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Lecture notes: Linear model for RNA-seq analysis 
 

 

 

Background 
 

Linear models are a set of versatile tools for describing, investigating and statistically assess 

dependencies between measured variables. The linear models describe the relation between a 

‘dependent’ variable and a set of covariates, called ‘independent’ variables. The dependent 

variable is typically an outcome of an experiment while the independent variables are inputs or 

parameters that are varied in the experimental setting. Linear models have a strong resemblance 

with other forms of commonly used statistical methods, such as ANOVA and the t-test, but 

offers a much higher degree of flexibility. In particular, linear models make it possible to add 

almost any number of independent variables that can be of a wide range of types and forms 

(e.g. categorical, continuous, etc).  

 

Linear models are general statistical tools and can be applied to a large variety of problems. In 

these lecture notes, however, our man aim is to introduce linear models as a tool for the analysis 

of the expression level of genes measured by an RNA-seq experiment. In particular, we will 

introduce linear models as a way to model the gene expression as a function of the experimental 

conditions and thereby identify important patterns in the data.  

  

 

General definition and notation 
 

We will start by defining the concept of linear models and introduce basic notations. Assume 

that the random variable 𝑌𝑗 (𝑗 = 1,… ,𝑚) is the outcome of an experiment that has been 

performed. We will furthermore assume that  𝑌𝑗 is dependent on a set of experimental 

conditions captured by the variables 𝑥1,𝑗, 𝑥2,𝑗, … , 𝑥𝑝,𝑗. Note that 𝑥1,𝑗, 𝑥2,𝑗 , … , 𝑥𝑝,𝑗 can be of 

different types, including both categorical (e.g. ‘on/off’, ‘exposure/no exposure’, 

‘sick/healthy’) or continuous (‘concentration’, ‘time’, etc). The linear model aims to describe 

the linear relationship between 𝑌𝑗  and 𝑥1,𝑗 , 𝑥2,𝑗 , … , 𝑥𝑝,𝑗. The variable 𝑌𝑗 is therefore called the 

dependent variable while 𝑥1,𝑗, 𝑥2,𝑗, … , 𝑥𝑝,𝑗 are called independent variables. 

 

The linear model can be specified through the equation 

 

𝑌𝑗 = 𝛽0 + 𝛽1𝑥1,𝑗 + 𝛽2𝑥2,𝑗 +⋯+ 𝛽𝑝𝑥𝑝,𝑖 + 𝜀𝑗 

 

Here, the parameter 𝛽0 is called the intercept and describe the baseline of 𝑌𝑗, i.e. the value when 

all dependent variables are zero. The parameters 𝛽1, … , 𝛽𝑝 describe how the independent 

variable influence the dependent variable 𝑌𝑗. A parameter that has a non-zero value means that 

the independent variable influences the dependent variable. If, on the other hand, the value is 

zero or close to zero, the corresponding independent variable has no or little effect on the 

dependent variable. The parameters 𝛽0, 𝛽1, … , 𝛽𝑝 are typically unknown and needs to be 

estimated from the data.  
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The last term, 𝜀𝑖, is an error term and describes the changes in the dependent variable that is 

not explained by the independent variables. The typically includes various forms of 

measurement errors as well as other experimental conditions that, for some reason, are not 

included in the model (e.g. because they were not observed in the experiment). In the linear 

model 𝜀𝑖 is assumed to be independent and to be normally distributed with expected value 0 

and variance 𝜎2, i.e. 

𝜀𝑗~Normal(0, 𝜎
2). 

 

The linear model describes function between the expected outcome of 𝑌𝑗 and the independent 

variables. Indeed, taking the expected value of 𝑌𝑗 gives us  

 

Exp[𝑌𝑗] =  𝛽0 + 𝛽1𝑥1,𝑗 + 𝛽2𝑥2,𝑗 +⋯+ 𝛽𝑝𝑥𝑝,𝑗. 

