequence-specific covariates, such as GC-content

and dinucleotide composition, using quantile regres-

sion [52, 65] and generalized linear models [66]. In

DE analysis, as methods that correct counts for

length bias can introduce additional biases [9, 44,

56, 61], normalizations that apply to DE test statistics

while leaving gene counts unchanged have been

proposed [9, 64]. Differently from all the above

described methods, ‘maxcounts’, which do not

count the reads along exons or transcripts but

select the best represented regions in terms of cover-

age, strongly reduce length bias before

normalization [44].

Gene-specific covariates do not suffice to explain

counts variability [44], which has been shown to vary

greatly along gene sequences. The uneven distribu-

tion of reads along gene and transcript sequences are

due to mapping errors and, primarily, to experimen-

tal biases. For instance, fragmentation methods based

on restriction enzymes present sequence-specific

efficiency [19]. Moreover, reverse-transcription can

either over- or under-represent 30 end of transcripts

if performed with poly-dT oligomers or random

hexamers, respectively [1, 3, 19]. More generally,

RNAs and cDNAs can form secondary structures

that depend on their primary sequences and that

can either hamper or facilitate the binding of

reverse-transcription primers and sequencing adap-

ters [55]. Since the first RNA-seq experiment [1],

several changes in library preparations and sequen-

cing protocols have been introduced to reduce bias

(e.g. postponing reverse transcription after fragmen-

tation), but non-uniformity of read coverage remains

an issue of state-of-the-art sequencing technologies

[20]. Li et al. [55] call this sequence-specific bias

‘sequencing preference’: different regions of the

same transcript can generate different amount of

reads depending on their local nucleotidic sequence,

which determines their ‘sequenceability’. They

model read counts as Poisson variables with variable

rates along transcripts and perform an iterative

Poisson linear regression to fit the data. They also

use multiple additive regression trees (MART) to

capture non-linear relationships between counts

and local sequences. The models are fitted using

the top 100 genes with the highest expression

levels and used to predict the sequencing preference

of the remaining genes. This approach allows ex-

plaining up to �50% of data variance due to cover-

age non-uniformity and predicting sequencing

preferences that can be used in quantitative analysis

of RNA-seq data to improve gene expression

estimates.

DE ANALYSIS
In recent years, a fervent research has characterized

the RNA-seq field and many different tools for DE
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detection have been developed [67–69]. At its sim-

plest, methods for DE detection rely on a test statistic,

used to identify which genes are characterized by

a statistical significant change in gene expression

in the compared conditions. In principle,

non-parametric methods can be used (e.g. [70,

71]). However, because of the small number of rep-

licates typically available in RNA-Seq experiments,

non-parametric methods usually do not offer enough

detection power, and parametric methods are pre-

ferred [67, 72]. Each parametric method assumes a

specific model to describe the underlying distribution

of count data, and seeks to identify the genes whose

differences between the tested conditions exceed the

variability predicted by the model. The models

considered and implemented in most of the analysis

tools are based on the Poisson and Negative

Binomial (NB) distributions. In the following, we

present a statistical description of the parameteriza-

tion of RNA-seq count data and a more general

summary of state-of-the-art approaches for DE

analysis in RNA-seq studies. However, because of

the high number of tools available, here we specif-

ically focus on few interesting and well-characterized

data modeling approaches implemented in recently

developed methods.

Models of RNA-seq count data
Let f ¼ 1; . . . ;F be the set of transcripts in the

sample of interest j. For each transcript f in sample

j, let lf be its length and yf j its expression level. All

the positions within f that can give rise to a read, i.e.

all possible read starts, are given by yf jlf . Therefore,

the probability that a read comes from some

transcript f in sample j, can be computed, similarly

to [73], as

pfj ¼
yf jlfPF
f¼1 yf jlf

ð1Þ

According to [73], the sequencing process can be

modeled as a simple random sampling, in which

every read is sampled independently and uniformly

from sample j. Under this hypothesis, the number

of reads arising from transcript f , namely counts,

can be modeled as a random variable Nf j following

a binomial distribution. Indeed, read sampling can be

viewed as a Bernoulli’s process, a random experiment

with only two possible outcomes: ‘success’, when the

read is sequenced from transcript f , and ‘failure’,

when the read is sequenced from another transcript.

