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Introduction 

Welcome to computer exercise 3, in which we will take a close look at the analysis of 

transcriptome sequencing data generated in RNA-seq experiments. In this computer exercise, 

you will analyze a large-scale dataset where RNA has been extracted from biopsies from 80 

patients with and without a disease. The aim of the exercise is to perform all the necessary 

steps in the data analysis in order to identify the genes that are differentially expressed 

between the groups of patients.  

 

Similar to previous exercises, all steps of the analysis should be done in R. The computer 

exercise should be performed in groups of maximum two students and the results will be 

examined through a written report that describes the different steps you took, the generated 

figures and your conclusions. The written code should be added as an appendix. The reports 

should be handed in through the course home page in Canvas, latest 20th December. Note that 

there are specific guidelines on the home page regarding the structure formats in which the 

report should be handed in. 

 

Background and description of the data 

In this exercise, you are working as a bioinformatician at a hospital where you are involved in 

a project investigating the molecular causes behind Chron’s disease, a type of inflammatory 

bowel disease associated with several sever symptoms including abdominal pain, anemia, and 

arthritis. The cause of Chron’s disease is today unknown and an important aim of the project 

is to investigate differences in gene expression in ileum (tissue from the final section of the 

small intestine) between healthy and sick patients.  

 

In the project, a cohort of 80 children are studied. The cohort includes 40 children with 

Chron’s disease and 40 children without any symptoms of inflammatory bowel disease (IBD), 

which are used as controls in the study. IBD is an umbrella term used to describe chronic 

inflammation of the digestive tract and includes both Ulcerative colitis (UC) and Chron’s 

disease (CD), where the latter is a more severe form of inflammation. Your task, as a 

bioinformatician, is to investigate which gene expression patterns that are associated with the 

disease and have therefore conducted a large transcriptome sequencing study. You are also 

interested in if there are any correlations between age, gene expression and the disease. 

 

Biopsies of the ileum of the 80 patients were used to extract RNA which then were sent for 

sequencing using an Illumina Hiseq 2000 machine. The raw reads were quality checked and 

mapped to the human reference genome Hg19 (GRCh37), resulting in around 58,000 genes 

(transcripts) being identified and quantified. The raw gene counts (number of mapped reads 

per gene and sample) are used as input for your analysis, together with a data file containing 

information about the 80 patients involved in the study. 

 

To do this exercise, you will need two datafiles. The file ‘count_matrix.txt’ contains the raw 

gene counts for each gene and each sample. The file ‘metadata.txt’ contains metadata (i.e. 

data for the data) for each sample, for example, the gender and age of each patient. Both files 



are available at http://bioinformatics.math.chalmers.se/courses/MVE510/ and can be 

downloaded by using your favorite browser. 

 

Exercise 1: Load and filter the data 

 

Start with loading the data into R. The counts matrix is a tab-separated text file and can be 

loaded into R using the function read.table, and stored in the variable x. 

 

>  x = read.table('counts_matrix.txt') 

 

How many genes and how many samples are present in the counts matrix? 

 

Continue with loading the metadata file. Here you need to specify that it is a tab separated 

file, and that the first line is a header. 

 

> metadata = read.table('metadata.txt',sep='\t',header=TRUE) 

 

Explore the counts matrix and the metadata using e.g. head and summary to get an overview 

of the dataset. How many male and female patients are there? How many have the disease?  

 

You can also use the View command to explore the data inside a matrix or data frame. 

 

> View(x) 

 

In this exercise, you will need to extract information from the metadata. The following 

commands might be useful for this. What are they doing? 

 

> rownames(x) 

> colnames(x) 

> metadata$patient.id 

 

Also, for convenience, patients in the metadata file and the counts matrix should match and 

thus be stored in the same order. To verify that this is the case, write 

 

> colnames(x) == metadata$patient.id 

 

It is sometimes useful to extract the gene expression data for a particular gene. Remember that 

you can subset a matrix using x['ENSG00000004809',] if 'ENSG00000004809' is present in 

rownames(x). Use this to look up the raw expression levels (i.e. the counts) for the two genes 

ENSG00000002586 (CD99) and ENSG00000004809 (SLC22A16). Describe the expression 

patterns for these two genes. 

  

The next step is to perform a filtering where genes only represented by a small number of 

counts are removed. If the expression level of a gene is measured by only a few sequence 

reads, its expression level is uncertain and the statistical power to identify the gene as 

differentially expressed can be low. In this computer exercise, we will use the criterion that at 

least 20 of the samples (i.e. 25% of the total samples) should have a non-zero count. 

