
Lecture 8
Introduction to bioinformatics (MVE510)

Autumn, 2020

Additional reading: Lecture notes – Linear models for RNA-seq analysis
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Repetition:the RNA-seq process

Extracted 
RNA (total 
or mRNA)

GATAGTACGGT
AATACGATAAA
ACGATAGGTAC
ACGTACGTGAC
CGGATATCCAT
TAAATTTAACG
AATACGATAAA

Sequencer ReadsComplementary 
DNA (cDNA)

Reverse 
transcription



Analysis of RNA seq data

Three main steps

1. Quantification of the gene expression
• From reads to a (semi)quantitative measurements of gene 

expression
2. Normalization

• Correction of systematic errors within and between samples
3. Identification of  differentially abundant genes

• Find genes with a significant difference in gene expression



Three main approaches

Methods based on normal assumptions

Methods based on non-parametric methods

Methods based on count distributions



Today’s agenda 

• Introduction to linear models
• Linear model in R
• A first example: the cat dataset revisited
• Linear models for the analysis of RNA-seq data
• A second more comprehensive example: gene expression of 

SI-NETs

5



Linear models in R

• Linear models can easily be fitted to any data using the lm function 
(stands for ‘linear model’).

• lm has two important argument
1. A model formulation which is specified through an R ‘formula’.
2. A data.frame with data used to fit the model.

• By default, lm always assumes independent and normally distributed 
errors and the model is fit using maximum likelihood.

• The names of the column of the data.frame needs to match the 
names of the dependent and independent variables

6



Linear models in R: formulas

• The formula is written the form y~model where ‘y’ is the 
dependent variable and ‘model’ specifies the independent variables.

• The intercept does not need to be specified and is included by 
default.

R formulation Linear model
y~x1 ௜ ଴ ଵ ௜,ଵ ௜

y~x1+x2 ௜ ଴ ଵ ௜,ଵ ଶ ௜,ଶ ௜

y~x1+x2-1 ௜ ଵ ௜,ଵ ଶ ௜,ଶ ௜
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A first example: the cat dataset revisited

> library(MASS)

> data(cats)

> dim(cats)

[1] 144   3

> head(cats)

Sex Bwt Hwt

1   F 2.0 7.0

2   F 2.0 7.4

3   F 2.0 9.5

4   F 2.1 7.2

5   F 2.1 7.3

6   F 2.1 7.6
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Linear models in R: the cat dataset revisited
Can we describe the hearth weight of a cat? Let ௝ be the heart weight 
of cat j (j=1,…, 144). Let ଵ,௝ define the sex of cat j, i.e. 

ଵ,௝

The first model that we will use is

௝ ଴ ଵ ଵ,௝ ௝

As before, ௝
ଶ .
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Linear models in R: the cat dataset revisited
The model is specified into R using

> lm(Hwt~Sex, data=cats)

Call:

lm(formula = Hwt ~ Sex, data = cats)

Coefficients:

(Intercept)         SexM

9.202        2.121 
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Linear models in R: the cat dataset revisited
> summary(lm(Hwt~Sex, data=cats))

Call:
lm(formula = Hwt ~ Sex, data = cats)

Residuals:
Min      1Q  Median      3Q     Max 

-4.8227 -1.7227  0.0273  1.2273  9.1773 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   9.2021     0.3251  28.308  < 2e-16 ***
SexM 2.1206     0.3961   5.354 3.38e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.229 on 142 degrees of freedom
Multiple R-squared:  0.168,     Adjusted R-squared:  0.1621 
F-statistic: 28.66 on 1 and 142 DF,  p-value: 3.38e-07 11



Linear models in R: the cat dataset revisited
Let ଶ௝ denote the body weight of cat j a refined model can be stated 
as

௝ ଴ ଵ ଵ௝ ଶ ଶ௝ ௝

> lm(Hwt~Sex+Bwt, data=cats)

Call:

lm(formula = Hwt ~ Sex + Bwt, data = cats)

Coefficients:

(Intercept)         SexM Bwt

-0.4150      -0.0821       4.0758 12



Linear models in R: the cat dataset revisited
> summary(lm(Hwt~Sex+Bwt, data=cats))

Call:
lm(formula = Hwt ~ Sex + Bwt, data = cats)

Residuals:
Min      1Q  Median      3Q     Max 

-3.5833 -0.9700 -0.0948  1.0432  5.1016 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  -0.4149     0.7273  -0.571    0.569    
SexM -0.0821     0.3040  -0.270    0.788    
Bwt 4.0758     0.2948  13.826   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.457 on 141 degrees of freedom
Multiple R-squared:  0.6468,    Adjusted R-squared:  0.6418 
F-statistic: 129.1 on 2 and 141 DF,  p-value: < 2.2e-16 13



Gene expression analysis using linear models

• Challenge: Data consists of many genes/transcripts (often >10,000)
• Strategy: Fit a linear model to each gene!
• This will result in

• >10,000 linear models
• >10,000 estimates of the parameter
• >10,000 p-values

• It is practically impossible to examine the result from each fitted 
linear model individually!

