Lecture 4

Introduction to bioinformatics (MVE510)
Autumn 2020

Additional reading: A beginner's guide to SNP calling from high-throughput
DNA-sequencing data. Altmann A, Weber P, Bader D, Preuss M, Binder EB,
and Muller-Myhsok B. Human Genetics, 131(10) 2012.



Repetition

* Errors are common in DNA sequence data. The
error patterns depends on the underlying
chemistry.

* [[lumina has a high error rate for substitutions and
a low error rate for indels. GC-rich regions has the
highest error rate.

* Pre-processing aims to remove reads and bases
that are not of sufficient quality.

* Filtering and trimming are two common ways to do
pre-processing.



Todays agenda: genome
sequencing

* Genome evolutions — SNPs, indels and structural
variation

* Analysis of data from genome sequencing

* Coverage, quality refinement, score recallibration
* SNP calling

* A naive approach
* The GATK unified genotyper

* Introduction to computer exercise 2



Genome evolution

* The genome of an organism is evolved through
random mutations

* For humans and many other multicellular organism
mutations can be either germline or somatic

* Germline mutations
* Inherited from the parents
e Passed to the offspring (present in germ cells)

e Somatic
e Mutations that are not inherited
* Not passed to the offspring



Genome evolution — SNPs and
indels

* Single nucleotide polymorphisms (SNPs) are
substitutions affecting a single nucleotide position

e If aSNP is in a coding region and results in an
amino acid change it is called non-synonymous
otherwise it is called synonymous

* Indels are insertion or deletions affecting one or a
few nucleotides

* Indels can result in frameshifts which can impair a
complete gene



Example of SNPs and indels

Single nucleotide polymorphisms (SNPs)

GGGTAAG

Genomel AGTATAGTAJGLEGTACAJT
CEGTACAJAGGGTAAG

Genome 2 AGTATAGTAG

Insertions and deltions (indels)

Genomel CGATAGGTATTI-RCCCAGAJCCCLTGT
Genome 2 CGATAGGTATTINTACCCAGAQ—---LCTGT




Frame shifts

M L vV V D P P G
Before indel AGATGCTGGTGGTCGATCCGCCGGGA

M L C G R S A G
After indel AGATGCTG I GTGGTCGATCCGCCGGG




Genome evolution — structural
variants

Copy number variation (CNV)
* A chromosomal region that is duplicated or deleted

e Can be caused by many mechanisms including
impaired DNA replications mechanisms (e.g. in
cancer)

* Used by e.g. bacteria to regulate gene expression —
more copies of a genes means higher expression

* Important in evolution: the genes in the new region
can evolve into completely novel biochemical
functions (neofunctionalization)



Genome evolution

Deletion

Genome 1

Genome 2

Duplication

Genome 1
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Genome evolution - structural
variants

Chromosomal rearrangements

* A chromosomal region that has been removed and
inserted at another place in the genome

* Can be caused by e.g. impaired DNA replication
mechanisms

* Also important in evolution. Can give rise to fusion
genes i.e. two different genes that have been fused
together. If functional, the new product can
benifitial or harmful



Genome evolution

Genome 1

Genome 2

Genome 1
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The frequency of mutations varies

Haploid organisms (e.g. bacteria and many single
cell eukaryotes)

* One copy of the chromosome: Mutations are
present (100% of the DNA) or absent (0% of the
DNA

Diploid organisms (e.g. humans)

* Two copies of the chromosome: Mutations are
present (100%, homozygous), present in one
chromosomal copy (50%, heterozygous) or absent
(0%) of the DNA




The frequency of mutations varies

Polyploid organisms (>2 copies)

* Many copies of the chromosome: A wide range of
mutation frequencies are possible (Fern has for
example 630 chromosome copies!!)

Note that germline mutations are present in all the
cells while somatic mutations are present in a subset
of the cells. In a sample with many cells, somatic
mutations has thus typically a lower frequency.



Genome sequencing

* Aims to characterize DNA in an organism to study

the presence of mutations

* The process is reference-based where the DNA is

compared against a reference sequence.

A.g.(sq -
oy

DNA from an
organism of interest

NGS sequencer

ACGATAGGTACGATGTACGTAGGATACGATAGAGCTAGTGATAGATAAG ACGATAGGTACGATGTACGTAGGATACGATAGAGCTAGTGATAGATAAG

GTACGATGTA GTACGATGTA

GTACGTACGA GTACGTACGA
ATAGAGCTAG
GCTAGTGATA

ATGTACGTAC ATGTACGTAC

Identification of differences Sequence comparison
(variant calling) (alignment)

C@EATACGATA CGATACGATA

ACGATAGGTACGAT
AGTACGGTACGTAC
GTGACAGGTTTTAC
CCCGGATATCCATT
AAATTTAACGAATA
CGATAAAGTAATAA

Reads

J



Genome sequencing: before you
start

A few important considerations

* What should we sequence? Whole genome, whole
exome, set (‘panel’) of genes, a single gene.

 What mutations are we looking for? Germline,
somatic or both?

* What sequencing technique should we use? What
coverage do we need?

e What is a suitable reference?



