Lecture 5

Introduction to bioinformatics (MVE510)

Autumn 2020

Additional reading: Mapping reads on a genomic sequence: an algorithmic overview and a practical comparative analysis. Schbath S, Martin V, Zytnicki M, Fayolle J, Loux V, and Gibrat JF. *Journal of Computational Biology*, 19(6) 2012.

What we did we do in the previous lecture?

- SNPs, indels and structural variants can be identified by whole genome sequencing
- Three main steps: read mapping, quality refinement and SNP calling
- SNP calling is done through statistical models describing the errors in the data
- Analysis of whole genome sequencing results in a massive data reduction: from billions of observations to a handful of mutations

Today's agenda

- Pair-wise alignment of DNA sequences
 - The Needleman-Wunsch algorithm
 - The Smith-Waterman algorithm
- Computational complexity
- BLAST: The Basic Local Alignment Search Tool

Our main problem this lecture

The sequence reads – many and short

 Hundreds of million reads from sequencing, each only a few hundred nucleotides long

The reference – few and large

- The human genome consisting of 23 chromosomes (total 3.2×10⁹ nucleotides)
- A bacterial genome (one chromosome, 4.6×10⁶ nucleotides for *E. coli*)

Our main problem this lecture

How do we find where our sequence read match ('align') to the reference sequences?

Example of alignments

Alignment 1

Alignment 2

Alignment 3

Two main forms of alignment

Global alignment

Two sequences are aligned over their full length.

Local alignment

Two sequences are aligned based on their best matching subsequences.

<u>Local alignments</u> are used to match short sequence reads against long reference sequences.

Example

Let $S(a, b) = \begin{cases} 5, a = b \\ -4, a \neq b \end{cases}$ and d = -7.

Score the following alignments.

Alignment 1

	AGTCTAGT	S-5+5+5-1+5+5+5-31
	AGTATAGT	3-3+3+3+3+3+3+3+3=31
Alignment 2		
	TTGA-TGA	S-5 7+5+5 7+5+5+5-16
	T-GACTGA	3-3-7+3+3-7+3+3+3-10
Alignment 3		
	TGTAACCT	S=-7-7+5+5+5-4+5+5-7-7=-9
	TAAGCTAG	

Example

			1	2	3	4	5	6
			Т	С	G	G	А	Т
		0	-5	-10	-15	-20	-25	-30
1	Т	-5						
2	С	-10						
3	С	-15						
4	A	-20						
5	Т	-25						

Example

			1	2	3	4	5	6
			Т	С	G	G	A	Т
		0	-5	-10	-15	-20	-25	-30
1	Т	-5	5 ←	04	∎ -5♦	-10	-15∢	-20
2	С	-10	0	10	5 🗲	0 <	-5	-10
3	С	-15	-5	5	6 🕇	1	-4	- 9
4	А	-20	∎ -10			2	6 4	1
5	Т	-25	-15	-5	-4	-3	1	11

Computational complexity

- Measures how many computations that are needed to execute an algorithm
- Fewer computations means faster algorithm

Computational complexity is measured using *O* notation (*O* stands for *ordo* which means order in latin).

Computational complexity

If an algorithm is O(n) this means that the number of computations grows linearly with respect to n (which can, for example, be the number of input data).

Other examples: $O(n^2)$, $O(\log n)$, O(nm), etc.

Computational complexity

In our application, Smith-Waterman will have a complexity of

$O(L_R L_G)$

for each read. Here,

 L_R = the length of the reads,

 L_G = the length of the genome (reference).

This can become <u>very</u> slow if L_G is large (which it is in our case).

Futhermore....

Alignment of a 100 bases long sequence read against the first human chromosome requires a matrix of dimension 100×247,199,720. This which will take 100 gigabytes of RAM if stored in memory.

Smith-Waterman are too slow and resource heavy! Can we make the alignment faster?

BLAST can be used to match any sequence ('query') against a reference ('database'). The algorithm work as follows

- 1. Create a table of words (subsequences) of size W and their location in the reference (index, hash).
- 2. Find the position of the words present in the sequence. These positions are called 'seeds'.
- 3. Extend the alignment around the seeds.

BLAST is around 50 times faster than Smith-Waterman.

