
Lecture 6
Introduction to bioinformatics (MVE510)

Autumn 2020

Additional reading: Mapping reads on a genomic sequence: an algorithmic
overview and a practical comparative analysis. Schbath S, Martin V, Zytnicki
M, Fayolle J, Loux V, and Gibrat JF. Journal of Computational Biology, 19(6)
2012.

Repetition

• The Needleman-Wunsch algorithm can be used to
find global alignments. The best alignment is
identified by iteratively fill a alignment matrix and
backtrack from the highest value.

• The Smith-Waterman algorithm can be find local
alignments. The best alignment is found similarly to
the NW algorithm but where all negative values has
been replaced by zeros and the alignment can start
and end at any positions.

Repetition

• BLAST uses a ‘seed-and-extend’ algorithm to
efficiently calculate local alignments. This makes it
50 times fast than Smith-Waterman.

• BLAST is however still to slow to efficiently map
reads from next generation sequencing to a
reference.

The BLAST algorithm (Basic Local
Alignment Search Tool)

Is BLAST fast enough?
No! Next generation DNA sequencing produce too
many reads (50x faster than SW is not enough!).

Can we further improve the speed?
Yes, but we need some additional concepts from
computer science!

What is an index?

• An index is a data structure that enable fast lookup
of keys

• In our case the data structure will built form the
reference sequence and key our query sequence

• Many form of indices assume that the reference is
long (e.g. a genome) and the query sequence is
short (e.g. a NGS read)

• Once the index is built, we can use it to lookup to
find where specific read match the reference.

• We will focus on exact matches but it is also
possible to include mismatches and gaps.

Index-based read search

AGCC AGATACCCTGAGAGAGCCATTA

Naive search

Query Reference

Slow: O(LRLG)

AGCC AGATACCCTGAGAGAGCCATTA

Query Reference

Fast!

Index-based search

Index

Suffix trees

• Are highly efficient to find exact matches in a
sequence. The complexity is

O(LR)
for each read.

• Note that LG is gone (!!!). The size of the reference
does no longer matter!

Suffix trees
BUT…. (there is no free lunch!)
• Building the suffix trees takes time (O(LG)) but we

only need to do this once.
• Suffix trees are very large. The suffix tree for the

entire human genome is so large that it can not be
stored in the memory of a standard computers.

• If we want to include mismatches and gaps, the
complexity increases fast!