Genome sequencing
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Genome sequencing: read
mapping

* Aims to identify where each sequence read match
the reference genome
* Chromosome and position
e Strand

e Take differences between the reads and the
reference into account

* Biological differences between the sequenced genome
and the reference

e Sequencing errors in the reads

* This is the topic of the entire next week!
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Coverage

* The coverage is the number of times a nucleotide
position in the reference is ‘covered’ by reads

* The average coverage is the average coverage of all
nucleotide positions in the reference

* Higher coverage means that there is more
information and thus higher accuracy in identifying
mutations

* The coverage depends on the experimental design,
the amount of sequencing data generated, quality
of the sequencing data etc, but is typically in the
range 15x-200x.



Genome sequencing: Quality
refinement

* There are several errors in NGS data that needs to
be removed to reduce the number of false
positives.

* Errors that are particularly problematic in genome
sequencing include
* Duplicates
* Incorrectly aligned reads

* The quality refinement step aims to remove errors
in the data and errors made in the read mapping.



Quality refinement

® =sequencing error propagated in duplicates

- .!_ Reference
— S J genome
B S — ] ——— — =
r——— ——— B —
o — e |
= S e |  ——
o — e | e Reads
] '~ mapped to
B—T—————]
——————  f————
;.S

}

FP variant call
(bad)

After marking duplicates, the GATK will only see :
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Figures taken from GATK presentations, https://software.broadinstitute.org/gatk/documentation/presentations.php



Quality refinement
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Sensitive read matching can remove ‘artificial’
mutations.

DePristo, M., Banks, E., Poplin, R. et. al, A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Gen.



Quality score recalibration

e Correct quality scores are critical for downstream
analysis. Systematic biases may contribute to false
results when calling variants.

* The PHRED quality score is therefore recalibrated
by dividing the reads into groups based on its
sample, sequencing run, sequencing lane,
dinucleotide context, etc.

* The recalibrated quality score is then calculated

based on the actual mismatch frequency. Common
SNPs are removed in this analysis.




Genome sequencing
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Variant calling of SNPs

* Variant calling aims to identify SNPs in the
sequenced genome compared to the reference

* This is done by analyzing each nucleotide position in
the reference and compare it to the data (the reads)

* The aim is to distinguish between true mutations
and sequencing errors

* A good caller should have a sensitivity (find all true
mutations) and a high specificity (ignore all false
positives)



Variant calling of SNPs

Challenges in variant calling

* Sequencing error rate is high, especially in certain
genomic regions

* The coverage is varying over the genome and may
be low in some regions

* A large number of positions needs to be analyzed
 Escherishia coli genome: 4.6x10° positions
 Human exome (all genes): 50x10° positions
* Entire human genome: 3.2x10°

Are the changes a result of a true mutation or only the
results of many reads with sequencing errors?

(This is a major problem which we will come back to later!)



A naive variant caller for SNPs

We will use a binomial test to detect germline SNPs in
a genome. Assume that we are interested in analyzing
position i and that the reference has an ‘A’ at this
position.

position i
ACGATAGGTACGATGTACGTAGGATACGATAGAGCTAGTGATAGATA
GTACGATGTACG
GATGTACG
TGTACG
TACG
ACG

~

=)

SGATA
SGATACG
SGATACGAT
SGATACGATA

2P0

Assume that the coverage at position i is N;. Define

v, — 1 ifreadj at position i an not an A,
Y |0 ifread j at position i is an A.



A naive variant caller for SNPs

Let N,
Jj=1

Y; is the total number of reads that does not match
the reference at position i.

If the reads and their errors are independent, it
follows that

Y;~Bin(N;, p;)

where p; is the probability of observing another base
than the reference (i.e. not an “A”) at position i.



A naive variant caller for SNPs

We can assess if there is a mutation at position i by
using a statistical tests:

Hy: i = Perror
Hi:pi > Perror

Here, peorror 1S the probability of a sequencing error,
which is the lowest value p; can take (if there is no
mutation we only observe sequencing errors).

Under the null hypothesis, a p-value for the test can
be calculated by

N
p—value = Prob(Y; > y;) = Z Prob(Y; = j)
J=Yi



Example

Assume that the sequencing error for a specific
position is Parror = 0.05 (5%) and the coverage is 15.
If 3 reads are matching the reference while reads 12
have a mutation (say a "C” instead of an "A”).
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Our observation

0.1

Mor
calc

e extreme cases us
ulate the p-value
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pvalue = 9.6 x 10714

15




Why is this caller naive?

* The assumptions about the errors are not true
* The error rate differs considerably between positions

* The errors are not independent — they depend on the
context

* We do not use any information about the quality of
the sequenced nucleotides

* The caller does not distinguish between genotypes
which will make it inefficient in diploid genomes



The GATK unified genotyper

GATK (Genome analysis toolkit) contain the unified
genotyper, which is a more advanced mutation caller.

The unified genotyper calculates

PI‘Ob(Gi |Dl)

for each position i. Here G; set to any of the possible
genotypes (AA, AC, AG, AT, CC, CG, CT, GG, GTand TT
for a diploid organism). D; denotes the data available
at the position 1.



