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Introduction 

It is time for fourth and final computer exercise in which we will focus on the analysis of 

metagenomic data. In this exercise, we will work with data from amplicon sequencing of the 

16s marker gene as well as shotgun sequencing of all DNA in a sample containing a complex 

mixture of microorganisms. Your role in this exercise is to serve as a bioinformatician at a 

center for environmental monitoring in Mexico. In 2010, the BP drilling platform ‘Deepwater 

Horizon’ located in the Mexican Gulf exploded and sank, resulting in large quantities of crude 

oil released into the aquatic ecosystem. Crude oil contains polycyclic aromatic hydrocarbon 

(PAH) which are known to be highly toxic to a wide range of organisms. There is therefore a 

concern that the oil exposure has resulted in changes in the ecosystems, in particular in the 

microbial communities living in the sediments on the seabed. You have therefore been given 

the important task to investigate the environmental effects of the oil exposure. 

 

 

In order to investigate the effect of the oil exposure, you ordered samples to be collected both 

close to and far away from the bore hole. The latter samples will serve as a control in this 

study. You also arrange sequencing of the samples, both based on the amplicons from the 16s 

marker gene and the total amount of DNA in the sample (i.e. shotgun metagenomics). It is 

now your task to make sense of the resulting data. You are particularly interested in any 

differences in biodiversity but also changes in the the taxonomic composition and the 

biochemical functions as a result of the oil exposure. 

 

The data that you will use in this computer exercise has already been pre-processed and the 

first steps in the bioinformatics analysis has been done. For the amplicon data from the 16s 

rRNA gene, this means that the data has been clustered to form operation taxonomic units 

(OTUs). These OTUs has then been annotated taxonomically. The abundance of each OTU 

has been estimated in each sample by counting the number of matching reads. The shotgun 

metagenomic data has been analyzed by binning the reads against a reference which has been 

 
Figure 1: The Deepwater Horizon was an offshore drilling rig that exploded and sank 2010 causing 

massive releases of oil affecting the aquatic ecosystems. 



functionally annotated using the TIGRFAM database. This database describes a wide range of 

bacterial genes and is described at https://www.jcvi.org/tigrfams. The abundance of each 

TIGRFAM gene has been estimated by counting the number of matching reads. The data and 

the corresponding annotation are available in four files 16s_counts.txt, 16s_annotation.txt, 

gene_counts.txt and gene_annotation.txt which can retrieved from 

http://bioinformatics.math.chalmers.se/courses/MVE510/. 

 

Similar to previous exercises, all steps of the analysis should be done in R. The computer 

exercise should be performed in groups of maximum two students and the results will be 

examined through a written report that describes the different steps you took, the generated 

figures and your conclusions. The written code should be added as an appendix. The reports 

should be handed in through the course home page in Canvas, latest January 10. And as 

always, don’t forget to read and follow the specific guidelines available on the home page 

regarding the structure and formats in which the report should be handed in. 

 

Exercise 1 

 

We will start with analyzing the data from the amplicons of 16s rRNA data. Use read.table to 

load the file 16s_counts.txt and 16s_annotation.txt into R. Note that both of these files are of 

the exact same length and that each row in each of the file correspond to one single OTU. 

Examine the data and describe what you see. How many counts in total does the different 

samples have? How is the annotation file structured? Why do you think that the annotation is 

incomplete for some of the OTUs? 

 

Important: The function read.table has a special interpretation of certain characters that can 

appear in annotation files. Example of such characters are “, ‘ and # where “ and ‘ are 

interpreted as quoting characters while # is interpreted as comment character. In order to read 

the annotation properly, this functionality needs to be turned off, which can be done by adding 

the following arguments to read.table: comment=””, quote=””.  

 

Several of the OTUs have very few counts and does therefore not provide much information 

about their abundance. Remove these OTUs by filtering the data. A suitable cut-off is to 

require each OTU to have at least 5 reads in total over all samples. 

 

Exercise 2 

 

Similarly to transcriptomic data, unsupervised methods can be used to analyze the overall 

structure of the metagenomic data. Use an unsupervised method of your choice (e.g. 

clustering or PCA) to investigate how the six samples are structured. Is there a separation 

between samples form high and low oil exposure? 