Reference ('database')

ACGAGTGAGTGCCGAGTACGTAGCGTAGGAGTGAGTTGGAGTGAGACGTGAGT

Table (hash) of words of size 7

Maximum 4⁷=2¹⁴=16384 rows

Word	Position
ACGAGTG	1
CGAGTGA	2
GAGTGAG	3, 38
AGTGAGT	4, 30

BLASTN 2.2.26 [Sep-21-2011]			
Query= read1 (50 letters)			
Database: CCDS_nucleotide.20160908.fna 32,554 sequences; 55,631,471 total letters			
Searchingdone			
Sequences producing significant alignments:	Score (bits)	E Valı	ıe
CCDS73971.1 Hs108 chr17		84	1e-16
CCDS73970.1 Hs108 chr17		84	1e-16
CCDS73969.1 Hs108 chr17		84	1e-16
>CCDS73971.1 Hs108 chr17 Length = 909			
Score = 83.8 bits (42), Expect = 1e-16 Identities = 48/50 (96%) Strand = Plus / Plus			
Query: 1 aggctgctcccccggtggcctctgcaccagcagctcctacaccggcggcc 50)		

- The word size changes the sensitivity
 - Large word size means faster algorithm but lower sensitivity
 - Smaller word size means slower algorithms but higher sensitivity.
- BLAST can compare
 - Nucleotide vs nucleotide ('blastn')
 - Protein vs protein ('blastp')
 - Nucleotide vs protein ('blastx')
 - Protein vs nucleotide ('tblastn')

https://www.ncbi.nlm.nih.gov/genbank/

\leftrightarrow \rightarrow C \blacksquare Säke	rt https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome			☆	: 1 0
NIH U.S. Nationa	Library of Medicine NCBI National Center for Biotechnology Information			Sign in 1	o NCBI
BLAST [®] » bla	stn suite	Home	Recent Results	Saved Strategies	Help
	Standard Nucleotide BLAST				
blastn blastp blas	tx (blastr blastr				
Enter Query S	equence BLASTN programs search nucleotide databases using a nucleotide query. more		Reset page	Bookmark	
Enter accession n	umber(s), gi(s), or FASTA sequence(s) 🥹 Clear Query subrange 🐌				
aggotgotococcegteg	stttg:sc:sg:sg:tcttg:sc:gg:sg:sc! From To				
Or, upload file	Valij fil Ingen fil har valts				
Job Title					
	Enter a descriptive title for your BLAST search 🥹				
Align two or me	re sequences 🕑				
Choose Searc	h Set				
Database	⊖ Human genomic + transcript ⊙Mouse genomic + transcript ⊛Others (nr etc.):				
	Nucleotide collection (nr/nt)				
Organism Optional	Enter organism name or id-completions will be suggested Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown @				
Exclude Optional	Models (XM/XP) Uncultured/environmental sample sequences				
Limit to	Sequences from type material				
Entrez Query	Yeu 1013 Create custom database				
Optional	Enter an Entrez query to limit search 🤪				
Program Sele	tion				
Optimize for	Highly similar sequences (megablast)				
	More dissimilar sequences (discontiguous megablast)				
	Somewhat similar sequences (blastn)				
	Choose a BLAST aigontinm 🥪				
BLAST	Search database Nucleotide collection (nr/nt) using Megablast (Optimize for highly similar sequences)				
Algorithm parame	ters				
					You
BLAST is a registered tr	ademark of the National Library of Medicine		S	upport center Mailing	list 🛄
4					•

