Lecture 8

Introduction to bioinformatics (MVE510)

Autumn, 2020

Additional reading: Lecture notes - Linear models for RNA-seq analysis

Repetition:the RNA-seq process

Extracted	Complementary	Sequencer	Reads
RNA (total	DNA (cDNA)		

Analysis of RNA seq data

Three main steps

1. Quantification of the gene expression

- From reads to a (semi)quantitative measurements of gene expression

2. Normalization

- Correction of systematic errors within and between samples

3. Identification of differentially abundant genes

- Find genes with a significant difference in gene expression

Three main approaches

Methods based on normal assumptions

Methods based on non-parametric methods

Methods based on count distributions

Today's agenda

- Introduction to linear models
- Linear model in R
- A first example: the cat dataset revisited
- Linear models for the analysis of RNA-seq data
- A second more comprehensive example: gene expression of SI-NETs

Linear models in R

- Linear models can easily be fitted to any data using the Im function (stands for 'linear model').
- Im has two important argument

1. A model formulation which is specified through an R 'formula'.
2. A data.frame with data used to fit the model.

- By default, Im always assumes independent and normally distributed errors and the model is fit using maximum likelihood.
- The names of the column of the data.frame needs to match the names of the dependent and independent variables

Linear models in R : formulas

- The formula is written the form $y \sim$ model where ' y ' is the dependent variable and 'model' specifies the independent variables.
- The intercept does not need to be specified and is included by default.
R formulation
$y^{\sim} \times 1$
$y^{\sim} x 1+x 2$
$y^{\sim} x 1+x 2-1$

Linear model

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\varepsilon_{i} \\
& Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\varepsilon_{i} \\
& Y_{i}=\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\varepsilon_{i}
\end{aligned}
$$

A first example: the cat dataset revisited

```
> library(MASS)
> data(cats)
> dim(cats)
[1] 144 3
```


Linear models in R : the cat dataset revisited

Can we describe the hearth weight of a cat? Let Y_{j} be the heart weight of cat $j(j=1, \ldots, 144)$. Let $x_{1, j}$ define the sex of cat j, i.e.

$$
x_{1, j}= \begin{cases}1 & \text { if cat } j \text { is male } \\ 0 & \text { if cat } j \text { is female }\end{cases}
$$

The first model that we will use is

$$
Y_{j}=\beta_{0}+\beta_{1} x_{1, j}+\varepsilon_{j}
$$

As before, $\varepsilon_{j} \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$.

Linear models in R: the cat dataset revisited

The model is specified into R using
$>\operatorname{lm}($ Hwt~Sex. data=cats)

Call:
lm(formula $=$ Hwt \sim Sex, data $=$ cats)

Coefficients:
(Intercept)

$$
9.202
$$

Linear models in R : the cat dataset revisited

```
> summary(lm(Hwt~Sex, data=cats))
Call:
lm(formula = Hwt ~ Sex, data = cats)
```

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-4.8227	-1.7227	0.0273	1.2273	9.1773

Coefficients:
Estimate Std. Error t value Pr $(>|t|)$

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.229 on 142 degrees of freedom
Multiple R-squared: 0.168 , Adjusted R-squared: 0.1621
F-statistic: 28.66 on 1 and $142 \mathrm{DF}, \mathrm{p}$-value: 3.38e-07

Linear models in R: the cat dataset revisited

Let $x_{2 j}$ denote the body weight of cat j a refined model can be stated as

$$
Y_{j}=\beta_{0}+\beta_{1} x_{1 j}+\beta_{2} x_{2 j}+\varepsilon_{j}
$$

> lm(Hwt~Sex+Bwt, data=cats)

Call:
lm(formula $=$ Hwt \sim Sex + Bwt, data $=$ cats)

Coefficients:
(Intercept)
-0.4150
SexM
Bwt
-0.0821
4.0758

Linear models in R : the cat dataset revisited

$>$ summary(lm(Hwt~Sex+Bwt, data=cats))

Call:
lm(formula $=$ Hwt \sim Sex + Bwt, data $=$ cats)

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-3.5833	-0.9700	-0.0948	1.0432	5.1016

Coefficients:
Estimate Std. Error t value Pr (>|t|)

Residual standard error: 1.457 on 141 degrees of freedom
Multiple R-squared: 0.6468, Adjusted R-squared: 0.6418
F-statistic: 129.1 on 2 and 141 DF, p-value: $<2.2 e-16$

Gene expression analysis using linear models

- Challenge: Data consists of many genes/transcripts (often >10,000)
- Strategy: Fit a linear model to each gene!
- This will result in
- >10,000 linear models
- >10,000 estimates of the parameter
- >10,000 p-values
- It is practically impossible to examine the result from each fitted linear model individually!
- We can however use 'clever plots' to visualize all fitted parameter estimates and their p-values at the same time.