 

An important property of the linear model is that the independent variables can be arbitrarily 

transformed before included in the linear model. We can, for example, define 𝑥𝑗,1as 

 

𝑥𝑗,1 = 𝑓(𝑧𝑗,1) 

 

where 𝑧𝑗,1 is the input to the experiment and f is an arbitrary, typically monotone, function (e.g. 

square-root or the natural logarithm). These forms of transformations can be important to 

properly describe the association between the dependent and independent variables. For 

example, in toxicology the effect of a chemical is often tested along an exponential scale, e.g. 

experiments are performed for e.g. 0.1, 1, 10, 100 and 1000 nM of a certain toxicant. 

Transforming these values using a logarithm transform is often advised since this will distribute 

the concentrations more uniformly. 

 

There are several special cases of linear models. 

  

Special case 1: If 𝑝 = 1 and 𝑥𝑗,1 takes values along the x-axis, the linear model is reduced to 

the simple regression model, i.e.  

 

𝑌𝑗 = 𝛽0 + 𝛽1𝑥𝑗,1 + 𝜀 

 

This model describes a line through the plane where 𝛽0 is the point where the line crosses the 

y-axis and 𝛽1is the slope. 

 

Special case 2:  If 𝑝 = 1 and 𝑥𝑗,1 is a categorical variable taking on two values that indicating 

if sample j belongs to category 1 or 2 the corresponding linear model,  

 

𝑌𝑗 = 𝛽0 + 𝛽1𝑥𝑗,1 + 𝜀 

 

is equivalent to a t-test assuming equal variance between the two categories. If instead 𝑥𝑗,1 

takes k values indicating if sample j belongs to category 1, 2, …, k, the linear model will instead 

correspond to a one-way ANOVA. Technically, a categorical variable of more than two 

categories needs to be encoded into multiple binary variables when the model is fit. This is 

however done automatically by most statistical software. 
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These special cases show that linear models are flexible and captures many of the existing 

statistical methodologies under one single framework. 

 

Linear models for analyzing gene expression in RNA-seq experiments 
 

Our aim is to use linear models to analyze gene expression in RNA-seq experiments. In RNA-

seq experiments, the expression of 10,000 to 100,000 genes/transcript is typically measured  

simultaneously. All these genes/transcripts can follow their own specific expression profile 

over the sample included in the experiment and thus needs to be modelled separately. This is a 

fundamental difference to the formulation of the linear model above, which was formulated for 

one single dependent variable. For our RNA-seq data we need instead 10,000 to 100,000 linear 

models!  

 

We will here assume that the raw RNA-seq data has been properly pre-processed. This means 

that the generated reads have been quality assessed, aligned to a reference and the transcript 

abundances have been estimated. We will also assume that the resulting data has been 

normalized and transformed to be approximately follow a normal distribution. Exactly how 

this should be performed is dependent on the dataset and how the RNA-seq data was generated 

and will not be covered here. We will simply assume that these prior steps were successful. 

 

Furthermore, assume that we have n genes in the RNA-seq experiment and m samples in total. 

Let 𝑌𝑖,𝑗 be the expression level of gene i in sample j. The expression for each gene i and sample 

j will be described using a linear model following the same structure as above, i.e.  

 

𝑌𝑖,𝑗 =  𝛽0,𝑖 + 𝛽1,𝑖𝑥1,𝑗 + 𝛽2,𝑖𝑥2,𝑗 +⋯+ 𝛽𝑝,𝑖𝑥𝑝,𝑗 + 𝜀𝑖,𝑗 . 

 

Please note that the indexing of the parameters and independent variables. The parameters are 

gene-specific, i.e. different for each gene, and are therefore indexed with i. Since all genes are 

measured in one single experiment, the independent variables are the same and does not depend 

on the gene. They vary, however, between the different samples as before and are therefore 

indexed with j.  

 

The error term 𝜀𝑖,𝑗 is assumed to be independent between both genes and samples and follows 

a normal distribution with expected value 0 and variance 𝜎𝑖
2. Thus, the variability is assumed 

to be different for different genes. This assumption can be supported by biological arguments. 

