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Repetition

• Next generation sequencing (NGS) has 
revolutionized the life sciences and has decreased 
the cost more than 100,000-fold.

• Common platforms include massively parallel 
pyrosequencing (454), Illumina, PacBio and 
Nanopore

• Important applications include genome 
sequencing, genome resequencing, transcriptomics 
(RNA-seq) and metagenomics





Todays agenda

• A closer look at the data from next generation 
sequencing (NGS)

• Challenges in the analysis of NGS data
• Errors patterns and data formats (FASTA and 

FASTQ)
• Preprocessing of NGS data: quality and filtering
• Genome sequencing



NGS data is highly fragmented!

• Next generation sequencing data is often highly 
fragmented

• Short read fragments are between 50-300 
nucleotides. A single read will thus only partly 
cover a gene/exon/intron

• The reads are randomly selected from the input 
DNA

• Multiple reads are often necessary to full describe 
a genomic region of interest



NGS data is massive!

Example: Sequencing of a human genome

• Size of the genome: 3.2 gigabases (3.2×109)
• Genome needs to be covered several times to avoid 

errors (often 50 times).

Data size: At least 160 gigabases (160×109 data 
points)

• Next generation sequencing generates large 
volumes of data!



NGS data is dirty!

• NGS is error prone and contains many forms of 
errors:

• Substitutions
• Insertions/deletions
• Duplicated reads

• The type of error depend on the sequencing 
chemistry. Different sequencing platforms 
therefore produce different forms of errors.

• The errors needs to be identified and removed 
before the data can be trusted.



Common errors: substitutions

GGCGCTGGACTCTACAGCAGATGTGGAACTGGAGA        
CGCTGGGCTCTACATCAG

GGACTCTACAGCAGATGTGG
GACTCTACAGCAGATGTGGA

TCTACATCAGATGTGGAA
CAGCAGATGTGGAACTGGAG

Correct sequence

Sequence reads



Common errors: Insertions and 
deletions (‘indels’)

CTTCATAAGCTAGATGCCAGTTAA-CTGTCGAGAGG
CTAGATG-CAGTTAA-CTGTC  
AGATGCCAGTTAAACTGTCGA

ATGCCAGTTAA-CTGTCGAGA
TGCCAGTTAA-CTGTCGAGAG
TGCCAGT-AA-CTGTCGAGAG

Correct sequence

Sequence reads



Common errors: duplicates

• Duplicates are caused by sequencing the same DNA 
fragment multiple times. These reads all come from 
the same DNA molecule and does not describe the 
true diversity in the sample.

• Duplicates typically caused by biases in the 
amplification steps where certain DNA fragments 
are amplified with higher efficiency. More 
amplification often means more duplicates.

• In many applications, duplicates are important to 
remove to avoid incorrect and misleading results.



Image from 
http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/802/index.php?manual=Remove_duplicate_m
apped_reads.html



Common errors: adapter 
contamination
• Most sequencing platforms adds adapters to the 

ends of the reads 
• Typically one of the adapters are sequenced and 

needs to be removed before analysis.
• However, if the DNA fragment is too short, the 

sequencing process can start to also sequence a 
part of the other adapter.

A B

Sequencing



Errors in Illumina data

• Illumina sequencing has a error rate up to 1%.
• Error rate for substitutions: 0.1-1%
• Error rate for indels: 0.01%

• The error rate is dependent on
• The position on the read. The probability for an error increase 

for each sequenced base pair
• The genomic context. T has a higher error rate than A, C and 

G. GC-rich patterns, such as GGX has a higher error rate.
• In paired-end sequencing, the first read has a lower error rate 

then the second read.

• Duplicates can also be common in Illumina data if the 
sample preparation is not done properly (or if the 
starting material is limited).



Errors in Illumina data: 
substitutions in the first read

Schirmer et al, Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data, BMC Bioinformatics 17:125 2016.



Errors in Illumina data: 
substitutions in the second read

Schirmer et al, Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data, BMC Bioinformatics 17:125 2016.



