
Lecture 5
Introduction to bioinformatics (MVE510)

Autumn 2020

Additional reading: Mapping reads on a genomic sequence: an algorithmic
overview and a practical comparative analysis. Schbath S, Martin V, Zytnicki
M, Fayolle J, Loux V, and Gibrat JF. Journal of Computational Biology, 19(6)
2012.

What we did we do in the previous
lecture?
• SNPs, indels and structural variants can be

identified by whole genome sequencing
• Three main steps: read mapping, quality

refinement and SNP calling
• SNP calling is done through statistical models

describing the errors in the data
• Analysis of whole genome sequencing results in a

massive data reduction: from billions of
observations to a handful of mutations

Pre-processing Read mapping
Raw

sequence
data

Results

Quality
refinement

Variant calling

Today’s agenda

• Pair-wise alignment of DNA sequences
• The Needleman-Wunsch algorithm
• The Smith-Waterman algorithm

• Computational complexity
• BLAST: The Basic Local Alignment Search Tool

Our main problem this lecture
The sequence reads – many and short
• Hundreds of million reads from sequencing, each

only a few hundred nucleotides long

The reference – few and large
• The human genome consisting of 23 chromosomes

(total 3.2×109 nucleotides)
• A bacterial genome (one chromosome, 4.6×106

nucleotides for E. coli)

Our main problem this lecture

How do we find where our sequence read match
(‘align’) to the reference sequences?

Example of alignments

Alignment 1
AGTCTAGT

AGTATAGT

Alignment 2
TTGA-TGA

T-GACTGA

Alignment 3
TGTAACCT--

--TAAGCTAG

Mismatch

Gap

Gap

Gap Gap

Mismatch

Two main forms of alignment
Global alignment
Two sequences are aligned over their full length.

Local alignment
Two sequences are aligned based on their best
matching subsequences.

Local alignments are used to match short sequence
reads against long reference sequences.

Example

Alignment 1
AGTCTAGT

AGTATAGT

Let and

Score the following alignments.

Alignment 2
TTGA-TGA

T-GACTGA

S=5+5+5-4+5+5+5+5=31

Alignment 3
TGTAACCT--

--TAAGCTAG

S=5-7+5+5-7+5+5+5=16

S=-7-7+5+5+5-4+5+5-7-7=-9

Example
1 2 3 4 5 6

T C G G A T

0 -5 -10 -15 -20 -25 -30

1 T -5

2 C -10

3 C -15

4 A -20

5 T -25

Example
1 2 3 4 5 6

T C G G A T

0 -5 -10 -15 -20 -25 -30

1 T -5 5 0 -5 -10 -15 -20

2 C -10 0 10 5 0 -5 -10

3 C -15 -5 5 6 1 -4 -9

4 A -20 -10 0 1 2 6 1

5 T -25 -15 -5 -4 -3 1 11

Computational complexity

• Measures how many computations that are needed
to execute an algorithm

• Fewer computations means faster algorithm

Computational complexity is measured using O
notation (O stands for ordo which means order in
latin).

Computational complexity

If an algorithm is O(n) this means that the number of
computations grows linearly with respect to n (which
can, for example, be the number of input data).

Other examples: O(n2), O(log n), O(nm), etc.

Computational complexity

In our application, Smith-Waterman will have a
complexity of

O(LRLG)
for each read. Here,
LR= the length of the reads,
LG= the length of the genome (reference).

This can become very slow if LG is large (which it is in
our case).

Futhermore….

Alignment of a 100 bases long sequence read against
the first human chromosome requires a matrix of
dimension 100×247,199,720. This which will take
100 gigabytes of RAM if stored in memory.

Smith-Waterman are too slow and resource heavy!
Can we make the alignment faster?

The BLAST algorithm (Basic Local
Alignment Search Tool)
BLAST can be used to match any sequence (‘query’)
against a reference (‘database’). The algorithm work
as follows
1. Create a table of words (subsequences) of size W

and their location in the reference (index, hash).
2. Find the position of the words present in the

sequence. These positions are called ‘seeds’.
3. Extend the alignment around the seeds.

BLAST is around 50 times faster than Smith-
Waterman.

The BLAST algorithm (Basic Local
Alignment Search Tool)

Reference (‘database’)
ACGAGTGAGTGCCGAGTACGTAGCGTAGGAGTGAGTTGGAGTGAGACGTGAGT

Table (hash) of words of size 7

Word Position

ACGAGTG 1

CGAGTGA 2

GAGTGAG 3, 38

AGTGAGT 4, 30

Maximum
47=214=16384
rows

The BLAST algorithm (Basic Local
Alignment Search Tool)

Query
GATACGTAGTACTAGTACGATGACGGTAGTGTAGTGTG

GTACTAG

List of all words
of size W

Extension

Word

Seed

gatacgtagtactagtacg--atgacggtagtgtagtgtg
|||| |||||||||||||| |||||||| ||||||||||
gataggtagtactagtacgaaatgacggtcgtgtagtgtg

Word

Query

Reference

BLASTN 2.2.26 [Sep-21-2011]

Query= read1
(50 letters)

Database: CCDS_nucleotide.20160908.fna
32,554 sequences; 55,631,471 total letters

Searching..done

Score E
Sequences producing significant alignments: (bits) Value

CCDS73971.1|Hs108|chr17 84 1e-16
CCDS73970.1|Hs108|chr17 84 1e-16
CCDS73969.1|Hs108|chr17 84 1e-16

>CCDS73971.1|Hs108|chr17
Length = 909

Score = 83.8 bits (42), Expect = 1e-16
Identities = 48/50 (96%)
Strand = Plus / Plus

Query: 1 aggctgctcccccggtggcctctgcaccagcagctcctacaccggcggcc 50
||||||||||||| |||||| |||||||||||||||||||||||||||||

Sbjct: 86 aggctgctccccccgtggcccctgcaccagcagctcctacaccggcggcc 135

The BLAST algorithm (Basic Local
Alignment Search Tool)
• The word size changes the sensitivity

• Large word size means faster algorithm but lower
sensitivity

• Smaller word size means slower algorithms but higher
sensitivity.

• BLAST can compare
• Nucleotide vs nucleotide (‘blastn’)
• Protein vs protein (‘blastp’)
• Nucleotide vs protein (‘blastx’)
• Protein vs nucleotide (‘tblastn’)

The BLAST algorithm (Basic Local
Alignment Search Tool)

https://www.ncbi.nlm.nih.gov/genbank/

The BLAST algorithm (Basic Local
Alignment Search Tool)

https://www.ncbi.nlm.nih.gov/genbank/

The BLAST algorithm (Basic Local
Alignment Search Tool)

The BLAST algorithm (Basic Local
Alignment Search Tool)

The BLAST algorithm (Basic Local
Alignment Search Tool)

Is BLAST fast enough?
No! Next generation DNA sequencing produce too
many reads (50x faster than SW is not enough!).

Can we further improve the speed?
Yes, but we need some more concepts from
computer science!

Summary of lecture 5

• The Needleman-Wunsch algorithm can be used to
find global alignments. The best alignment is
identified by iteratively fill a alignment matrix and
backtrack from the highest value.

• The Smith-Waterman algorithm can be find local
alignments. The best alignment is found similarly to
the NW algorithm but where all negative values has
been replaced by zeros and the alignment can start
and end at any positions.

Summary of lecture 5

• BLAST uses a ‘seed-and-extend’ algorithm to
efficiently calculate local alignments. This makes it
50 times fast than Smith-Waterman.

• BLAST is however still to slow to efficiently map
reads from next generation sequencing to a
reference.