Some genes, for example actins, are known to have an often high and relatively stable 

expression between samples and experimental conditions (sometimes called ‘housekeeping 

genes’). Other forms of genes can instead vary substantially. For example, the gene SRY, 

which is one of the few genes located on the human Y-chromosome, is only expressed in males 

and will therefore vary a lot between samples in experiment based on human tissue that 

includes both sexes. 

  

To demonstrate how linear models can be formulated for RNA-seq data we will now take a 

look on a few examples. 

 

Example: Gene expression in malign and benign cancer 

 

In a scientific study, RNA-seq was used to characterize the expression of 45,015 transcripts 

(‘genes’) in small intestinal neuroendocrine tumors (SI-NET), a relatively uncommon form of 
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cancer that is often associated with poor prognosis. SI-NETs can be divided into two groups 

depending on its aggressiveness. In this study, the scientists wanted to analyze the expression 

of tumors from these two groups and identify genes that are differentially expressed. In total, 

33 patients were included in the study of which 23 were from less aggressive group and 10 

from more aggressive group. For each patient, a biopsy was sampled, the RNA extracted, 

sequenced using standard protocols, preprocessed and transformed and normalized so that the 

resulting data is approximately normal distributed. For each patient, the age and sex were also 

recorded.  

 

The expression of each genes was described using a linear model. If we define the independent 

variable 𝑥1,𝑗 as  

 

𝑥1,𝑗 = {
1    if patient 𝑗 has a more aggressive tumor,
0    if patient 𝑗 has a less aggresive tumor,     

 

 

the model can be formulated as 

 

𝑌𝑖,𝑗 = 𝛽0,𝑖 + 𝛽1,𝑖𝑥1,𝑗 + 𝜀𝑖,𝑗 . 

 

Here, 𝑌𝑖,𝑗 is the expression of gene i in patient j, 𝛽0,𝑖 is the base line expression of gene i, 𝛽1,𝑖 

is the difference in expression in the more aggressive compared to the less aggressive tumor 

form and 𝜀𝑖,𝑗 is the error for gene i and patient j. Note that a positive value of 𝛽1,𝑖 means higher 

expression in the more aggressive tumors, while a negative value means a higher expression in 

the less aggressive tumors. If 𝛽1,𝑖 is close to zero there is no difference between the tumor 

types. 

 

The scientists suspected that the age and sex may be influencing the gene expression and an 

extended model was therefore formulated. Let 𝑥2,𝑗 be the age of patient j. Also, let  

 

𝑥3,𝑗 = {
1    if patient 𝑗 is a male,    
0    if patient 𝑗 is a female.

 

 

The extended model can then be formulated as 

 

𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑥1𝑗 + 𝛽2𝑖𝑥2𝑗 + 𝛽3𝑖𝑥3𝑗 + 𝜀𝑖𝑗 . 

 

The focus of this model is still 𝛽1,𝑖, i.e. the difference in gene expression between more and 

less aggressive tumor forms. Adding 𝑥2,𝑗 and 𝑥3,𝑗 will however explain the variability in gene 

expression patterns that is caused by differences in age and sex of the patients. 

 

Example: gene expression in fish exposed to toxicants 

 

Synthetic estrogens, such as etinylestradiol, that are used in contraceptives reach the aquatic 

environment through our waste water treatment plants. Even in low concentrations, 

etinylestradiol have been hypothesized to cause adverse effects in fish by perturbing their 

hormone levels and making them sterile. This hypothesis was investigated by environmental 

researchers who conducted an experiment where fish from the species Onchorynchus mykiss 

(rainbow trout) were exposed etinylestradiol. After two weeks of exposure, the livers were 

harvested from the fish and analyzed using RNA-seq to examine the gene expression. The 
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exposure experiment was performed in four aquaria with increasing concentrations of 

etinylestradiol in increasing concentrations: 10 ng/L, 100 ng/L, 1000 ng/L and 10ug/L. In 

addition, a reference aquarium with water with no etinylestradiol was also included.  

