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POINTS OF SIGNIFICANCE

Clustering
Clustering finds patterns in data—whether they are 
there or not.

Many biological analyses involve partitioning samples or variables 
into clusters on the basis of similarity or its converse, distance. 
For example, in a gene expression study, we might seek subsets of 
patients with similar expression, or take a complementary approach 
and identify similarly expressed genes across patients. Clustering is a 
type of unsupervised learning comprising many different methods1. 
Here we will focus on two common methods: hierarchical cluster-
ing2, which can use any similarity measure, and k-means clustering3, 
which uses Euclidean or correlation distance.

Fundamentally, all clustering methods apply the same approach. 
First, we calculate similarity and then use it to group objects (e.g., 
samples) into clusters. However, the clustering output is useful only 
if the clusters correspond to the data’s biologically relevant features 
that were not used to define the grouping. To judge clusters’ validity, 
we need external information; clusters are not known in advance. 
For example, our confidence in the validity of our clusters increas-
es if patients in each cluster share a phenotype, or if genes in each 
cluster share a sequence motif; but confidence increases only if this 
information was not used to assess similarity in the first place.

Let’s look at how similarity can be calculated. Suppose we have 
expression profiles for five genes, A-E, across n = 15 patients, and 
we want to compare these profiles to a reference profile (Fig. 1). 
A visual assessment may be misleading. The difference in expres-
sion relative to the reference is smaller for gene B than for gene A, 
for example, and this might make us think that the gene B profile 
is more similar to the reference than the gene A profile. However, 

gene B has a completely different pattern of expression (constant) 
than that of the reference, while gene A has the same pattern as the 
reference but with an offset. 

While there are many ways to calculate the similarity of two such 
profiles, including subjective measures, we use the common geo-
metric notion of Euclidian distance expressed as the root mean 
square (r.m.s.; Fig. 1a). This quantity includes a factor of 1/√n to 
avoid dependency solely on n, such as for profiles that differ by only 
a constant offset. Similarity can be expressed as |c – r.m.s.| (where c 
is some constant such as the maximum distance between objects), so 
that objects with distance c or greater have zero similarity.

Practically, similarity in expression should be based on varying 
regulation and not absolute abundance. To emphasize regulation, 
we can center the expression values by subtracting the profile’s mean 
from each of its expression values (Fig. 1b). To focus on the pattern 
rather than magnitude of regulation, one can first convert profiles 
to z-scores, which give the variation from the mean in units of s.d. 
(Fig. 1c). The r.m.s. between z-score profiles is 1 – r, where r is the 
correlation of the profiles—those perfectly correlated have r.m.s. = 
0. Distance may be defined as 1 – |r| to cluster genes with opposing 
regulation, such as gene D, which is perfectly negatively correlated 
with the reference (Fig. 1c). When using correlation distance, it is 
common to filter out samples with very low variance, where the pat-
tern may be due to chance.

Once we have the similarity between objects, we group them into 
clusters. In hierarchical clustering, the nodes start off as objects and 
are then iteratively merged on the basis of pairwise distance (Fig. 2a). 
There are many ways of calculating this distance, but the most com-
mon methods are complete linkage clustering and single linkage 
clustering, which return the maximum or minimum, respectively, 
of all pairwise distances of objects between nodes. The clustering is 
typically depicted by a dendrogram, where the height of the branches 
is either the step at which the nodes were merged or the distance 
between them (Fig. 2b). Clusters are formed by partitioning of the 
dendrogram—for example, by cutting it at a fixed height and con-
sidering each of the resulting subtrees as a cluster. Membership in 
clusters depends on both the cutoff and similarity measures (Fig. 3). 
Alternatively, clusters can be made with selective cuts informed by 
underlying biology to find visually pleasing groups.

When comparing two dendrograms, take into account that the 
order of branches in a dendrogram is arbitrary. Nodes that are near 
each other (e.g., profiles D5 and E5 in Fig. 3b) may lose their spatial 
adjacency with a single branch flip.

In contrast to hierarchical clustering, k-means clustering requires 
that we first choose the number of clusters, k. In Figure 4a we illus-
trate this process using k = 3 and a simulated two-dimensional 
data set with points randomly placed in three adjoining areas (gray 

Figure 1 | Similarity measures between expression profiles across n = 15 
patients (dots) of five putative genes (blue) and a reference (gray).  
(a) Absolute expression profiles of genes A–E generated by various 
transformations from the reference. Their similarity to the reference is shown 
as the Euclidian distance expressed as root mean square (r.m.s.). Gene C is 
most similar to the reference (r.m.s. = 0.76), followed by gene B (r.m.s. = 
1.52). (b) Profiles from a centered on their means and corresponding r.m.s. 
Gene A and reference profiles now overlap (r.m.s. = 0), and the similarity 
of gene E to the reference has decreased to be the same as that of gene C 
(r.m.s. = 0.76). (c) Profiles from a transformed into z-scores. Gene B has no 
profile because the z-score is undefined when no variation is present.