Example: Gene expression in SI-NETs

Data: Gene expression of 45,015 transcripts in 33 patients. 23 were from less aggressive group and 10 from more aggressive group. For each patient, a biopsy was sampled, the RNA extracted, sequenced using standard protocols, preprocessed and transformed and normalized so that the resulting data is approximately normal distributed. For each patient, the age and gender was also recorded.

Aim: Identify genes that are differentially expressed between the groups

Example: Gene expression in SI-NETs

The expression data is available as log CPM (counts per million mapped reads).

33 samples, one for each patient

		33 samples, one for each patient														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	APOBEC3B	-1.3080	1.2738	-0.2291	0.1059	-0.4974	-0.9348	-0.6349	-0.6301	-0.0095	1.1046	-0.3840	2.3720	0.3894	-0.4803	0.1640
	ATP11B	2.5493	3.2565	3.2085	3.1314	4.0809	3.8099	3.8516	4.0956	3.1072	2.7990	3.2238	2.1573	2.9087	2.9061	3.4756
	LOC100132006	1.5618	0.0585	-1.0288	-1.0245	-0.7023	-1.0489	-0.3975	-1.3643	-0.0095	-0.1328	-0.6004	-0.5999	-0.1955	-0.4803	-0.4332
	DNAJA1	5.3760	6.2587	7.4256	6.7160	6.3814	6.2466	6.9555	6.0039	6.2113	6.1688	6.0132	6.6026	6.0905	6.5462	6.1255
	EHMT2	0.4388	1.9512	2.4935	2.3967	1.6930	1.9324	2.7159	1.7267	2.3780	2.6070	2.3119	1.9179	0.9754	2.8758	1.9197
	RPL23	9.0068	9.4358	9.9730	10.0973	10.3703	9.6257	10.2602	10.4557	10.3915	9.7207	10.3020	9.2524	10.0280	10.0772	10.3294
	RPS13	7.0665	8.0025	8.8169	8.3768	8.9800	8.8094	8.6004	9.1958	8.2512	8.0732	8.4829	8.3298	8.7682	8.2037	8.4305
$\stackrel{0}{0}$	HDDC3	4.4907	5.8964	5.6970	6.1755	4.7235	5.5553	5.8848	5.1051	5.6407	5.6031	5.5775	5.0305	5.1183	6.0040	5.0338
은	ITPRIPL2	4.7796	5.3413	5.5084	5.3690	6.3345	6.4191	4.9050	7.0215	5.4606	5.9255	6.8179	6.1367	6.8954	5.3338	5.2335
는	MEGF11	3.8322	3.5196	4.4392	4.4959	3.0314	4.6823	5.3699	3.4580	-1.9481	-0.8646	3.3412	-2.0039	-0.0593	4.3704	4.9336
ᄃ	APBA3	0.8934	2.4857	2.2194	1.6381	0.5120	1.6215	1.6203	1.1843	1.0574	2.1153	1.0123	2.6806	-0.0593	1.8369	0.8602
\bigcirc	CRCP	-1.3080	1.6620	2.0027	1.3050	1.1986	1.1388	1.4457	1.5825	1.4785	2.1255	0.4539	0.7771	0.7500	2.8043	2.3283
\pm	CAtSperg	0.4388	1.6620	-1.4684	-0.8890	-1.0377	-1.1605	-0.5497	-1.9087	-0.2434	-1.0133	-0.9930	-2.4231	-1.5598	-1.1634	-1.0569
\square	KBTBD 4	3.0410	4.9136	5.2735	4.7079	4.1695	4.5461	5.1626	4.2997	5.2048	3.5967	4.0339	3.0177	2.5556	4.7077	5.0728
	SLED1	-1.3080	0.0585	-1.2969	-1.8432	-1.7387	-1.5791	-0.0676	-1.0893	-1.2196	0.0656	-2.1872	0.7771	-1.7203	-1.9351	-0.8524
-	LRP1	2.8198	2.6055	1.6173	2.5457	3.3422	3.2787	1.7357	3.2244	1.6452	1.7286	2.6295	3.4818	2.3179	1.9766	1.3362
10	TSC1	4.8925	5.3413	6.7008	5.6007	5.3680	6.3200	6.5464	5.7273	6.5691	5.3013	5.9183	5.8130	4.3613	7.0232	6.7578
-	ADORA3	-1.3080	0.3075	-1.9988	-1.9626	-1.5419	-1.1605	-1.5308	0.9833	0.0927	-1.3080	-1.2574	-2.2403	1.2852	-1.7367	-1.5083
	GOLGA 3	7.1910	8.2709	8.2451	8.2910	7.8938	7.9649	8.1578	7.9703	8.3507	7.5201	8.0828	7.5201	7.6011	8.2854	7.8768
	CDH6	2.4089	2.6055	3.5993	3.3648	2.2291	2.8344	3.5798	2.4037	2.5515	2.0331	3.0900	2.0780	1.0436	3.7041	3.3674
	CD99L2	7.7646	8.7518	8.9573	9.0448	8.8229	9.0057	9.0378	9.0860	9.2734	8.7090	8.6807	8.6743	8.3349	9.0227	8.9655
	SMG7	4.3290	5.5150	4.9404	5.8186	4.5539	4.8396	5.5633	4.3482	5.7882	3.5967	3.8761	4.3709	3.4132	5.3875	5.0413
	C90rf 30	1.5618	3.2942	2.6625	2.3509	2.7460	2.1913	3.2096	2.9466	2.3494	2.8388	1.8588	2.0780	2.6055	2.6301	2.9089
	CXorf5 7	-2.1763	1.6620	-1.0288	-2.1751	-1.7888	-2.3085	-0.4356	-1.7751	-2.6751	-1.7578	-2.4766	-2.2403	-2.2579	-1.5974	-0.1983