• We can however use ‘clever plots’ to visualize all fitted parameter 
estimates and their p-values at the same time.
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Example: Gene expression in SI-NETs

Data: Gene expression of 45,015 transcripts in 33 patients. 23 were 
from less aggressive group and 10 from more aggressive group. For 
each patient, a biopsy was sampled, the RNA extracted, sequenced 
using standard protocols, preprocessed and transformed and 
normalized so that the resulting data is approximately normal 
distributed. For each patient, the age and gender was also recorded. 

Aim: Identify genes that are differentially expressed between the 
groups
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1       2       3       4       5       6       7       8       9       10      11      12      13      14      15
APOBEC3B -1.3080  1.2738 -0.2291  0.1059 -0.4974 -0.9348 -0.6349 -0.6301 -0.0095  1.1046 -0.3840  2.3720  0.3894 -0.4803  0.1640  
ATP11B  2.5493  3.2565  3.2085  3.1314  4.0809  3.8099  3.8516  4.0956  3.1072  2.7990  3.2238  2.1573  2.9087  2.9061  3.4756
LOC100132006 1.5618  0.0585 -1.0288 -1.0245 -0.7023 -1.0489 -0.3975 -1.3643 -0.0095 -0.1328 -0.6004 -0.5999 -0.1955 -0.4803 -0.4332 -
DNAJA1 5.3760  6.2587  7.4256  6.7160  6.3814  6.2466  6.9555  6.0039  6.2113  6.1688  6.0132  6.6026  6.0905  6.5462  6.1255
EHMT2 0.4388  1.9512  2.4935  2.3967  1.6930  1.9324  2.7159  1.7267  2.3780  2.6070  2.3119  1.9179  0.9754  2.8758  1.9197  
RPL23 9.0068  9.4358  9.9730 10.0973 10.3703  9.6257 10.2602 10.4557 10.3915  9.7207 10.3020  9.2524 10.0280 10.0772 10.3294 
RPS13 7.0665  8.0025  8.8169  8.3768  8.9800  8.8094  8.6004  9.1958  8.2512  8.0732  8.4829  8.3298  8.7682  8.2037  8.4305  
HDDC3 4.4907  5.8964  5.6970  6.1755  4.7235  5.5553  5.8848  5.1051  5.6407  5.6031  5.5775  5.0305  5.1183  6.0040  5.0338
ITPRIPL2 4.7796  5.3413  5.5084  5.3690  6.3345  6.4191  4.9050  7.0215  5.4606  5.9255  6.8179  6.1367  6.8954  5.3338  5.2335  
MEGF11  3.8322  3.5196  4.4392  4.4959  3.0314  4.6823  5.3699  3.4580 -1.9481 -0.8646  3.3412 -2.0039 -0.0593  4.3704  4.9336   
APBA3   0.8934  2.4857  2.2194  1.6381  0.5120  1.6215  1.6203  1.1843  1.0574  2.1153  1.0123  2.6806 -0.0593  1.8369  0.8602    
CRCP    -1.3080  1.6620  2.0027  1.3050  1.1986  1.1388  1.4457  1.5825  1.4785  2.1255  0.4539  0.7771  0.7500  2.8043  2.3283   
CATSPERG 0.4388  1.6620 -1.4684 -0.8890 -1.0377 -1.1605 -0.5497 -1.9087 -0.2434 -1.0133 -0.9930 -2.4231 -1.5598 -1.1634 -1.0569   
KBTBD4  3.0410  4.9136  5.2735  4.7079  4.1695  4.5461  5.1626  4.2997  5.2048  3.5967  4.0339  3.0177  2.5556  4.7077  5.0728   
SLED1   -1.3080  0.0585 -1.2969 -1.8432 -1.7387 -1.5791 -0.0676 -1.0893 -1.2196  0.0656 -2.1872  0.7771 -1.7203 -1.9351 -0.8524 
LRP1    2.8198  2.6055  1.6173  2.5457  3.3422  3.2787  1.7357  3.2244  1.6452  1.7286  2.6295  3.4818  2.3179  1.9766  1.3362   
TSC1    4.8925  5.3413  6.7008  5.6007  5.3680  6.3200  6.5464  5.7273  6.5691  5.3013  5.9183  5.8130  4.3613  7.0232  6.7578   
ADORA3  -1.3080  0.3075 -1.9988 -1.9626 -1.5419 -1.1605 -1.5308  0.9833  0.0927 -1.3080 -1.2574 -2.2403  1.2852 -1.7367 -1.5083
GOLGA3  7.1910  8.2709  8.2451  8.2910  7.8938  7.9649  8.1578  7.9703  8.3507  7.5201  8.0828  7.5201  7.6011  8.2854  7.8768  
CDH6    2.4089  2.6055  3.5993  3.3648  2.2291  2.8344  3.5798  2.4037  2.5515  2.0331  3.0900  2.0780  1.0436  3.7041  3.3674   
CD99L2  7.7646  8.7518  8.9573  9.0448  8.8229  9.0057  9.0378  9.0860  9.2734  8.7090  8.6807  8.6743  8.3349  9.0227  8.9655   
SMG7    4.3290  5.5150  4.9404  5.8186  4.5539  4.8396  5.5633  4.3482  5.7882  3.5967  3.8761  4.3709  3.4132  5.3875  5.0413   
C9orf30 1.5618  3.2942  2.6625  2.3509  2.7460  2.1913  3.2096  2.9466  2.3494  2.8388  1.8588  2.0780  2.6055  2.6301  2.9089    
CXorf57 -2.1763  1.6620 -1.0288 -2.1751 -1.7888 -2.3085 -0.4356 -1.7751 -2.6751 -1.7578 -2.4766 -2.2403 -2.2579 -1.5974 -0.1983 -