 

The researchers wanted to identify genes that had increased or decreased the expression with 

increasing levels of etinylestradiol. This was done by formulating a regression model where 

the expression of gene g and sample j was assumed to depend on the etinylestradiol 

concentration (𝑥1,𝑗), i.e. 

 

𝑌𝑖,𝑗 = 𝛽0,𝑖 + 𝛽1,𝑖𝑥1,𝑗 + 𝜀𝑖,𝑗 . 

 

Here 𝛽0,𝑖 is the intercept and 𝛽1,𝑖 the slope of the regression curve. In order to distribute the 

concentrations along the x-axis, the concentration variable was transformed into uniform steps 

with the control starting at the value of 0, the lowest concentration at 1 and so on ending with 

the highest concentration at the value of 4. This corresponds to a log10-transformation of the 

concentrations where the control has been added at 0 and with the other transformed 

concentrations starting at 1. 

 

From previous experiences, the researchers know that fish that have lived in the same aquarium 

may show similar gene expression patterns. This can, for example, caused by the social 

structure of the fish in the aquaria which can induce a stress response in some individuals. In 

order to include this effect into the model, the variable 𝑥2,𝑗 taking values from the categories 

“aquarium 1”, “aquarium 2”, “aquarium 3” and “aquarium 4”, was included into the model. 

The resulting model then becomes  

 

𝑌𝑖,𝑗 = 𝛽0,𝑖 + 𝛽1,𝑖𝑥1,𝑗 + 𝛽2,𝑖𝑥2,𝑗 + 𝜀𝑖,𝑗. 

 

Identification of differentially expressed genes can be preformed by analyzing the parameter 

for the first independent variable, i.e. 𝛽1,𝑖. Note that this model combines a continuous variable 

(𝑥1,𝑗) with a categorical variable (𝑥2,𝑗) and thus a combination of a standard regression and 

ANOVA-analysis.  

 

Estimation of parameters 

 

We will now turn our attention on the estimation of the parameters in the linear model. 

Estimating the parameter values are done using computer algorithms but knowledge about the 

underlying techniques are necessary for a proper interpretation.  

 

The parameters in linear models are estimated using the method of maximum likelihood. Thus, 

to find our estimates, the likelihood function needs to be formulated and then maximized. The 

data that will be used to estimate the parameters are observations of the dependent and 

independent variables and these comes in n tuples, one for each of the m samples. Thus, for a 

specific gene i the observations are (𝑦𝑖1, 𝑥11, … , 𝑥𝑝1), … , (𝑦𝑖𝑚, 𝑥1𝑚, … , 𝑥𝑝𝑚). Furthermore, 

since 𝜀𝑖𝑗 is normally distributed it follows that 

 

𝑌𝑖𝑗~Normal(0, 𝜎𝑖
2). 

 

The density function for 𝑌𝑖𝑗 for a gene i and sample j can then be written as 
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𝑓(𝑦𝑖𝑗, 𝑥1,𝑗, … , 𝑥𝑝,𝑗 ) =
1

√2𝜋𝜎𝑖
2
𝑒
−
(𝑦𝑖𝑗−(𝛽0,𝑖+𝛽1,𝑖𝑥1,𝑗+𝛽2,𝑖𝑥2,𝑗+⋯+𝛽𝑝,𝑖𝑥𝑝,𝑗))

2

2𝜎𝑖
2

, −∞ < 𝑦𝑖𝑗 < ∞.  

 

The likelihood function L for gene i can then formulated as the product of the density over all 

samples, i.e. 

 

𝐿(𝛽0𝑖, 𝛽1𝑖, … , 𝛽𝑝𝑖, 𝜎𝑖
2) =  ∏𝑓(𝑦𝑖𝑗 , 𝑥1𝑗 , … , 𝑥𝑝𝑗 )

𝑛

𝑗=1

. 