Otherwise the gene will be removed. Write a function called count.nonzero that takes the 

counts for one gene (one row in the counts matrix) and counts how many samples that have a 

count larger than 0 for this gene.  

http://bioinformatics.math.chalmers.se/courses/MVE510/


 

Hint: remember that check xrow>0 returns a vector with TRUE or FALSE values for each 

element in xrow. If you use sum on this vector it will count 1 for TRUE and 0 for FALSE. 

Use apply or a for-loop to apply your function to all rows in the count matrix, resulting in the 

number of non-zero entries for each gene. If you use a for-loop, remember to initiate the 

variable before the loop.  

 

Create a new matrix called x.filtered containing only genes that have non-zero values in at 

least 25% of the samples. How many genes are left after the low expression filtering? 

 

Exercise 2: Normalization and transformation of the data (logCPM) 

 

The next step is to normalize your data across samples. Write your own code or function that 

calculates counts per million (CPM). The CPM count is the original count (number of reads) 

per 1,000,000 total mapped reads in that sample. In this way the data is normalized across 

samples by dividing by the total count of each sample. However, start with adding an offset 

(pseudocount) of 1 to each count to avoid taking the logarithm of 0. Remember to use the 

filtered data, i.e. x.filtered. Why is it important to normalize the data across samples? 

 

Continue with log transformation of the CPM values to get logCPM. What is the main reason 

to transform the counts using the logarithm? 

 

Exercise 3: Explore the data 

 

Examine distribution of the data after the preprocessing in the previous exercise. Use boxplot 

to plot the distribution of gene expression each sample (next to each other in the same plot). 

Add a title to the plot and a label to the y-axis. For comparison, create boxplots also for the 

log-transformed non-normalized data. How does the distribution of counts look after 

normalization? Does it look as expected?  

 

Use plot to draw a scatter plot for two of the samples. Plot the the logCPM counts (of all 

genes) for sample 1 (SRR1782694) on the x-axis and the logCPM counts for sample 41 

(SRR1782687) on the y-axis. The genes that are above the line x=y have a higher expression 

in sample 41 than in sample 1, and the genes below the line have a lower expression. How do 

you explain the ‘stripes’ of genes that you can see at the bottom and left of the plot?  

 

Exercise 4: Linear models to find differentially expressed genes 

 

In this part we will perform statistical analysis of one single gene to see if it is differentially 

expressed when comparing different groups. In the next exercise we will generalize this 

analysis to all genes. Start with extracting the counts over the 80 samples for the first gene: 

ENSG00000000003 (TSPAN6). Plot the normalized and log transformed counts grouped by 

their diagnosis, i.e. Chron’s disease and controls, either by using boxplots or by plotting the 

mean and standard deviations of each group. Can you see from the plot if there is a difference 

in expression between the two groups for the gene ENSG00000000003? Remember that age 

and gender dependence are not accounted for in this grouping. 

 

Test if the gene is differentially expressed when comparing the two disease groups. Start with 

fitting a linear model, using lm, that only models the disease groups and call the results fit1. 

Then, fit another model that takes three factors into account, namely age, gender and disease, 



and save the results in the variable fit2. The age factor should be continuous and the other two 

categorical. For information on how to use the lm command see the lecture notes or use the 

help command. 

 

For the categorical variables it is useful to convert them into factors in R before specifying the 

model. If you have a vector called diagnosis, first convert it to a factor using 

 

>diagnosis=as.factor(diagnosis) 

 

Check which levels the factor has using levels(diagnosis). The first level will be used as a 

reference and the other levels will be compared to that level. If you want to use another 

condition as reference you can use the relevel command. 

 

Is the gene ENSG00000000003 differentially expressed when comparing the two diagnosis 

groups, when using the first linear model (fit1)? What is the p-value? Is the gene significantly 

differentially expressed using the second linear model (fit2)? Is the gene up-regulated or 

down-regulated in the disease group compared to the controls? What is the effect size, i.e. the 

value of the parameter associated with the independent variable specifying if the patient is 

sick or healthy? Is the expression of the gene influenced by age or gender? What is the 

difference of using the model in fit2 compared to fit1? 

 

Hint: Remember that you can use summary to generate additional information about the 

fitted linear model and summary(fit1)$coefficients to extract p-values. 

 

Exercise 5: Linear models to find differentially expressed genes, all genes 

 

Apply the analysis above to all the genes. Write a for-loop that goes through all genes and 

saves the p-value and estimated coefficient value for each gene for the disease vs. control 

comparison. Try with both models, i.e. the models in fit1 and fit2 from the previous exercise. 

Fitting the model for all genes may take a few minutes, so be patient. After the for-loop, 

adjust the p-values for multiple testing using p.adjust. Use the False Discovery Rate (FDR) 

method. Why is it, in this case, important to adjust the p-values for multiple testing? 