Example

Suffixes Position

GAGAGGCAGC$ 1

AGAGGCAGC$ 2

GAGGCAGC$ 3

AGGCAGC$ 4

GGCAGC$ 5

GCAGC$ 6

CAGC$ 7

AGC$ 8

GC$ 9

C$ 10

$ 11

Reference: GAGAGGCAGC$

Example

Sorted suffixes Sorted position

AGAGGCAGC$ 2

AGC$ 8

AGGCAGC$ 4

CAGC$ 7

C$ 10

GAGAGGCAGC$ 1

GAGGCAGC$ 3

GCAGC$ 6

GC$ 9

GGCAGC$ 5

$ 11

Reference: GAGAGGCAGC$

Example

Sorted suffixes Sorted position Cylinder suffix array BW-transform

AGAGGCAGC$ 2 AGAGGCAGC$G G

AGC$ 8 AGC$GAGAGGC C

AGGCAGC$ 4 AGGCAGC$GAG G

CAGC$ 7 CAGC$GAGAGG G

C$ 10 C$GAGAGGCAG G

GAGAGGCAGC$ 1 GAGAGGCAGC$ $

GAGGCAGC$ 3 GAGGCAGC$GA A

GCAGC$ 6 GCAGC$GAGAG G

GC$ 9 GC$GAGAGGCA A

GGCAGC$ 5 GGCAGC$GAGA A

$ 11 $GAGAGGCAGC C

Reference: GAGAGGCAGC$

$
G
A
A
C
C
T

A
A
C
C
G
T
$

1 2
$A
GA
AC
AC
CG
CT
T$

4
AC
AC
CG
CT
GA
T$
$A

3 5
$AC
GAC
ACG
ACT
CGA
CT$
T$A

6
ACG
ACT
CGA
CT$
GAC
T$A
$AC

$ACG
GACT
ACGA
ACT$
CGAC
CT$A
T$AC

ACGA
ACT$
CGAC
CT$A
GACT
T$AC
$ACG

7 8
$ACGA
GACT$
ACGAC
ACT$A
CGACT
CT$AC
T$ACG

9 10
ACGAC
ACT$A
CGACT
CT$AC
GACT$
T$ACG
$ACGA

11
$ACGAC
GACT$A
ACGACT
ACT$AC
CGACT$
CT$ACG
T$ACGA

ACGACT
ACT$AC
CGACT$
CT$ACG
GACT$A
T$ACGA
$ACGAC

12
$ACGACT
GACT$AC
ACGACT$
ACT$ACG
CGACT$A
CT$ACGA
T$ACGAC

13
ACGACT$
ACT$ACG
CGACT$A
CT$ACGA
GACT$AC
T$ACGAC
$ACGACT

14

Example

BW-transform Sorted BW-transform Sorted position

G A 2

C A 8

G A 4

G C 7

G C 10

$ G 1

A G 3

G G 6

A G 9

A G 5

C $ 11

Use the BW-transform to find GCAG in GAGAGGCAGC$.

1

2

3

No match

Example

BW-transform Sorted BW-transform Sorted position

G A 2

C A 8

G A 4

G C 7

G C 10

$ G 1

A G 3

G G 6

A G 9

A G 5

C $ 11

Use the BW-transform to find GCAG in GAGAGGCAGC$.

1

2

3

1

No match

No match

Example

BW-transform Sorted BW-transform Sorted position

G A 2

C A 8

G A 4

G C 7

G C 10

$ G 1

A G 3

G G 6

A G 9

A G 5

C $ 11

Use the BW-transform to find GCAG in GAGAGGCAGC$.

1

Example

BW-transform Sorted BW-transform Sorted position

G A 2

C A 8

G A 4

G C 7

G C 10

$ G 1

A G 3

G G 6

A G 9

A G 5

C $ 11

Use the BW-transform to find GCAG in GAGAGGCAGC$.

Example

BW-transform Sorted BW-transform Sorted position

G A 2

C A 8

G A 4

G C 7

G C 10

$ G 1

A G 3

G G 6

A G 9

A G 5

C $ 11

Use the BW-transform to find GAGC in GAGAGGCAGC$.

Example

BW-transform Sorted BW-transform Sorted position

G A 2

C A 8

G A 4

G C 7

G C 10

$ G 1

A G 3

G G 6

A G 9

A G 5

C $ 11

Use the BW-transform to find GAGC in GAGAGGCAGC$.

No match

No match

The Borrows-Wheeler Aligner
(BWA)
• Based on seed-and-extend approach.
• Seeds are identified using suffix arrays and the

Burrows-Wheeler transform.
• Seeds are extended into full alignments using more

accurate algorithms.
• Optimized for large volumes of reads from next

generation DNA sequencing.
• You will use this aligner in the computer exercises.

Choosing a suitable aligner

Sensitivity

Co
m

pu
ta

tio
na

l C
os

t

Smith-Waterman

BLAST

Suffix arrays and BW-
transforms

Choosing a suitable aligner

Smith-Waterman
Slow but highly sensitive.
Software: FASTA and EMBOSS.

Seed and extend
Faster but have reduced sensitivity.
Software: BLAST

Choosing a suitable aligner

Suffix-array and Burrow-Wheeler transform
Very fast, low sensitivity. But often suitable for
mapping sequence read to a reference.
Software: BWA

Summary of this lecture

• An index is a data structure that enables fast lookup
of exact matches in a DNA sequence.

• Suffix trees are crated from the suffixes of a DNA
sequence. By traversing the tree we can find the
position of any subsequence.

• The Burrows-Wheeler transform orders the
genome in a specific way that makes identification
of subsequences highly efficient.

Summary of this lecture

• Read alignment using suffix arrays and the
Burrows-Wheeler transform are as fast as a suffix
tree but does not require the entire tree to be
created and stored in memory.