Errors in Illumina data - insertions

Schirmer et al, Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data, BMC Bioinformatics 17:125 2016.



Errors in Illumina data - deletions

Schirmer et al, Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data, BMC Bioinformatics 17:125 2016.



Site specific errors (SSE)

Schirmer et al, Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data, BMC Bioinformatics 17:125 2016.



Schirmer et al, Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data, BMC Bioinformatics 17:125 2016.







Errors in PacBio data
• The error rate in PacBio data is high, up to 15%
• The errors should not be dependent on context and  

uniformly distributed over the read
• Sequencing the same region many times is 

therefore an efficient way to remove errors in 
PacBio data

Zhang et al, PaSS: a sequence simulator for PacBio sequencing, BMC Bioinformatics 20:352 2019.



Analysis of NGS data

• Identifies erroneous reads and base pairs
• Cleans data by remove errors
• Important to ensure a correct down-stream analysis

Pre-processing is the first step used to ‘clean’ NGS data

Pre-processing Data analysis
Raw

sequence
data

Results



Data formats for NGS data

• FASTA is the standard format for storing DNA 
sequences (.fasta, .fa, .fna)

• Text-based and ‘human readable’
• Many programming languages has parsers for 

FASTA files.
• Can also be used to store peptide sequences.
• FASTQ is similar to FASTA but contains also a quality 

score for each nucleotide (.fastq, .fq).



Representation of sequence data –
the FASTA file
>M00283:44:000000000-A52U8:1:1101:14152:2164 1:N:0:10
GTATANCCTGCTGATGAACAACGACAGCCTGTTACNGNNNNNNNACCATTCACTNACAAT
GGCGGTGTTTTTGGCGACGTTTGCTACGCCTTTCCGTTCACTGACGGCAGTTTCGCNNNN
NCGTTATCGCTTTCGNNNNNNNCCGGTCGTTAGCGGAATGCTGNTTNNNGTGTTGATGTC
ACNAAATATCGTAATGGCGCNNTNNCAGCGTGTGCTGTTTATNCTGCTTGGTATTCAACC
TGGCTTCTGGT
>M00283:44:000000000-A52U8:1:1101:18996:2165 1:N:0:10
ACAAANATGGCACAGGCGATAAAAAGCACCGCAAACANNNNCNNCATGCCGTACTGATCC
CAGATACGCCCGAAGCTGAATGACGACTTAGGTGCGCCAGAACCCGATGTAGAAACNNNN
NACATCATACTCTCCNNNNNNNGGCAACTGCCTGGCTGACTTTNGGNNNCGCAAGGCTCA
GTNCCTGACGCTCATCTGCCNGCNNGTGTAACAATTCACCGGNGATTTCGCCTTCCCGCA
TCACCACAATC
>M00283:44:000000000-A52U8:1:1101:14478:2166 1:N:0:10
CGCATNATGTATTGATAACCGCGTTGGGTCAGCTCCGNNNNGNNCGCTCCCGGCGAGATC
ATCAGAATACCTTCGTCTTCATAGATATCTGATGCAGGTTGGGTAGAGGAGGAACANNNN
NGCCCAATAACGTATNNNNNNNCGTCGTTAACGATTTTGTTGGNGANNNCAACGGCTTGT
TTNGGGTCGCAGGCGTCGTCNTANNCCACGCCAACCAGTTTANCGCCCTTAATTCCCCCT
TTGGCATTAAT
>M00283:44:000000000-A52U8:1:1101:13779:2176 1:N:0:10
TGCTGNAAACGTGGTGTACCGGCTGTCCGGTATGTATNNNNTNGTGGTGAATAATGCCCC
CGAACAGGCAGAGGACGCCGGGCCTGCAGAGCCTGTTTCTGCGGGAAAGTGTTCGACNNT
NAGCTGAGTTTTGCCNNNNNNNTGGCGCGTGAGATGGGGCGACCCGANNGGCGTGCCATG
CTNGCCGGGATGTCATCCACGGAGTATGCCGACTGGCACCGCNTTTACAGTACCCATTAT
TTTCATGATGT