Example: Gene expression in SI-NETs
The expression data is available as log CPM (counts per million 
mapped reads).

33 samples, one for each patient
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Example: Gene expression in SI-NETs

We have also some data about the patients (‘metadata’).

Sample Group Gender Age
1    G2   Male  49
2    G1 Female  81
3    G1 Female  64
4    G1 Female  42
5    G1 Female  74
6    G1 Female  58
7    G1   Male  63
8    G1   Male  59
9    G1 Female  53

10    G2 Female  61
11    G2 Female  70
12    G2   Male  74
13    G2 Female  75
14    G1   Male  64
15    G2   Male  71
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Example: Gene expression in SI-NETs
Let ௜,௝ is the expression of gene i in patient j and define the independent 
variable ଵ,௝ as 

ଵ,௝

A simple linear model can be formulated as

௜,௝ ଴,௜ ଵ,௜ ଵ,௝ ௜,௝

where ଴,௜ is the base line expression of gene and ଵ,௜ is the difference in 
expression in the more aggressive compared to the less aggressive tumor 
form and ௜,௝ is the error for gene i and patient j (normal). 18

log fold-change



We will fit a linear model to each gene by looping over the data.

# R code for fitting a linear model to each transcript
ngenes=nrow(data.exp) # Number of rows (transcripts) in the expression data

parameter=rep(NA, ngenes) # Allocate a vector for parameter values
pvalue=rep(NA, ngenes) # Allocate a vector for p-values

for(i in 1:ngenes){ # Loop over the number of transcripts

# Create a data.frame for lm for transcript i
data.cur=data.frame(data.exp[i,], annotation[,2], annotation[,3], annotation[,4])

# Add column names to the data.frame
colnames(data.cur)=c("Expression", "Group", "Gender", "Age")

# Fit a linear model
res.lm=lm(Expression~Group, data=data.cur)

# Save the parameter 1 ("Group") from the result. Note that res.lm$coef[1] is the intercept.  
parameter1[i]=res.lm$coefficient[2]

# Calculate p-values (and other stuffs for the model)
res.summary.lm=summary(res.lm)

# Extact the p-value. Note that $coefficient after running summar 
# is a matrix with a row for each parameter.
pvalue1[i]=res.summary.lm$coefficient[2,4]

} 19



Example: Gene expression in SI-NETs

20
Log fold-change (parameter 1)



Example: Gene expression in SI-NETs
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Example: Gene expression in SI-NETs
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Example: Gene expression in SI-NETs

The extended model is

௜,௝ ଴,௜ ଵ,௜ ଵ,௝ ଶ,௜ ଶ,௝ ଷ,௜ ଷ,௝ ௜,௝

Questions
• Is the extended model better in describing the gene expression?
• Does the extended model result in more genes that sigificantly

differentially expressed betweenthe ’more aggressive’ and ’less 
aggressive’ patient groups?