 

The corresponding log likelihood function becomes 

 

𝑙(𝛽0𝑖, 𝛽1𝑖, … , 𝛽𝑝𝑖, 𝜎𝑖
2) = log 𝐿(𝛽0𝑖, 𝛽1𝑖, … , 𝛽𝑝𝑖, 𝜎𝑖

2) =∑log 𝑓(𝑦𝑖𝑗, 𝑥1𝑗 , … , 𝑥𝑝𝑗  )

𝑛

𝑗=1

 

 

Using some algebra, the log likelihood function can be shown to be  

 

𝑙(𝛽0𝑖, 𝛽1𝑖, … , 𝛽𝑝𝑖, 𝜎𝑖
2) = 

−
𝑛

2
log 2𝜋 −

𝑛

2
log 𝜎𝑖

2 −
1

2𝜎𝑖
2∑(𝑦𝑖𝑗 − (𝛽0𝑖 + 𝛽1𝑖𝑥1𝑗 + 𝛽2𝑖𝑥2𝑗 +⋯+ 𝛽𝑝𝑖𝑥𝑝𝑗))

2
𝑛

𝑗=1

 

 

This function can be maximized to find point estimates of the parameters. For 𝛽0,𝑖, … , 𝛽𝑝,𝑖 this 

is equivalent to minimizing  

 

∑(𝑦𝑖𝑗 − (𝛽0,𝑖 + 𝛽1,𝑖𝑥1,𝑗 + 𝛽2,𝑖𝑥2,𝑗 +⋯+ 𝛽𝑝,𝑖𝑥𝑝,𝑗))
2

,

𝑛

𝑗=1

 

 

that is, solving a least squares problem (you probably recognize this from e.g. simple regression 

and ANOVA). Taking the partial derivative of the expression above generates a system of 

equations,  

 

{
 
 
 
 

 
 
 
 ∑𝑦𝑖𝑗      = 𝑛𝛽0𝑖            + 𝛽1𝑖∑𝑥1𝑗       + 𝛽2𝑖∑𝑥2𝑗       + ⋯+ 𝛽𝑝𝑖∑𝑥𝑝𝑗

∑𝑦𝑖𝑗𝑥1𝑗 = 𝛽0𝑖∑𝑥1𝑗 + 𝛽1𝑖∑𝑥1𝑗
2       + 𝛽2𝑖∑𝑥1𝑗𝑥2𝑗 +⋯+ 𝛽𝑝𝑖∑𝑥1𝑗𝑥𝑝𝑗

∑𝑦𝑖𝑗𝑥2𝑗 = 𝛽0𝑖∑𝑥2𝑗 + 𝛽1𝑖∑𝑥1𝑗𝑥2𝑗 + 𝛽2𝑖∑𝑥2𝑗
2       + ⋯+ 𝛽𝑝𝑖∑𝑥2𝑗𝑥𝑝𝑗

                                                                    ⋮

∑𝑦𝑖𝑗𝑥𝑝𝑗 = 𝛽0𝑖∑𝑥𝑝𝑗 + 𝛽1𝑖∑𝑥1𝑗𝑥𝑝𝑗 + 𝛽2𝑖∑𝑥2𝑗𝑥𝑝𝑗 +⋯+ 𝛽𝑝𝑖∑𝑥𝑝𝑗
2

 

 

that can be solved numerically. This results in point estimates �̂�0,𝑖, �̂�1,𝑖, … , �̂�𝑝,𝑖 of the true 

parameters 𝛽0,𝑖, 𝛽1,𝑖, … , 𝛽𝑝,𝑖. 

 

The variance parameter, 𝜎𝑖
2, can also be estimated by maximum likelihood and shown to be 
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�̂�𝑖
2 =

1

𝑛 − (𝑝 + 1)
∑(𝑦𝑖𝑗 − �̂�𝑖𝑗)

2
,

𝑛

𝑗=1

 

where  

 

�̂�𝑖𝑗=�̂�0𝑖 + �̂�1𝑖𝑥1𝑗 + �̂�2𝑖𝑥2𝑗 +⋯+ �̂�𝑝𝑖𝑥𝑝𝑗 

 

and p is, as before, the number of independent variables. 

 

Inference of parameters 
 

A usual form of inference performed in a linear model is to analyze if a specific independent 

variable is associated with the dependent variable. This is typically done using a statistical test. 