The GATK unified genotyper

Model

Using Bayes theorem, this can be rWs

Prob(D;|G;)| X|Prob(G;)
Prob(D;) \

Prior
knowledge

Prob(D;) = z Prob(D|G;) X Prob(G;).
i

PI‘Ob(Gl’ |Dl) =

where

The sum is calculated over all 10 genotypes.



The GATK unified genotyper

The unified genotyper assumes that

Prob(r|H Prob(r|H
Prob(D;| G) = l_[ o (27"| 1)+ o (27”| 2)

re{good read
bases at i}

where ¢ = H{H, and, with g;=error probability of
position I,

1—¢ ifr=H

l

g; is derived from a site-specific error model.



The GATK unified genotyper

* The unified genotyper has several advantages
compared to the naive caller.
* Only reads of sufficient quality are included

* A more sophisticated error model is used. The quality
values are taken into account,.

* The probability of each possible genotype is estimated
* GATK also offers information on ‘best practices’ in

mutation calling
il
best practices™
Available at https://software.broadinstitute.org/gatk/

Sequencing



Post-processing — filtering of
variants

OO0

All the mutations are in the end of the reads.



Different strand have different
error probabilities

Sequencing direction
>

5’ 3
Strandl AGTATAGTAGGGGTACAGTGGGTAAG

Strand2 TCATATCATCGCCATGTCTCCCATTC
3’ < 5

Reverse complement



Post-processing — filtering of
variants

All the mutations on one single strand.



Post-processing — filtering of
variants

* Many genome sequencing experiments results in a
very long list of variants that may need to be
filtered before it can be interpreted.

* Critera for filtering typically includes
e Strand bias, i.e. variant bases only in one read direction

* Clustered position, e.g. variant bases always at the end
of reads

* Poor mapping, i.e. variant bases only in reads with lower
mapper quality



Post-processing — filtering of
variants

* It is also possible to filter variants based on their
biological function and impact.

e Such criteria include
* Synonymous/non-synonymous

* Commonness among healthy individuals in the
populations

* Its predicted biochemical impact: is it located in a

protein domain that is likely to have a impact on the
protein function

* Previous knowledge, e.g. its association to other
diseases



Databases with information about
mutations

dbSNP, https://www.ncbi.nlm.nih.gov/snp
* A collection of human single nucleotide polymorphisms

e Contains information about their frequency in the
human population

OMIM, https://www.ncbi.nIm.nih.gov/omim

* Database with gene variations associated with human
diseases

COSMIC, https://cancer.sanger.ac.uk/cosmic
* A large catalogue of somatic variation related to cancer.



Databases with information about
mutations

9,733,455 CODING MUTATIONS

13,098,101 NON-CODING
' VARIANTS

GENE FUSIONS
SAMPLES

1,412,466
COPY NUMBER

1,207,190 VARIANTS

WHOLE GENOMES

e GENE EXPRESSION
nrefesn VARIANTS

PAPERS

AT DIFFERENTIALLY
26,829 METHYLATED CPGS

Statistics for the latest version of COSMIC released September 5 2019.



Calling of other forms of mutations

* Calling of other forms of mutations, e.g. indels and
other structural variants, is important but not
covered by this course.

* For information you can read Wang chapter 9.2 and
9.3



Introduction to
computer exercise 2

Alexander Fleming Penicillin-producing fungi



AMR in 2050
10 million

Tetanus
60,000

Road traffic
accidents

1.2 million \
~ AMR now

700,000
| (low estimate)

Measles / - Cholera

130,000 ' 100,000—
— 120,000

Cancer
8.2 million

Diarrhoeal
disease Diabetes

1.4 million 1.5 million



Antibiotic resistance is caused by
1. Mutations in pre-existing DNA
2. Acquisition of resistance genes

Pesst | Hey kid! Wama be a Superbug .2
Sick some of this info your genomte..
Even Penic.iﬂh wonT be able o hamy }WI

It was on a short-cut through the hospital kitchens that Albert
was first approached by a member of the Antibiotic Resistance.






Selection of antibiotic resistant
bacteria

Antibiotic
selection pressure ‘ l



Introduction to
computer exercise 2

In this exercise, you are given three bacterial
genomes of Escherichia coli.

Main questions: Are any of the genomes from
a resistant strain?



Introduction to
computer exercise 2

Objectives of computer exercise 2

* Provide a first view of running bioinformatics
command in Linux environment.

* Analysis of genome sequencing data in R

* Calculation of summary statistics
* Implementation of a naive caller based on the binomial
test

* Biological interpretation of the identified mutations



Summary of todays lecture

* Organisms evolve through changes in their
genomes. These changes can be single nucleotide

polymorphisms (SNPs), indels, and larger structural
variants

 Genome sequencings aim to identify mutations in
relation to a reference

* Analysis of genome sequence data are dependent
on three main steps: read mapping, quality
refinement and SNP calling

* SNP calling is done by statistical modelling of the
read data and its errors



Summary of todays lecture

* SNP calling results in a huge data reduction. From
billions of observations to, in some case, a handful
of significant positions. Careful filtering to remove
errors in the different steps is therefore vital.



