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Introduction 

The aim of this computer exercise is to take a closer look at genome sequencing. We will 

analyze three datasets, each corresponding to a sequencing experiment of a bacterial genome. 

The aim of the exercise is to get experience of all the major step in the analysis. We will start 

with quality assessment and preprocessing of the reads. After that, the reads will be mapped to 

a reference gene and visualized in a software called Integrative Genome Viewer (IGV). Then, 

the data will be loaded into R, where it will be analyzed and single nucleotide polymorphisms 

(SNPs) be identified.  

An important aim of this exercise is to provide a first introduction to the Linux, which is the 

computer environment used to perform bioinformatics analysis. Since you have not 

previously been working extensively in the Linux environment, the first part of the computer 

exercise comes with detailed direction on how to run commands in Linux. If you have issues 

or questions or issues regarding Linux, don’t hesitate to ask the assistants! 

The computer exercise should be performed alone or in groups of maximum two students. 

Examination will be done through a written report that describes the different steps you took, 

the generated figures and your answers to the questions posed throughout the exercise. Please 

refer to the guidelines on the home page regarding how the report should be strucuted and 

submitted. The reports should be handed in through the course home page in Canvas latest 

December 6th.  

 

Background of the data 

In this computer exercise you place the role as an employee at the Swedish Center for Disease 

Control (Folkhälsomyndigheten). In a recent investigation of disease-causing bacteria, you 

have encountered three suspicious isolates sampled from vegetables in a supermarket. The 

isolates are identified as being form the species Escherichia coli and you fear that this may be 

the start of an outbreak. You therefore want to make sure that this particular form of 

Escherichia coli is treatable with antibiotics. Resistance to antibiotics is often caused by 

mutations in the bacterial genome and you therefore order a whole-genome sequencing of all 

three isolates. The sequencing was done using the Illumina sequencing platform at a read 

length of 100 nucleotides. The sequencing resulted in approximately 1 million reads for each 

isolate. 



Your ultimate aim of this exercise is to decide whether any of the three isolates contains an 

Escherichia coli that is resistant to antibiotics. This will be done by processing and analyzing 

the whole-genome sequencing data and interpret the result. We will start from the very first 

step, with pre-processing the raw data and end with identifying potential mutations and 

examine their biological impact. 

 

Step 1 – Preprocessing and sequence alignment 

The first part of the computer exercise will be done in Linux. This is the computer 

environment for which the vast majority of all methods and software used to handle and 

processes sequencing data are developed for. We will run these methods through the Linux 

shell, which is similar to the command line that is available in Windows. 

You can log in to your account at the Linux system using the Windows software Bitwise. To 

login, write remote11.chalmers.se in ‘Host’ in the ‘Server’ field and your username under 

‘Username’ in the ‘Authentication’ field.  Once you have logged in, a shell is opened which 

we will to execute various bioinformatical methods. An SFTP window is also opened which 

you can use to transfer files between the Windows and Linux systems (you have a file storage 

area on both systems). A list of basic commands that can be used in the shell can be found in 

Table 1 below. 

Note that in this part of the exercise we will only work with a small subset of the sequencing 

data (approximately 10% of the total number of sequence reads). The reason for this is to 

minimize the waiting time and to be able to perform the analysis within the disk quota of your 

student accounts. In step 2 of the exercise, we will however use the full dataset. 

 

Table 1: A list of important Linux commands 

Linux command Description 

Ls Lists all files in the current directory  

cd directory Changes directory to ‘directory’ 

Cd Changes directory to the home directory 

pwd Prints the full path of the current directory 

rm file Removes ‘file’ 

rm –R directory Removes directory and all its content (use with caution!) 

less file Shows ‘file’ on the screen (use ‘q’ to quit less) 

nano file Opens ‘file’ in the basic editor nano 

 

 

Exercise 1: Downloading the sequence files to your Linux account 

Log in to your Linux account. After successfully logging in into the server, you will be placed 

in your home directory. You can, at any point, move back to this directory by simply writing 

$ cd 



‘cd’ is short for ‘change directory’ and when no specific directory is given, it takes you to 

your home directory.  

Create a directory ‘MVE510E2’ to store the data files used in the computer exercise. This is 

done using  

$ mkdir MVE510E2 

where ‘mkdir’ is short for ‘make directory’. You can, if you want, use an alternative name for 

the directory or place it at any other location. Note, however, that the names of directories and 

files in the Linux environment is case sensitive, which means that ‘mve510E2’ and 

‘MVE510E2’ are not identical.  