1

2

3

4

Read name

Read 
sequence



IUPAC DNA codes
IUPAC nucleotide code Base
A Adenine
C Cytosine
G Guanine
T (or U) Thymine (or Uracil)
R A or G
Y C or T
S G or C
W A or T
K G or T
M A or C
B C or G or T
D A or G or T
H A or C or T
V A or C or G
N any base
. or - gap



Representation of sequence data –
the FASTQ file

@M00283:44:000000000-A52U8:1:1101:12571:2232 1:N:0:1
ACGACCAGAACGACCGCGCAACTGGCTATCGATACGACGGGATTCGTGACGCACGGTACCGATGATATGCAGGCCACCTGCTTCCA
GTACCGCATCGTGACGTACCTGCCAGTCGGCTTTAATTTTTTCAATTTGCTCTGCGGTCGGATTTTCCAGCGCGGCAACTTCTGCC
TGCCAGCTACCACCGAGCACAATATCTGTACCACGACCCGCCATATTGGTCGCGATAGTCACCGCATCCGGATACCCTG
+
A?A1ADDFFFFAA100AAAA/EGFB/BFAF///F///AA/E/?01/B/0F/>/>E/??EFE///FD22FGBGGECFC<F0FE1FG1
GFDBDA/BCCCFA0?CFGHGHH0<1?F1C-CEGB<1<<BD0CH00=DGB00<=0C?C:@C--9ABFFFFEF-A@@@-9EFEFFFFF
B/FF//:B//-/BEF-9---BFB///:999/;9BB-@-@9@@?-/99BFF/-----:9;/99BF@---/:-9--/;//-
@M00283:44:000000000-A52U8:1:1101:13922:2234 1:N:0:1
AACGGCACGGTAACCTGACGCCGCAGGAAGCTATTTTCCAGGCCTGTCTGCTGCGTTTTCGCCCGATTATGATGACTACCCTGGCG
GCGCTGTTTGGCGCGCTGCCGCTGGTGTTGTCGGGCGGTGACGGCTCGGAGCTGCGGCAACCCCTGGGGATCACCATTGTCGGCGG
ACTGGTAATGAGCCAGCTCCTTACGCTGTATACCACGCCGGTGGTGTATCTCTTTTTCGACCGTCTGCGGCTGCGTTTT
+
BCCCBCCCCCCBGGGGGGGGGGGGGGGGHHHHHHHHHHHHHHHGGGGHHHHHHHGEGGGHGGGGGGGGGHHHHHHHHHHHHFFHGE
GGGGGGGHHHGHGGGGGCGHGFGGGFFHGHHHGGGGGGGGGGGGDDGBFDFFFFFFFFFAFFFFEFFEFFFFFFFFFFFFFFFFFF
@FA.EFFFFEFFFFFFEBFFFFFFFFFDAFFFFFBFFFEFD@-DAEEFFFFFFFFFFFCEFFFAA.AF-@DDBEFD.@E
@M00283:44:000000000-A52U8:1:1101:16240:2234 1:N:0:1
TCACTTTCGCCTCAATATGAACCTCACCACGATCGTTAAAGATCCTGACTTTATCGCCGTTGTTGATACCGCGTTTTTGCGCATCA
AGCGGGTTGATCCACATTTCCTGACGGCAAGCTGCTTTCAGCACATCAACGTTGCCGTAAGTTGAGTGAACGCGAGATTTATAGTG
GAAACCCGTAAGCTGCAGCGGATACTGTTTGTTCAGCGGATCCTGATAACTTTCAAAGCCCGGCGTGTAGATCGGCAGG
+
BBBBBB4DABBBGFGGGGGGGGHHHHHGHH2AFHGGGHGFGHHFHGHHGGEFHHHHGDGGGGGEHBFGHHGGGEEGGFFG?EGGGH
FHGDC@<FEEFHHGFGHHGGFHF3FE?CF/FCCCGHFHHHG1GGFGFHBG<FGGGHC<?EAHHFFHHFDGH.CCDGCC0CHB00CG
.FFGF?DDGCFGBBFFF9C9---AFFFFFEBBFFFFBDF@-@FFFFBFFFFFFFE9;;FFFA;DFFF;BFFBF.9BD--