Example: Gene expression in SI-NETs

We have also some data about the patients ('metadata').

	Sample	Group	Gender	Age
	1	G2	Male	49
	2	G1	Female	81
	3	G1	Female	64
	4	G1	Female	42
-	5	G1	Female	74
\pm	6	G1	Female	58
¢	7	G1	Male	63
$\stackrel{\square}{\bullet}$	8	G1	Male	59
0	9	G1	Female	53
¢̀	10	G2	Female	61
응	11	G2	Female	70
$\underset{\sim}{E}$	12	G2	Male	74
\cdots	13	G2	Female	75
m	14	G1	Male	64
	15	G2	Male	71

Example: Gene expression in SI-NETs

Let $Y_{i, j}$ is the expression of gene i in patient j and define the independent variable $x_{1, j}$ as

$$
x_{1, j}= \begin{cases}1 & \text { if patient } j \text { has a more aggressive tumor, } \\ 0 & \text { if patient } j \text { has a less aggresive tumor, }\end{cases}
$$

where $\beta_{0, i}$ is the base line expression of gene i and $\beta_{1, i}$ is the difference in expression in the more aggressive compared to the less aggressive tumor form and $\varepsilon_{i, j}$ is the error for gene i and patient j (normal).

We will fit a linear model to each gene by looping over the data.

```
# R code for fitting a linear model to each transcript
ngenes=nrow(data.exp) # Number of rows (transcripts) in the expression data
parameter=rep(NA, ngenes) # Allocate a vector for parameter values
pvalue=rep(NA, ngenes) # Allocate a vector for p-values
for(i in 1:ngenes){ # Loop over the number of transcripts
    # Create a data.frame for lm for transcript i
    data.cur=data.frame(data.exp[i,], annotation[,2], annotation[,3], annotation[,4])
    # Add column names to the data.frame
    colnames(data.cur)=c("Expression", "Group", "Gender", "Age")
    # Fit a linear model
    res.lm=lm(Expression~Group, data=data.cur)
    # Save the parameter 1 ("Group") from the result. Note that res.lm$coef[1] is the intercept.
    parameterl[i]=res.lm$coefficient[2]
    # Calculate p-values (and other stuffs for the model)
    res.summary.lm=summary(res.lm)
    # Extact the p-value. Note that $coefficient after running summar
    # is a matrix with a row for each parameter.
    pvaluel[i]=res.summary.lm$coefficient[2,4]
```

\}

Example: Gene expression in SI-NETs

Histogram of parameter 1

Example: Gene expression in SI-NETs

Example: Gene expression in SI-NETs

Histogram of log10(pvalue1)

Example: Gene expression in SI-NETs

The extended model is

$$
Y_{i, j}=\beta_{0, i}+\beta_{1, i} x_{1, j}+\beta_{2, i} x_{2, j}+\beta_{3, i} x_{3, j}+\varepsilon_{i, j}
$$

Questions

- Is the extended model better in describing the gene expression?
- Does the extended model result in more genes that sigificantly differentially expressed betweenthe 'more aggressive' and 'less aggressive' patient groups?
- Are there any genes where the expression is significantly associated with gender and/or age.