Figure 2 | Complete linkage clustering of five objects. (a) Pairwise distances 
(step 1) are used to merge objects (steps 2–4) where the maximum of all 
pairwise distances is used. At each merging step, the shortest distance is 
chosen (blue). (b) A dendrogram with a vertical axis showing the distance 
between merged nodes. To create clusters, one can cut the tree at a fixed 
height (dashed line). 
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exploration of the cluster quality as a function of the number of 
clusters may be performed. Another approach is to plot the objects 
in each cluster (Fig. 3) to determine how variable the objects (e.g., 
expression profiles) are and whether there are clusters that have very 
similar profiles and so should be merged.

Clustering methods always find clusters, even if there are no 
natural clusters in the data. Ultimately, clusters should be judged 
by the criterion of utility for biological discovery. We should 
always ask whether the objects in a cluster have traits in common 
that were not used to inform the clustering. This question can 
be used to address the quality of clustering—if we cluster gene 
expression according to multiple conditions, we might deem 
more reliable those clusters whose samples share a condition. 
Alternatively, clusters can help researchers explore data and gen-
erate hypotheses—a cluster of objects without obvious similarity 
might suggest the existence of gene networks, subclasses of dis-
eases, or geographic genetic variability. In these cases, care must 
be taken to provide additional information to substantiate any 
claims about the clusters that have been found.
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 circles). The algorithm begins by selecting k data points as ‘centroids’ 
(open circles). In our case these are randomly selected points from 
the data set, but they may also be randomly generated within the 
range of the data. In the first step, the similarity between each point 
and each centroid is computed—typically on the basis of  Euclidian 
or correlation distance—and points are grouped with the nearest 
centroid (colored lines). Subsequently, the position of each centroid 
is recalculated on the basis of the objects assigned to it, and object 
assignment is repeated with the new centroid positions. These steps 
are repeated until the centroids and clusters no longer change.

Cluster quality may be checked using the within-cluster simi-
larity (ideally, high) and between-cluster similarity (ideally, low).
Unless the clusters are well separated, with high within-cluster 
similarity and low between-cluster similarity, different cluster-
ing methods will create different clustering of the same data even 
when the same measure of similarity is used. Within-cluster simi-
larity tends to be favored as a quality measure because clusters 
may have arbitrary boundaries and may not be well separated4. 

When the method does not always converge to the same solu-
tion, such as for k-means (whose output depends on the choice of 
centroids), within-cluster similarity can be used to rate different  
solutions (Fig. 4b). For example, in our simulation of 10,000 trials, 
the most frequently seen solution (Fig. 4c, d = 39.0) is not the one 
with the lowest distance (Fig. 4a, d = 38.4). When clusters are spa-
tially compact balls around the center of the node (Fig. 4c), k-means 
behaves like complete linkage clustering. Solutions in which some 
or all clusters are stringy (Fig. 4e–g) are similar to output of single 
linkage clustering. In our example data set, the clusters are not well 
separated, and this is reflected in solutions that do not reconstruct 
the original grouping of points (Fig. 4e–g).  

Determining the number of clusters is a difficult problem. 
Typically the number of clusters is not known in advance, and so 

Figure 4 | Simulation of 10,000 trials of k-means clustering with k = 3 of 
35 points (black), of which 20, 10, and 5 were centered on each of the 
gray circles, respectively, and spatially distributed normally within the 
circle with s.d. half of the circle radius. Centroids are indicated by colored 
hollow points; initial centroids were randomly selected points from the data 
set. (a) Evolution of a trial that results in the lowest total within-cluster 
distance, d = 38.4. With each iteration, d generally drops. Points are shown 
connected to and colored by their assigned centroid. (b) Histogram of the 
total within-cluster distance for 10,000 trials. The lowest d = 38.4 solution 
(a) was found in 1,236 (12%) of trials. Bar labels indicate figure panels in 
which the solution is shown. (c,d) Two most common solutions, their d and 
frequency observed. (e,f) Examples of solutions whose clusters do not follow 
the original grouping of points. (g) Solution with largest d.

Figure 3 | Dendrograms of hierarchical clustering of gene expression profiles 
based on correlation distance. The data were generated by creating core 
profiles A1, B1, C1, D1, and E1 with correlation values of 0.7, 0.5, 0, -0.5, 
and -0.7 (respectively) with the reference profile R from Figure 1. For each 
core profile (e.g., A1), four additional highly correlated random profiles were 
generated (e.g., A2-A5). Profiles are colored by group and clusters formed 
by cutting at a fixed height (dashed line). (a) Complete linkage clustering 
tends to create balanced dendrograms by first clustering objects into small 
nodes and then clustering the nodes. (b) Single linkage clustering tends to 
create stringy dendrograms by first creating a few nodes and then adding 
objects to them one at a time.
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