 

The data we are working with in this exercise are counts, which have different statistical 

properties than e.g. continuous data from a normal distribution. One such property is that the 

variance is dependent on the expected value, which higher counts have an overall higher 

variability (remember the Poisson distribution which has the same expected value and 

variance). A variance stabilizing transformation can be used to remove, or at least reduce, this 

dependence which makes data easier to interpret. Apply a variance stabilizing transformation 

in the form of 

 

𝑓(𝑥) = 𝑙𝑜𝑔(𝑥 + 1)  

https://www.jcvi.org/tigrfams
http://bioinformatics.math.chalmers.se/courses/MVE510/


 

and redo the analysis above (unsupervised analysis using a method of your choice). Can you 

see any difference? Did the samples within the groups become more or less homogenous? 

 

Exercise 3 

 

Next we will estimate and compare the diversity of the samples. However, most ways to 

calculate the diversity are dependent on the number of read in a sample. For example, the 

number of unique species detected in a sample increases with the number of reads – a high 

sequencing depth thus leads to more detected species. In order to make samples comparable 

we need make their sequencing depth equal. This is typically done by a process called 

rarefaction. When a sample is rarefied, reads are randomly selected without replacement until 

a pre-specified number of reads has been reached. The number of reads is typically set to a 

number less than the number of reads in the sample with lowest sequencing depth. 

 

Implement a function that takes as input three arguments: 1) a character vector of OTU 

name/identifier, 2) a vector of counts for the OTUs and 3) and number indicating the resulting 

sequencing depth. The function should produce a rarified sample to the specified sequencing 

depth and return the corresponding OTUs and their counts. Show that the function works by 

rarifying the 16s count data. Set the sequencing depth to a suitable number. 

 

Hint: Given a character vector of OTUs and a numeric vector with their counts, the following 

lines can be useful: 

 

reads<-rep(OTUs, times=counts) 

reads.sample<-sample(reads, n=10000, replace=FALSE) 

counts.sample<-as.data.frame(table(reads.sample)) 

 

In this code, OTUs is a character vector with the OTU names and counts is a vector of the 

same length but with the counts of each OTU. Note that the code has pre-specified the number 

reads to 10,000 – change this so it fits your data. The last line of the code is necessary to 

ensure that the result is a data.frame (and not a ‘table-type’ object that is produced by the 

function table). When you run this code, check the results from each line so that you are 

aware of how it works. 

 

Exercise 4 

 

The diversity of a microbial community measures reflects the present species and their 

abundance distribution. There are several ways to measure diversity and, in this computer 

exercise, we will work with richness and evenness. Richness describes how many unique 

species that are present and can be estimated by calculating the number of OTUs with a at 

least one read. The evenness describes, in contrast, the uniformity of the species distribution, 

i.e. if the abundance of different species is similar or if there are some species that dominates. 

For a sample, the evenness can be estimated by calculating the so-called Shannon index 𝐻′ 

which is defined as  

 

𝐻′ = − ∑ 𝑝𝑖 log(𝑝𝑖) .

𝑁

𝑖=1

 

Here 𝑁 is the total number of OTUs and 𝑝𝑖 is the relative abundance of OTU i. 



 

Implement functions to estimate the richness (unique number of species) and evenness 

(Shannon’s index). Apply the functions to the data rarified by the function you implemented 

in Exercise 3. Describe the results. Do you see any different in diversity between samples 

from high and low oil exposure?  

 

Exercise 5 

 

Next, we turn the attention to specific OTUs. We are especially interested in differentially 

abundant OTUs, i.e. OTUs with an altered abundance due to the oil exposure. In contrast to 

computer exercise 3, where we used linear model on transformed data, we will here use 

methods that are especially developed for count data. Can you find any arguments why it may 

be especially important to work directly with the count data in this exercise? 

 

The method that we will use for the data is called DESeq2. ‘DE’ in DESeq stands for 

differential expression and the method was originally developed for data from transcriptomics 

(RNA-seq). It has, however, been shown that it also works very well also for metagenomic 

data. DESeq2 uses a statistical model that models the specific structure of count data 

generated when counting fragments from DNA sequencing. This means that it often has a 

higher power than models assuming a Gaussian distribution, especially when there are few 

counts and few samples. Please see the lecture notes for more details about DESeq2.  

 

In order to use DESeq2, we need to load the DESeq2 library using the library command. 

 

To apply DESeq2, we need to specify which of the samples that are exposed to high and low 

concentrations of oil, respectively. This is done using a so-called design matrix. In this 

particular case, where we compare two groups, the design matrix can be specified using a 

data.frame consisting of a single column, where samples exposed to high levels of oil are 

indicated with ‘1’ while samples exposed to low levels of oil are indicated with ‘0’. This tells 

DESeq2 that we are interested in comparing the samples exposed to high levels of oil to those 

that are exposed to low levels of oil where the latter is set as a reference. We can thus create 

the design matrix using 

 

design.matrix<-data.frame(exposure=c(1,1,1,0,0,0)) 

 

Note that the order of the 0s and 1s needs match the samples specified in the 16s_counts.txt 

file. 