Enter the new directory by typing 

$ cd MVE510E2 

Next, the sequence data for the computer exercise needs to be downloaded. We will do that 

using the command ‘wget’ which retrieves files available from the web. The files for this 

exercise are located at a local server here at Chalmers and to download them, type 

$ wget  http://bioinformatics.math.chalmers.se/courses/MVE510/genome1.fq.gz 

After the download is complete, the file will be placed in your current directory. The 

downloaded file is compressed with gzip to save space on the hard drive. To decompress the 

file, type 

$  gunzip genome1.fq.gz 

This will generate a new file called genome1.fq. To view the content of this file, type  

$ less genome1.fq 

Is the file a proper FASTQ-file? Can you identify the different parts? 

Download and repeat this procedure for the two other genomes (genome2.fq.gz and 

genome3.fq.gz). 

  

Exercise 2: Preprocessing of the data 

Our next aim is to assess the quality of the downloaded sequence data. This will be done 

using a software called fastqc, which calculates statistics about reads from next generations 

sequencing, including curves of the quality score. This software is run directly on a fastq file 

and summarize the quality of the data. To run fastqc, type  

$ fastqc genome1.fq 

The results from fastqc will be saved in a named genome1.fastq.zip in the same directory 

(type ‘dir’ to list all the files). Transfer the file to your windows account, unzip it and open it 

in your browser (by double clicking on the file ‘fastqc_report.html’). How many sequences 

did the file contain? How are the quality scores distributed over the reads? How is the G/C-

content of the reads?  



Repeat the quality control for the other two files (genome2.fq and genome3.fq) and examine 

the results. How does the quality compare between the samples? Which sample has the worst 

quality? Are there any other differences?  

To remove nucleotides that have a too low quality, the data needs to be processed. This will, 

in this computer exercise, be done using a software call fastx, which can remove reads or part 

of reads based on their quality scores. The software takes a FASTQ-file, a set of parameters 

and generates a new fastq-file containing only the reads that passing a pre-defined quality cut-

off. fastx is, similarly to fastqc, run in the Linux environment.  

We will use fastq_quality_filter to filter the reads. This command takes two parameters, the 

quality score threshold and the minimum percent of nucleotides that needs to be above the 

score threshold. Thus, any read which does not satisfy these parameters will be removed from 

the file (i.e. has more than ‘minimum percent of nucleotides’ with a quality score less than the 

threshold). We will use a quality score threshold of 30 and set the minimum percent of 

nucleotides to 80, i.e. 

$ fastq_quality_filter -i genome1.fq -o genome1.filtered.fq -q 30 -p 80 -Q64 

Here, -i specifies the input file and -o the output file. The flag -Q64 sets the encoding of the 

quality scores used for the FASTQ-files we are using in this exercise. 

Process all three genomes. Then rerun fastqc on the filtered data files. Do you see any 

differences? How many sequences were removed from each of the files? Did the read length 

change? 

Optional: Rerun the preprocessing steps using different parameters and view the results by 

running fastqc. What happens if you use more strict or less strict values? 

 

Exercise 3: Mapping the reads to a reference 

In order to compare the genomes from the three samples, each of them needs to be aligned to 

a reference. In this exercise, we will use a wild-type reference of Escherichia coli called strain 

K12 MG1655. The sequence of the reference can be downloaded using wget by typing 

$ wget 

http://bioinformatics.math.chalmers.se/courses/MVE510/reference_Ecoli_K12_MG1655

.fasta  

Alignment of the read against the reference will be done using a software called BWA (stands 

for Burrows-Wheeler Alignment Tool). BWA works in two stages where it first finds seeds 

by using suffix arrays and the Burrow-Wheeler transform. The read is then extended around 

the seed using the Smith-Waterman algorithm. In order to find the seeds, we first need to 

calculate the index, consisting of the BWT and the corresponding suffix array for the 

reference genome. This can be done by typing 

$ bwa index reference_Ecoli_K12_MG1655.fasta 

After the index has been created, BWA can align reads to the reference. Mapping of the reads 

to the reference can then be done by proving BWA with the reference and the file with the 

sequence reads. 



$ bwa mem reference_Ecoli_K12_MG1655.fasta genome1.fq  > genome1.sam 

The word ‘mem’ decides which specific BWA algorithm to use (BWA contains other 

algorithms not covered by this course). The ‘>genome1.sam’ in the end tells BWA to save the 

output to the file ‘genome1.sam’. This file will be in SAM-format, which stands for ‘sequence 

alignment’. Even though SAM-files are rather complex, they can in text-format and can be 

viewed, e.g.  