 

How many genes are significantly differentially expressed when using the first model (only 

one factor)? What false discovery rate cutoff did you use? How many genes are differentially 

expressed (comparing disease to control) when using the second model (three factors)? Out of 

the significant genes, how many are up-regulated and down-regulated respectively, when 

comparing disease to control? Explain also the reason for calculating the FDR in this case and 

how it can be used to ensure that the results do not contain a large number of false positives. 

 

Hint: use cbind to combine the vectors with coefficients and adjusted p-values, add rownames 

(make sure that they are in the same order), and then subset the resulting matrix twice, or use 

& (have a look at help('&')). 

 

Which gene is the most significant when comparing disease to control? Is it up- or down-

regulated in the disease group? What is the effect size (log fold-change)? Explain the role of 

this gene and try to explain why it is differentially expressed in the patients with Chron’s 

disease.  

 



The file geneAnnotation_GRCh37.87.txt, available at 

http://bioinformatics.math.chalmers.se/courses/MVE510/,  contains descriptions of the genes 

present in the dataset. Have a look at the other top 5 most significant genes. Are they up- or 

down-regulated? What are they doing? Can you explain their role based on the biological 

question in this study? 

 

How many genes are significantly associated with age and gender respectively? Which gene 

is the most significant for the gender factor? Why do you think it is differentially expressed? 

 

Exercise 6: Hierarchical clustering of the most significant genes 

 

In this part we will perform hierarchical clustering of the top 100 most significantly 

differentially expressed genes (considering the diagnosis factor). The heatmap.2 function in 

the gplots package calculates a matrix of Euclidian distances and performs a hierarchical 

clustering of the genes and draws a heatmap of the clustered counts matrix. Hierarchical 

clustering is an unsupervised clustering and the heatmap is a way to visualize the clustering of 

the genes and samples. Start with extracting the logCPM counts over all 80 samples for the 

100 most significant genes regarding the diagnosis (using the fit2 model) and save it in a 

matrix called xsig.  

 

We will use the package RColorBrewer to produce a nice color scheme for the heatmap. Start 

by loading the packages gplots and RColorBrewer. 

  

Define the colors using the color scheme 'RdYlBu', interpolate to get more colors and save the 

colors in reverse order, using the following code: 

 

> mypalette = brewer.pal(11,"RdYlBu") 

> morecols = colorRampPalette(mypalette) 

> mycols=rev(morecols(255)) 

 

Also create a vector with colors that we will use to label the columns of the logCPM matrix 

according to the diagnosis of the samples, for example: 

 

> column.cols=c("purple","orange")[metadata$diagnosis] 

 

The function heatmap.2 plots a heatmap, and automatically clusters both the rows and the 

columns of the input matrix, behind the scenes. Plot the heatmap of the xsig matrix and save it 

as a pdf, using the following code: 

 

> pdf("top100sigGenesHeatmap.pdf",height=9,width=6) 

> heatmap.2(xsig,trace='none',col=mycols,main='The 100 most significant 

genes',ColSideColors=column.cols) 

> dev.off() 

 

Did the samples cluster as expected? Describe the clustering of the genes, how do the genes 

group together in the clustering? 

 

Exercise 7: Principal component analysis 

 

http://bioinformatics.math.chalmers.se/courses/MVE510/


Principal component analysis (PCA) is another way to visualize the data. It is often used as a 

tool for visualization and quality assessment of the data. Here we will visualize the samples 

based on the expression (logCPM) of all genes. PCA is a mathematical technique that 

transforms and projects the variables onto linearly uncorrelated and orthogonal principal 

components.  

 

Perform a PCA on the transposed logCPM matrix, to get a representation of the samples, 

based on the expression of all genes. This can be done using the prcomp function, 

 

> pca=prcomp(t(logcpm)) 

 

Note that the matrix here needs to be transposed using the function t, otherwise prcomp will 

perform the PCA on the genes (i.e. the rows in the matrix) instead of the samples. 

 

Explore the pca variable by using summary(pca). The values of the principal components are 

in pca$x. How much of the variability in the data is explained by the first two principal 

components (PC1 and PC2)? 

 

Plot the first two principal components against each other in a scatter plot. Color the samples 

based on their diagnosis. Here you can reuse the column.cols vector from the previous 

exercise. Are the first two components sufficient to separate the Chron’s disease samples from 

the controls? Try to include the third principal component as well, for example by plotting 

PC1 against PC3 and PC2 against PC3. Do you see any separation in any of the groups? Are 

any of the samples problematic? Why could that be? Color the samples based on gender as 

well. Do the groups separate in the plot? 