If Rj is the number of reads sequenced in sample j,

the random variable giving the number of successful

events in Rj independent trails is given by the

binomial distribution where the ‘success’ event has

probability pf j and the ‘failure’ event has probability

1� pf j, that is

Nf j � BðRj; pf jÞ ð2Þ

As Rj � 106 and pf j � 1;this distribution can be

approximated by a Poisson distribution with param-

eter �f j ¼ Rj � pf j:

Nf j � Pð�f jÞ ð3Þ

The �f j parameter of the Poisson model corresponds

to both the mean mf and the variance of the distribu-

tion. It has been demonstrated that the Poisson dis-

tribution captures the variability between RNA-Seq

technical replicates sequenced in different lanes or

flow-cells [9, 49, 74, 75]. In this case, we can assume

�f j ¼ �f for all j, considering that j ¼ 1; . . . ; J are

technical replicates of the same sample. However, in

the presence of biological replicates, i.e. when j ¼ 1;
. . . ; J represents different biological samples belong-

ing to the same experimental condition (e.g. differ-

ent cell cultures), the expression of transcript f is

not the same across different biological replicates

and the resulting �f j is a random variable, with

mean mf and variance varð�f jÞ. Thus, RNA-seq

counts are affected by two sources of variation:

� ‘Technical variation’, due to the measurement

error due to the adopted technology.

� ‘Biological variation’, representing the variability

among samples belonging to the same treatment

group or condition.

As a consequence, for biological replicates the

variance is larger than the mean, and count data

are said to be ‘over-dispersed’ [74–76]. In this case,

the Poisson distribution cannot handle this additional

variability, and models based on the NB distribution

are preferred [62, 74–76]. If �f j is modeled with a

Gamma distribution, the marginal probability

distribution of counts is Negative Binomial, with

mean mf and variance that depends on the chosen

parametrization of varð�f jÞ [76].

If varð�f jÞ ¼ fm2
f , then

varðNf jÞ ¼ mf ð1þ fmf Þ ð4Þ

More generally, if varð�f jÞ ¼ fmaf , then

varðNf jÞ ¼ mf ð1þ fma�1
f Þ: ð5Þ
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The most used NB-based model of RNA-seq

counts is that of Equation (4), with two parameters

f and mf :

Nf j � NB mf ;f
� �

: ð6Þ

The ‘overdispersion’ parameter f of Equations (4)

and (5) accounts for the variance that is not explained

by the Poisson model. When f ¼ 0, the NB model

reduces to the Poisson distribution. In summary,

the NB distribution can be motivated as a Gamma

mixture of Poisson distributions: the technical vari-

ability is Poisson, but the Poisson means differ

between biological replicates according to a

Gamma distribution.

Tools for DE analysis of RNA-seq data
Given a specific statistical model of RNA-seq count

data, all parametric tools for DE analysis consist in

two main steps: estimation of model parameters from

data and detection of DE genes with a test statistics.

Library normalization can also be considered part of

DE analysis [68], as it is implemented within all DE

tools, despite with different approaches. So far, sev-

eral studies have been focused on DE methods com-

parison [67–69, 72, 76–79], but a consensus on

methods performance is challenged by the lack of

gold-standard measures and by frequent tools up-

dates, with several versions released each year [67,

72]. However, some findings are widely confirmed

across different studies, such as the superior perform-

ance of NB-based methods over their Poisson-based

counterparts [68, 74, 76–79].