1

2

3

Read name
Read sequence

Sequence quality score



Quality scores (PHRED scores)
Describes the probability of errors. If a base i has an 
error probability p the quality score q is given by

If a base i has a quality score q the error probability is 
given by



Quality scores (PHRED scores)

Error
probability (p)

Accuracy Quality score 
(q)

0.25 75% 6
10-1 90% 10
10-2 99% 20
10-3 99.9% 30
10-4 99.99% 40



Quality scores (PHRED scores)
The quality score are encoded to save disk space. 

Examples
Quality score 2 gives ‘#’. Quality score 20 gives ‘5’
Quality score 37 gives ‘F’. 

Encoding rule
33+quality score 



Pre-processing - FASTQC



Pre-processing - FASTQC



Pre-processing - FASTQC
• The second read in pair-end sequencing has often a 

lower quality.

Pair 1 Pair 2



Pre-processing: Removal of 
sequencing errors

• Three main approaches
• Filtering: completely remove bad reads
• Trimming: remove problematic parts of the reads
• Correcting (‘denoising’): correct errors encountered in 

the reads

• Other forms of errors can also be corrected
• Adapter contamination
• Removal of read duplicates



Pre-processing: Filtering

• The overall score of a read is calculated. Reads with 
an overall score below a threshold are removed.

• Common threshold:
• Minimum score over the read (or a proportion of the 

read)
• Average score over the read
• Minimum score over a ‘sliding window’ (e.g. 50 bp)

• Many reads have only a low quality in certain 
regions. Filtering of reads may therefore throw 
away good data.



Pre-processing: Trimming
• Removal of regions that are bad
• Trimming is almost always done from the end of 

the read
• The read is trimmed until a quality level is achieved

Quality
threshold



Pre-processing of NGS data - FASTX

• FASTX is a tool kit for preprocessing of NGS data

Filtering with FASTX
> fastq_quality_filter -Q33 -q 15 -p 90 

-i input.fastq -o output.fastq

Trimming with FASTX
>  fastq_quality_trimmer  -Q33 -t 25 -l 50

-i input.fastq -o output.fastq

Remove reads with a score 
less 20 for 90% or more
nucleotides.

Trim reads until the score is at least
15. Remove trimmed reads if they
are shorter than 50 nucleotides.



Pre-processing - FASTQC
Before pre-processing. 1548467 reads.



Pre-processing of NGS data - FASTX
After filtering. Quality score >15 over 90% of the 
reads. 958404 reads left (61.9% left).



Pre-processing of NGS data - FASTX
After filtering. Quality score >30 over 90% of the 
reads. 643922 reads left (41.6% left).



Pre-processing of NGS data - FASTX
After filtering. Quality score >15 over 90% of the 
reads. 958404 reads left (61.9% left).



Pre-processing of NGS data - FASTX
After trimming from the end until quality score >25. 
Trimmed reads shorter than 50 nucleotides were 
removed. 958320 (<0.01% removed).



Error scores are far from perfect

• Many sequencing errors in Illumina data have a 
high score!

• For substitutions, >50% of the errors have a high 
error score (>30)

• For indels, >10% of the errors have a high error 
score

• Pre-processing of data is thus not a guarantee that 
the data is error free!



Pre-processing – further remarks

• There are a lot of different software and tools for 
pre-processing of NGS data.

• Read Österlund et al 2017 and Wang pages 76-86 
for more information.



Summary: pre-processing

• NGS data contains a lot of errors and needs to be 
pre-processed to remove incorrect reads and bases

• The pre-processing is based on the quality score, 
which estimates the probability that a specific 
nucleotide is incorrect

• Common pre-processing approaches are filtering 
and trimming of reads

• There is a trade-off between data volume and 
quality. The stricter the we filter/trim, the more 
reads will be discarded but the pre-processed data 
will have a higher quality.