$ less genome1.sam 

Does any of the SAM-file make sense to you? Do you see any relevant information? Note that 

you quit less by typing “q”. 

 

Exercise 4: Viewing the results in Integrative Genome Viewer (IGV) 

Integrative Genome Viewer (IGV) is a software for visualizing results from read mapping. 

IGV is installed in the Windows system. Before you transfer our SAM-files to Windows 

systems they need to be converted to a format that IGV can read. This is done in three steps 

using a tool called ‘samtools’. Write 

$ samtools view -b genome1.sam > genome1.bam 

$ samtools sort genome1.bam > genome1.sorted.bam 

$ samtools index genome1.sorted.bam 

This converts the SAM-file into a sorted and indexed BAM-file. An indexed BAM-file is 

organized in a much more efficient way which makes it faster to read. As a consequence, the 

BAM-file is no longer in text format (the ‘B’ in BAM stands for ‘binary’). 

Transferred the resulting file genome1.sorted.bam and genome1.sorted.bam.bai to your 

Windows account and start IGV. Before you load the files into IGV you need to load an 

annotation file corresponding to the reference genome we used. The annotation files are 

available at http://bioinformatics.math.chalmers.se/courses/MVE510/K12.genome.zip (it can 

be downloaded using a web browser). Save K12.genome.zip on your Windows account at the 

same place as the previous files and unzip it. In IGV, load first the annotation file 

K12.genome by selecting Genomes->Load Genome Form File. After that you can load your 

alignment by selecting File->Load from File and then select genome1.sorted.bam. 

Describe what you see. Are the reads organized in any particular way? Can you say anything 

about the coverage? Remember that we only work with 10% of the total data. Do you see any 

sequencing errors? Note that you need to zoom in before any information is shown. (using the 

“+”-sign in the top right corner). 

 

Step 2 – Identification of mutations 

In this part of the exercise we will focus on identifying mutations present in the three bacterial 

isolates. This will require analysis of each position in the three genomes. For this analysis, we 

will use R/Rstudio on the Windows platform. The alignment done in the previous step of the 

http://bioinformatics.math.chalmers.se/courses/MVE510/K12.genome.zip


computer exercise was done on a subset to ensure small files and fast computations (and thus, 

as little waiting time as possible). In the rest of the exercise we will instead use the full data. 

 

Exercise 5: Loading the data into R 

In this part of the exercise we will, however, work with data from the entire dataset. This data 

is available in R datafiles generated directly from the SAM-files produced by BWA (identical 

to what you did previously but using the complete data). Use a web browser to download the 

datafiles ‘genome1.rdata’, ‘genome2.rdata’ and ‘genome3.rdata’ from 

http://bioinformatics.math.chalmers.se/courses/MVE510/  to a directory in your Windows 

account. Start R/Rstudio and change its directory to the place where you downloaded the files. 

You can then load them using the load command. 

> load("genome1.rdata") 

Repeat the process for the two other datafiles. Once loaded, you will get three new objects 

(you can check this by using ‘ls()’) called genome1, genome2 and genome3. Familiarize 

yourself with these objects. How are they organized? Note that the objects are quite large, so 

the commands class, dim, length and head may be useful here. 

 

An important tip for this part of the exercise 

The three data objects are large which means that some of the calculations done in this part of 

the exercise may take some time. This is a very common complication when working with big 

and complex data. A strong recommendation is therefore to create a subset of the first genome 

which you can use to test the code you write. For example, write  

>genome1.subset=genome1[1:1000,] 

>ref. subset=reference[1:1000] 

to store the first 1000 positions in of the first genome in the variable genome1.subset and the 

first 1000 positions of the reference in ref.subset. Processing genome1.subset will be much 

faster than the full genome since it only contains the first 1,000 positions. This makes it 

suitable to verify that the code that you are writing is working properly. Once your code work, 

you can use it on the complete data. 

 

Exercise 6: Coverage 

The coverage is the total number of sequence reads covering a specific genomic position. For 

genome 1, use apply together with sum to calculate the coverage for each position. Calculate 

also the mean coverage over the entire genome. Is the coverage varying? Why? What is the 

maximum coverage? Plot the results for a region covering 1,000 positions. Why is it good to 

have a high coverage? 

 

Exercise 7: Error rate 

http://bioinformatics.math.chalmers.se/courses/MVE510/


Sequencing errors are common, even after the data has been quality assessed. Calculate, for 

each position, the proportion of reads that does not match the reference in genome1. How 

many positions have at least one read with a mismatch? Visualize the proportion of 

mismatching reads over a region covering 1,000 positions.  