 

Once the design matrix has been defined, we can run DESeq2. This consists of two steps. 

First the data and the design matrix need to be combined into a ‘dataset’, which is the form of 

data object that DESeq2 is using. This can be done using the command 

DESeqDataSetFromMatrix, i.e. 

 

counts.ds<-DESeqDataSetFromMatrix(countData=counts, design.matrix, 

design=~exposure) 

 

The last argument is R formula that tells DESeq that we want to compare the samples based 

on exposure. Note that we do not need to use the rarefied data since statistical model 

implemented in DESeq can properly handle data with different sequencing depths. 

 



The next step is to apply the model and test each OTU for differential abundance. This can be 

done using  

 

res.ds<-DESeq(counts.ds) 

 

Finally, DESeq2 has a function called ‘results’ that can be used to print out a list of the 

results. Note that this list in ordered in the same way as the counts you have supplied. Note 

also that you need to specify the arguments independentFiltering=FALSE and 

cooksCutoff=FALSE in order to ensure that adjusted p-values are provided for all OTUs.  

 

Apply DESeq to identify differentially abundant OTUs between samples that are exposed to 

high and low concentrations of oil. Combine the results with the annotation and sort the result 

based on the p-value. How do you interpret the adjusted p-value? Set a reasonable significant 

cut-off and describe how many OTUs that are significant? 

 

Exercise 6  

 

Examine the ten most significant OTU from the analysis done in exercise 5. Describe their 

taxonomy. Do these bacteria increase or decrease in the oil-contaminated samples?  

 

Previously, bacteria from the families Alteromonadaceae and Thiotrichales has been shown to 

be able to degrade the polycyclic aromatic hydrocarbon (PAH) present in crude (see the 

abstract of  https://www.ncbi.nlm.nih.gov/pubmed/22709320 but note that these bacteria are 

named by their genera Alteromonas and Cycloclasticus). Are bacteria from these families 

present in your result? Do they increase or decrease in the exposed sediments? 

 

Exercise 7 

 

We will now turn our attention to the shotgun metagenomic data. Similarly to the 16s data, 

this information also consists of counts. However, in this case, the counts come from binning 

reads based on their function. In this particular dataset, the gene counts have been classified 

based on the TIGRFAM database, which describe a wide range of bacterial genes and 

function. To make you familiar to this database, go to http://tigrfams.jcvi.org/cgi-

bin/index.cgi, select a few TIGRFAM terms and examine their annotation. 

 

Due to the similarity between 16s and gene count data, they are often analyzed using almost 

the same approaches. This is also something that we will do in this computer exercise. Use 

read.table to read gene_counts.txt and gene_annotation.txt into R. Make sure that you 

understand the structure of the data and the annotation. How many reads do you have for each 

sample? 

 

Use a filter to remove genes with very few counts similarly to what you did in Exercise 1. 

Repeat after that steps in Exercise 2 and use an unsupervised method of your choice to 

explore the data. Do the sample separate according to the level of exposure? If not, discuss 

why this may be the case. 

 

  

https://www.ncbi.nlm.nih.gov/pubmed/22709320
http://tigrfams.jcvi.org/cgi-bin/index.cgi
http://tigrfams.jcvi.org/cgi-bin/index.cgi


Exercise 8  

 

Analyze the diversity in the sample by calculating the richness and evenness. Use the 

functions you implemented in Exercise 4. Note that the data, as before, needs to be rarefied in 

order to make the results comparable between samples. What does richness and evenness 

mean when it comes to gene count data? Do you see any differences between the samples? 

 

Exercise 9 

 

Use DESeq2 to identify differentially abundant genes between samples that are exposed to 

high and low concentrations of oil. How many genes are significant? Are the relative 

abundance of the most significant genes increasing or decreasing?  

 

There are several bacterial genes and pathways that are hypothesized to be involved in oil 

degradation. This include various forms of dehydrogenases, in particular the gene pdxA (4-

hydroxythreonine-4-phosphate dehydrogenase).  

 

Find the gene pdxA in the gene list. Does it increase of decrease in the contaminated samples? 

 

Hint: grep can be used to search for a pattern in a vector of strings. 

 

Exercise 10 

 

Summarize and discuss the effects of oil exposure based on all results in the computer 

exercise. In what way does the exposure seem to affect the bacterial communities?  

 