If, for a specific gene i, we are interested in if 𝑥𝑘𝑗 is associated with 𝑌𝑖𝑗 over the samples 𝑗 =

1, … ,𝑚, we can test whether its corresponding parameter 𝛽𝑘𝑖 is zero or, alternatively, has a 

non-zero value. Statistically, this can be formulated by the hypotheses 

 
𝐻0: 𝛽𝑘𝑖 = 0,
𝐻𝐴: 𝛽𝑘𝑖 ≠ 0.

 

 

These hypotheses can be tested using the fact that the point estimate �̂�𝑘𝑖 follows a normal 

distribution, i.e. 

 

�̂�𝑘𝑖~Normal (𝛽𝑘𝑖 , 𝜎�̂�𝑘𝑖
2 ) 

 

where 𝜎
�̂�𝑘𝑖

2  , which is the variance of �̂�𝑘𝑖, has a known but rather complicated expression (and 

will not be specifically stated here). Thus, the hypotheses can be tested by using a test 

statistic 

 

𝑇 =
�̂�𝑘𝑖
𝑆�̂�𝑘𝑖

 

 

where 𝑆�̂�𝑘𝑖 is the sample standard deviation �̂�𝑘𝑖, i.e. the estimated value of 𝜎
�̂�𝑘𝑖

. The 

distribution of T can be shown to follow a t-distribution with parameter n-(k+1) (i.e. n-(k+1) 

degrees of freedom). This makes it possible to calculate p-values based on an observation t of 

T according to 

 

𝑝 = Prob(T > |t|). 
 

Note that the values of �̂�𝑘𝑖 and 𝑆�̂�𝑘𝑖are typically calculated by statistical software packages 

and their explicit forms are not within the scope of this course. 

 

Interpreting model fits 
 

It is often important to evaluate how well a linear model fits the data. A common way to do 

that is to use the so called R2-value, which estimates how large proportion of the total variability 

of the dependent variable that is explained by the linear model. The R2-value can be calculated 
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by comparing the variability residuals, i.e. the errors of the model to the overall variability of 

the dependent variability. First, let SST denote the sum of squares of the total variability, i.e. 

 

SST =∑(𝑦𝑖𝑗 − �̅�𝑖)
2
,

𝑛

𝑗=1

 

 

and let SSE denote the residual sum of squares (‘sum of squares errors’) 

 

SSE =∑(𝑦𝑖𝑗 − �̂�𝑖𝑗)
2
.

𝑛

𝑗=1

 

In these equations, �̅�𝑖 denotes the sample mean of 𝑦𝑖𝑗, i.e. 

 

  

�̅�𝑖 =
1

𝑛
∑𝑦𝑖𝑗 ,

𝑛

𝑗=1

 

and �̂�𝑖𝑗, as above, 

�̂�𝑖𝑗=�̂�0𝑖 + �̂�1𝑖𝑥1𝑗 + �̂�2𝑖𝑥2𝑗 +⋯+ �̂�𝑝𝑖𝑥𝑝𝑗. 

 

The R2-value is then calculated by comparing SST to SSE according to 

 

𝑅2 = 1 −
SSE

SST
. 

 

This equation shows that if SSE is close to zero, i.e. the error of the model is small so that the 

dependent variable is almost fully described by the independent variables, the value of 𝑅2 is 

close to 1. If, on the other hand, SSE is close to the total variability SST, which means that the 

model does a poor job of describing the dependent variable, the value of 𝑅2 will be smaller or 

even close to zero. 

 

There is, however, a major issue of the R2-value – it always increases when adding more 

independent variables. Thus, based on the interpretation of R2 a model can always be improved 

by adding more independent variables even if they are only vaguely associated with the 

dependent variable. Instead, an adjusted variant of R2 is often preferred. The adjusted R2-value 

penalize for the number of independent variables that are used and are therefore typically more 

informative that then standard R2-value. The adjusted R2-value is defined as 

 

𝑅adj
2 = 1 −

𝑛 − 1

𝑛 − (𝑘 + 1)

SSE

SST
. 