 

Hint: This exercise can be efficiently solved by a for-loop looping over the number of 

positions in the genome. Remember that the for-loop in R has the following syntax 

# Syntax for for-loop in R.  

genome1.length=nrow(genome1) # Calculate the length of genome1 

 

# Allocate an empty vector for matches 

matches=vector(length=genome1.length) 

 

for (pos in 1:genome1.length){ 

      

  # Picks the number of reads that has the same nucleotide as  

  # the reference 

  matches[pos] = genome1[pos,reference[pos]]  

 

} 

The code above will, for each position, pick out the number of reads that have  the same 

nucleotide as the reference. Not that this is only possible due to the column names of 

genome1 – for each position the column with the same name as the reference will be used 

(use colnames on the genome1 data object to see what they are).  

 

Exercise 8: A test for single nucleotide polymorphisms 

Next, our aim is to identify position that is caused by differences between the genomes and 

not sequencing errors. This will be done using a statistical test. The test will assume that 

sequencing errors appears randomly and independent between reads and nucleotides. Let the 

random variable 𝑌𝑖 be the number of mismatches at position 𝑖, i.e. the number of reads that 

does not have the same nucleotide as the reference. Furthermore, let Ni be the coverage at and 

pi be the probability for observing a nucleotide different that the reference at position 𝑖. For 

positions where there are no mutations, we expect pi to be small describing only the 

sequencing errors. For positions where we have a mutation, pi is instead expected to be large 

(close to 1 since bacteria are haploid, i.e. only carrying one copy of the chromosome). We 

will therefore use a test to compare the null hypothesis 

𝐻0: 𝑝𝑖 = 𝑝error 

against the alternative hypothesis  

𝐻1: 𝑝𝑖 > 𝑝error. 

Under the assumption that 𝐻0 is true, 𝑌𝑖  can be shown to follow a binomial distribution with 

parameters p0 and Ni. Why? What assumptions are necessary for this to be true? 



We can then, based on our observed data 𝑦𝑖  test 𝐻0 against 𝐻1 by calculating 

pvalue = Prob(𝑌𝑖 ≥ 𝑦𝑖) = ∑ 𝑝𝑌𝑗

𝑁𝑖

𝑗=𝑦𝑖

(𝑗). 

This test is called a binomial test and is implemented in R in the function binom.test. Use the 

R help to read about the binom.test function and the parameter it requires. Implement then an 

R-function that takes the number of mismatches and the coverage at a specific position and 

return a p-value according to the test above.  

Hint: Make sure that your function can handle position that has a coverage of zero (since such 

positions are present in the data). Since these positions are not covered by any sequence read, 

why contain no information. An if-statement in the beginning of your function can be used to 

handle such positions.  

 

Exercise 9: Screening the genome for SNPs 

Apply the function you wrote in the previous exercise to each position in the genome. Again, 

this can easily be solved using a for-loop. Remember that you need to save the output from 

your test function, i.e. the p-values in a vector. After you are done, use order to identify the 

most significant p-values. Are there any positions that show evidence of mutation? What is a 

good p-value cut-off for selecting significant positions? Is there any risk of setting the p-value 

cut-off to high? Repeat the analysis for all three genomes. Which of the genomes has the 

highest number of significant SNPs? 

Note that this analysis may take some time (~10 minutes per genome) so make sure that it 

works properly before you apply it to the full genome (this may also be a good time for a 

coffee break). 

 

Exercise 10: Interpretation of the SNPs – what do they mean? 

Do any of the isolate carry mutations that make them resistant to any antibiotic? Answer this 

question by examining where the three most significant SNPs in each isolate are located. This 

can be done by first looking up the reference genome at the NCBI GenBank database at 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000913.3. This page shows the full annotation of 

the reference genome we have used. Once you have located what gene that is located at the 

position of the mutation you can click on the corresponding GeneID (line that says 

‘/db_xref=GeneID:XXXXX’). At the new page, you will find a genome browser showing the 

annotations. By zooming in to 100%, you can view both the DNA and corresponding amino 

acid sequence. The easiest way to get the codon where the mutation is located, calculate the 

difference between the starting point of the gene and the location of the mutation and divide 

that by three. Be aware that these pages contain a lot of information so take your time. 

One you know about the gene, the codon that is mutated and its alternative codon, use 

PubMed (https://www.ncbi.nlm.nih.gov/pubmed) to search for relevant literature. Can you 

conclude that any of the isolates may be resistant to antibiotics? Which isolate and what kind 

of antibiotics? 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000913.3
https://www.ncbi.nlm.nih.gov/pubmed