https://www.ncbi.nlm.nih.gov/genbank/

☆

S

С

Säkert https://blast.ncbi.nlm.nih.gov/Blast.cgi

1	Jignments 📳 Download 🐱 GenBank Graphics Distance tree of results						
	Description	Max score	Total score	Query cover	E value	Ident	Accession
	PREDICTED: Gorilla gorilla gorilla tumor protein p53 (TP53), transcript variant X3, mRNA	82.4	82.4	100%	4e-13	96%	XM 004058511.2
	PREDICTED: Gorilla gorilla gorilla tumor protein p53 (TP53), transcript variant X2, mRNA	82.4	82.4	100%	4e-13	96%	XM 019013137.1
	PREDICTED: Gorilla gorilla gorilla tumor protein p53 (TP53), transcript variant X1, mRNA	82.4	82.4	100%	<mark>4</mark> e-13	96%	XM 019013136.1
	Homo sapiens isolate PG/1/2016 TP53 (TP53) gene, partial cds	82.4	82.4	100%	4e-13	96%	KU902450.1
	Homo sapiens phosphoprotein p53 (p53) gene, complete cds	82.4	82.4	100%	4e-13	96%	AH002919.2
	PREDICTED: Pan troglodytes tumor protein p53 (TP53), transcript variant X3, mRNA	82.4	82.4	100%	4e-13	96%	XM 001172077.4
	PREDICTED: Pan troglodytes tumor protein p53 (TP53), transcript variant X2, mRNA	82.4	82.4	100%	4e-13	96%	XM 016931471.1
	PREDICTED: Pan troglodytes tumor protein p53 (TP53), transcript variant X1, mRNA	82.4	82.4	100%	4e-13	96%	XM 016931470.1
	PREDICTED: Pan paniscus tumor protein p53 (TP53), transcript variant X1, mRNA	82.4	82.4	100%	4e-13	96%	XM 014341943.1
	PREDICTED: Pan paniscus tumor protein p53 (TP53), transcript variant X2, mRNA	82.4	82.4	100%	4e-13	96%	XM 003810066.2
	TPA: Homo sapiens Processed transcript p53-mRNA (p53 gene)	82.4	82.4	100%	4e-13	96%	HG975427.1
	Tupaia chinensis tumor protein p53 (TP53), mRNA	82.4	82.4	100%	4e-13	96%	NM 001287369.1
	Homo sapiens isolate C138 nonfunctional tumor suppressor p53 (TP53) gene, partial sequence	82.4	82.4	100%	4e-13	96%	JQ752242.1

Download + OE	nBank Graphics			Vext 🛦 Previous 🛕 Descriptions
PREDICTED: Go	rilla gorilla gorilla tur	or protein p53 (TP53), tra	anscript variant X3, mRNA	
sequence ID: <u>XIVI_U</u>	14050511.2 Length: 25	of Number of Matches: 1		Related Information
Range 1: 405 to 454	GenBank Graphics	tities Cans	V Next Match A Previous Match	
82.4 bits(90)	4e-13 48/5	0(96%) 0/50(0%) Plus/Plus	
Query 1 AGGCT Sbjct 405 AGGCT			50 454	
Download v <u>Ge</u>	nBank Graphics			▼ Next ▲ Previous ▲ Descriptions
PREDICTED: Go Sequence ID: <u>XM_0</u> Range 1: 456 to 50!	rilla gorilla gorilla tum 1 <u>9013137.1</u> Length: 26 i <u>GenBank Graphics</u>	Ior protein p53 (TP53), tra 18 Number of Matches: 1	Next Match A Previous Match	Related Information
Score 82.4 bits(90)	Expect Iden 4e-13 48/5	tities Gaps 0(96%) 0/50(0%) Plus/Plus	
Query 1 AGGCT Sbjct 456 AGGCT Download ~ Ge	CTCCCCCGGTGGCCTCTGCA		50 505	▼ Next ▲ Previous ▲ Descriptions
	rilla gorilla gorilla turr	ior protein p53 (TP53), tra	anscript variant X1, mRNA	_
PREDICTED: Go	19013136.1 Length: 26	91 Number of Matches: 1		Deleted Televentine
PREDICTED: Go Sequence ID: <u>XM_0</u>			🔻 Next Match 🔺 Previous Match	Related Information
PREDICTED: Go Sequence ID: <u>XM_0</u> Range 1: 529 to 578	GenBank Graphics			
PREDICTED: Go Sequence ID: <u>XM_0</u> Range 1: 529 to 578 Score 82.4 bits(90)	<u>GenBank</u> Graphics Expect Iden 4e-13 48/5	tities Gaps 0(96%) 0/50(0%	Strand) Plus/Plus	

Is BLAST fast enough?

No! Next generation DNA sequencing produce too many reads (50x faster than SW is not enough!).

Can we further improve the speed?

Yes, but we need some more concepts from computer science!

Summary of lecture 5

- The Needleman-Wunsch algorithm can be used to find <u>global alignments</u>. The best alignment is identified by iteratively fill a alignment matrix and backtrack from the highest value.
- The Smith-Waterman algorithm can be find <u>local</u> <u>alignments</u>. The best alignment is found similarly to the NW algorithm but where all negative values has been replaced by zeros and the alignment can start and end at any positions.

Summary of lecture 5

- BLAST uses a 'seed-and-extend' algorithm to efficiently calculate local alignments. This makes it 50 times fast than Smith-Waterman.
- BLAST is however still to slow to efficiently map reads from next generation sequencing to a reference.