 

The interpretation of 𝑅adj
2  should be done in the same way as for R2, i.e. a value close to 1 

means a good fit while a value close to zero means a poor fit. 

 

Linear models in R 
 

Linear models can be easily used in the statistical programming language R through the lm 

function. In R, the linear model is specified using a so call ‘formula’ that defines the model and 
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specifies how the dependent variable is connected to the independent variable. Once the model 

is specified, lm calculates all point estimates and p-values for all included parameters. 

 

The two main arguments to lm is the formula and a data matrix in the form of a data.frame. 

The terms used in the formula should correspond to the names of the columns in the data matrix. 

 

Example: A first example – cats revisited 

We will start a simple example on how to use lm where we will take a look at the cats dataset 

that you have previously analyzed in computer exercise 1. The cats dataset contains 144 

observations of cats, their sex (male/female), their body weight (‘Bwt’, in kilograms) and 

heart weight (‘Hwt’, in grams).  

 
> library(MASS) 

> data(cats) 

> dim(cats) 

[1] 144   3 

 

> head(cats) 

  Sex Bwt Hwt 

1   F 2.0 7.0 

2   F 2.0 7.4 

3   F 2.0 9.5 

4   F 2.1 7.2 

5   F 2.1 7.3 

6   F 2.1 7.6 

 

We will use a linear model to see if we describe the heart weight of a cat based on its sex and 

body weight. Let 𝑌𝑗 be the heart weight of cat j (j=1,…, 144). Let 𝑥1𝑗 define the sex of cat j, 

i.e.  

𝑥1𝑗 = {
1    if cat 𝑗 is male,        
0    if cat 𝑗 is female.     

 

 

The corresponding linear model that we will be using is 

 

𝑌𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝜀𝑗 . 

 

This model can be specified into R using the lm command as 

 
> lm(Hwt~Sex, data=cats). 

 

Call: 

lm(formula = Hwt ~ Sex, data = cats) 

 

Coefficients: 

(Intercept)         SexM   

      9.202        2.121   

 

Note that the intercept (𝛽0) is included by default and does not need to be specified explicitly. 

The result from R shows us that the intercept has been estimated to 9.2 g and that the effect of 
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being a male increase the heart weight 2.1 g. More information about the results can be obtained 

using the summary function, i.e., 

 
> summary(lm(Hwt~Sex, data=cats)) 

 

Call: 

lm(formula = Hwt ~ Sex, data = cats) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-4.8227 -1.7227  0.0273  1.2273  9.1773  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   9.2021     0.3251  28.308  < 2e-16 *** 

SexM          2.1206     0.3961   5.354 3.38e-07 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 2.229 on 142 degrees of freedom 

Multiple R-squared:  0.168,     Adjusted R-squared:  0.1621  

F-statistic: 28.66 on 1 and 142 DF,  p-value: 3.38e-07 

 

This output specifies a wide range of information about the fitted linear model. Under the title 

‘Coefficients’, we can see the result for each parameter, including its point estimate 

(‘Estimate’), estimated standard error (‘Std. Error’), t statistic (‘t value’) and its corresponding 

p-value when testing the null hypothesis that the parameter should be zero (‘Pr(>|t|)’). Thus, 

we can see from this analysis that the sex of a cat is highly significant when describing the 

weight of its heart. Note also that the adjusted R-square is 0.1621, which is quite low. Thus, 

the sex of a cat has a limited ability to predict the weight of the heart. 

 

We will now further refined the model and also introduce the body weight of the cat. If we let 

𝑥2𝑗  denote the body weight of cat j (which was, in our dataset, given in kg), the refined model 

can be stated as 

 

𝑌𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝜀𝑗 . 