The higher performance of NB-based tools is

mainly because of their ability to capture biological

variability. As discussed above, this variability is due

to the stochastic nature of gene expression (i.e. some

genes have more variable levels of expression than

others), and is thus gene-specific and independent

from the adopted technology [80]. Owing to the

small sample-size that generally characterizes RNA-

seq data sets, gene-wise estimation of f cannot be

performed and different strategies are used to fit the

data. edgeR [81] and DESeq [82], which are among

the best performers in most of the comparative stu-

dies cited above, are both based on the NB model of

Equation (4), but implement different strategies for

dispersion estimation. The default strategy imple-

mented in edgeR shrinks gene-wise dispersion esti-

mates toward a common value. Alternatively, edgeR

can compute a ‘trend’ estimate across genes in place

of a single value. DESeq considers the variance being

a smooth function of the mean mf and uses non-

parametric regression to fit the variance as a function

of the mean. Another approach, implemented in

NBPseq [76], considers the model with three

parameters described by Equation (5); f and a are

considered constant across genes and estimated

jointly. Nevertheless, this approach does not outper-

form DESeq and edgeR [72].

More recently, Law et al. proposed to apply

‘limma’ [83], a method developed for microarrays

and based on the normal distribution, to analyze

RNA-seq data [78]. The underlying idea is that cor-

rectly modeling data mean–variance relationship is

more important than exactly specifying the probabil-

istic count distribution. In their approach, called

‘limma voom’, the mean–variance relationship is

estimated from data through lowess fit and used to

estimate gene-wise variances. For each gene, the

inverse of the variance is then used as weight in

the ‘limma’ framework. Applied to RNA-seq data,

‘limma voom’ performs comparably with top-

ranking NB-based approaches [67, 78]. Even

though further assessments are needed to finally

select the best approach for DE analysis from

RNA-seq data, the promising results obtained with

this strategy may enable to exploit a wide panel of

methods developed for microarrays.

CONCLUSIONS
RNA-seq has rapidly become the method of choice

for the study of differential gene expression, as it

enables the investigation and comparison of gene

expression levels at unprecedented resolution.

However, turning huge and complex RNA-seq

data sets into biologically meaningful findings is not

trivial. The interpretation of RNA-seq data requires

the definition of a computational pipeline that com-

prises several steps: read mapping, count computa-

tion, normalization and testing for differential gene

expression. Here, we reviewed some of the most

used methodologies and models implementing

these processing steps and discussed the main chal-

lenges of data analysis. We believe this review can

guide users to define an accurate analysis pipeline.

RNA sequencing is evolving at a fast pace and

emerging ‘Third-Generation’ technologies now

enable single-molecule sequencing [84]; computa-

tional tools themselves are chasing this development

to accommodate changes in the data features, and the
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assessment and comparison of state-of-the-art meth-

ods must be constantly performed to implement an

updated RNA-seq computational pipeline.

However, some issues raised in this work, such as

the impact of read mapping heuristics and count nor-

malization, can be considered of broad interest, and

should be carefully taken into consideration for all

RNA-seq data analyses, independently from data

features.

Key points

� RNA-seq is a novel methodology based on NGS that enables to
investigate differential gene expression at high resolution.
However, data interpretation is not straightforward and re-
quires several analysis steps: readmapping, counts computation,
counts normalization and DE testing.

� Tools for readmapping provide different solutions depending on
the specific algorithm and heuristics implemented. Particular
caremustbe taken to handle readsmapping onmultiple genomic
locations to estimate correct gene expression levels even in the
presence of high-similarity sequences.

� In RNA-seq studies, gene expression levels are measured by
counts, i.e. by the number of readsmapped on each gene.

� Counts often depend on gene- and sample-specific covariates,
such as gene length and library size, respectively. Between-
sample differences in library size must be necessarily corrected
before comparing samples to detect differentially expressed
genes. Conversely, correction of gene-specific covariates is not
mandatory and must be performed carefully to avoid informa-
tion loss.

� DE analysis canbe testedwith parametricmethodsbased on the
Poisson or NB distribution. NB models are preferred, as they
capture both technical and biological variability.
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