• Are there any genes where the expression is significantly associated
with gender and/or age. 24



Is the extended model better in describing 
the gene expression?
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Simple model Extended model

Comparison of the adjusted R2
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Does the extended model result in more
significantly differentially expressed genes?
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The two models results in 
similar estimates for 
parameter 1
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Genes with reduced 
variability
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Genes with a lower p-value 
(more significant) in the 
extended model
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Are there any genes where the expression is 
significantly associated with gender and/or age?
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RPS4Y1
DDX3Y

RPS4Y2

XIST
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Introduction to computer exercise 3

Gene expression analysis of patients with and without irritated bowel
disease (IBD). The aim is to understand the mechanisms behind Crohn’s
disease among children.

40)40) 40)

Ileum



SRR1782694 SRR1782695 SRR1782703 SRR1782712 SRR1782715 SRR1782717 SRR1782718 SRR1782719
ENSG00000000003 28384 21884 18484 26677 24318 17669 21352 16472
ENSG00000000005 50 0 50 150 50 100 0 49
ENSG00000000419 14900 23534 18651 17129 18633 16759 19626 16194
ENSG00000000457 14965 20808 19651 14428 18381 20800 15498 13258
ENSG00000000460 6488 9787 8693 6965 8047 9164 8604 6380
ENSG00000000938 2953 16721 15111 7177 14184 26891 9213 12585
ENSG00000000971 55143 80409 51342 50532 72553 102001 41232 34952
ENSG00000001036 60404 41600 35658 59473 49857 34174 38756 40068

patient.id tissue Sex age.at.diagnosis paris.age diagnosis

SRR1782694 tissue: Ileal biopsy Male 10.33 A1b Not IBD

SRR1782695 tissue: Ileal biopsy Male 10.83 A1b Not IBD

SRR1782703 tissue: Ileal biopsy Female 15 A1b Not IBD

SRR1782712 tissue: Ileal biopsy Female 16.92 A1b Not IBD

SRR1782687 tissue: Ileal biopsy Female 12.5 A1b CD

SRR1782697 tissue: Ileal biopsy Male 9.25 A1a CD

SRR1782708 tissue: Ileal biopsy Male 4.5 A1a CD

SRR1782709 tissue: Ileal biopsy Female 6.33 A1a CD

SRR1782716 tissue: Ileal biopsy Female 8.67 A1a CD

Introduction to computer exercise 3
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Summary

• Linear models are highly flexible statistical tools that can be used to 
analyze gene expression data from RNA-seq experiments.

• Linear models are implemented in R under the lm function.
• Each gene is analyzed separately – this results in a large number of 

linear models, coefficients and p-values.
• Visualization of the results for all gene simultaneously can be used to 

verify the model and identify genes that are differentially expressed.
• Adding additional factors may increase the fit of the model, reduce 

the variability and increase the number of significant genes.

36



Example 1: Gene expression in SI-NETs
RNA-seq was used to characterize the expression of 45,015 transcripts 
in small intestinal neuroendocrine tumors (SI-NET). SI-NETs are divided 
in to two groups depending on its aggressiveness. 

Aim: Identify genes that are differentially expressed between the 
groups

Data: 33 patients were included in the study of which 23 were from the 
less aggressive group and 10 from the more aggressive group. For each 
patient, a biopsy was sampled, the RNA extracted, sequenced using 
standard protocols, preprocessed and transformed and normalized so 
that the resulting data is approximately normal distributed. For each 
patient, the age and gender was also recorded. 
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Example 1: Gene expression in SI-NETs
Let ௜,௝ is the expression of gene i in patient j and define the 
independent categorical variable ଵ,௝ as 

ଵ,௝

A simple linear model can be formulated as

௜,௝ ଴,௜ ଵ,௜ ଵ,௝ ௜,௝

where ଴,௜ is the base line expression of gene I and ଵ,௜ is the difference 
in expression in the more aggressive compared to the less aggressive 
tumor form and ௜,௝ is the error for gene i and patient j (normal). 38



Example 1: Gene expression in SI-NETs

The scientists suspected that the age and gender may be influencing 
the gene expression and an extended model was therefore formulated. 
Let ଶ,௝ be the age of patient j and let

ଷ,௝

The extended model can then be formulated as

௜,௝ ଴,௜ ଵ,௜ ଵ,௝ ଶ,௜ ଶ,௝ ଷ,௜ ଷ,௝ ௜,௝
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