Is the extended model better in describing the gene expression?

Comparison of the adjusted R^{2}

Does the extended model result in more significantly differentially expressed genes?

Are there any genes where the expression is significantly associated with gender and/or age?

Vulcano plot (gender)

Vulcano plot (age)

Introduction to computer exercise 3

Gene expression analysis of patients with and without irritated bowel disease (IBD). The aim is to understand the mechanisms behind Crohn's disease among children.

Introduction to computer exercise 3

patient.id	tissue	Sex	age.at.diagnosis	paris.age	diagnosis
SRR1782694	tissue: Ileal biopsy	Male	10.33	A1b	Not IBD
SRR1782695	tissue: Ileal biopsy	Male	10.83	A1b	Not IBD
SRR1782703	tissue: Ileal biopsy	Female	15	A1b	Not IBD
SRR1782712	tissue: Ileal biopsy	Female	16.92	A1b	Not IBD
SRR1782687	tissue: Ileal biopsy	Female	12.5	A1b	CD
SRR1782697	tissue: Ileal biopsy	Male	9.25	A1a	CD
SRR1782708	tissue: Ileal biopsy	Male	4.5	A1a	CD
SRR1782709	tissue: Ileal biopsy	Female	6.33	A1a	CD
SRR1782716	tissue: Ileal biopsy	Female	8.67	A1a	CD

Summary

- Linear models are highly flexible statistical tools that can be used to analyze gene expression data from RNA-seq experiments.
- Linear models are implemented in R under the Im function.
- Each gene is analyzed separately - this results in a large number of linear models, coefficients and p-values.
- Visualization of the results for all gene simultaneously can be used to verify the model and identify genes that are differentially expressed.
- Adding additional factors may increase the fit of the model, reduce the variability and increase the number of significant genes.

Example 1: Gene expression in SI-NETs

RNA-seq was used to characterize the expression of 45,015 transcripts in small intestinal neuroendocrine tumors (SI-NET). SI-NETs are divided in to two groups depending on its aggressiveness.

Aim: Identify genes that are differentially expressed between the groups

Data: 33 patients were included in the study of which 23 were from the less aggressive group and 10 from the more aggressive group. For each patient, a biopsy was sampled, the RNA extracted, sequenced using standard protocols, preprocessed and transformed and normalized so that the resulting data is approximately normal distributed. For each patient, the age and gender was also recorded.

Example 1: Gene expression in SI-NETs

Let $Y_{i, j}$ is the expression of gene i in patient j and define the independent categorical variable $x_{1, j}$ as

$$
x_{1, j}= \begin{cases}1 & \text { if patient } j \text { has a more aggressive tumor } \\ 0 & \text { if patient } j \text { has a less aggresive tumor, }\end{cases}
$$

A simple linear model can be formulated as

$$
Y_{i, j}=\beta_{0, i}+\beta_{1, i} x_{1, j}+\varepsilon_{i, j}
$$

where $\beta_{0, i}$ is the base line expression of gene I and $\beta_{1, i}$ is the difference in expression in the more aggressive compared to the less aggressive tumor form and $\varepsilon_{i, j}$ is the error for gene i and patient j (normal).

Example 1: Gene expression in SI-NETs

The scientists suspected that the age and gender may be influencing the gene expression and an extended model was therefore formulated. Let $x_{2, j}$ be the age of patient j and let

$$
x_{3, j}=\left\{\begin{array}{lc}
1 & \text { if patient } j \text { is a male } \\
0 & \text { if patient } j \text { is a female. }
\end{array}\right.
$$

The extended model can then be formulated as

$$
Y_{i, j}=\beta_{0, i}+\beta_{1, i} x_{1, j}+\beta_{2, i} x_{2, j}+\beta_{3, i} x_{3, j}+\varepsilon_{i, j}
$$