 

This model can be fitted to the data in R using 

 
> lm(Hwt~Sex+Bwt, data=cats) 

 

Call: 

lm(formula = Hwt ~ Sex + Bwt, data = cats) 

 

Coefficients: 

(Intercept)         SexM          Bwt   

    -0.4150      -0.0821       4.0758   

 

The parameter for the body weight was estimated to more than 4, which means that the heart 

weight increase 4 grams for every kilogram of cat. Note that the point estimates of the intercept 
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and the sex has changed significantly. In fact, the parameter for sex is now very close to zero 

and has, in this extended model, much smaller impact on the body weight. Using the summary 

function we get 

 
Call: 

lm(formula = Hwt ~ Sex + Bwt, data = cats) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-3.5833 -0.9700 -0.0948  1.0432  5.1016  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -0.4149     0.7273  -0.571    0.569     

SexM         -0.0821     0.3040  -0.270    0.788     

Bwt           4.0758     0.2948  13.826   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.457 on 141 degrees of freedom 

Multiple R-squared:  0.6468,    Adjusted R-squared:  0.6418  

F-statistic: 129.1 on 2 and 141 DF,  p-value: < 2.2e-16 

 

which shows that the sex of the cat no longer is significant. A likely explanation for this 

phenomenon is that the body weight is highly correlated to the sex of the cat. When the body 

weight is added to the model, the sex of the cat does not provide any additional information for 

describing the heart weight. Note also that the adjusted R2 has increased considerably, from 

0.1620 to 0.6418, suggesting that this model describes the variability of the data much better. 

 

Example: Gene expression in malign and benign cancer (cont.) 

We will now continue our analysis of the gene expression data of the small intestinal 

neuroendocrine tumors (SI-NETs). We will start by analyzing the data with the smaller model,  

 

𝑌𝑖,𝑗 = 𝛽0,𝑖 + 𝛽1,𝑖𝑥1,𝑗 + 𝜀𝑖,𝑗 . 

 

where 

 

𝑥1,𝑗 = {
1    if patient 𝑗 has a more aggressive tumor,
0    if patient 𝑗 has a less aggresive tumor.     

 

 

𝑌𝑖,𝑗 is the expression of gene i in patient j, 𝛽0,𝑖 is the base line expression of gene i, 𝛽1,𝑖 is the 

difference in expression in the more aggressive compared to the less aggressive tumor form 

and 𝜀𝑖,𝑗 is the error for gene i and patient j. In order to analyze the entire dataset, we need to 

use the model for each of the 45,015 transcripts. This can easily be done in R using a for-loop. 

The input data, here called data.exp, is organized in a data.frame with a row for each gene and 

a column for each individual of the 33 patients.  

> head(data.exp[,1:5]) 

     251485046843_1 251485046843_3 251485053884_4 251485046844_2 251485046889_1 

<NA>      16.273216      16.099402      14.764864      15.183461      15.345287 

<NA>       2.691950       2.661967       1.437180       2.037386       1.885127 

<NA>       3.258086       5.123285       1.437180       1.766553       1.955436 
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<NA>       4.159501       5.123285       1.853821       1.617931       1.835417 

<NA>       2.008186       3.184030       1.311090       1.617931       1.835417 

<NA>       4.893363       4.958962       1.437180       1.572721       2.067911 

 

Another data structure, here called annotation, contains information of the patients in the form 

of a data.frame with one row for aggressiveness of the tumor, the sex and the age of the patient.  

> head(annotation) 

          Sample Group Sex Age 

1 251485046843_1    G2   Male  49 

3 251485046843_3    G1 Female  81 

4 251485053884_4    G1 Female  64 

5 251485046844_2    G1 Female  42 

6 251485046889_1    G1 Female  74 

7 251485053885_3    G1 Female  58 

 

The order of the column of data.exp and the rows of annotation is organized so that they 

correspond to the same patient. The R-code for analyzing this data can be seen below. Note 

that we need to use the function summary to make R to calculate a p-value from the results 

calculated by lm. 

# R code for fitting a linear model to each transcript 

ngenes=nrow(data.exp)     # Number of rows (transcripts) in the expression data 

parameter=rep(NA, ngenes) # Allocate a vector for parameter values 

pvalue=rep(NA, ngenes)    # Allocate a vector for p-values 

 

for(i in 1:ngenes){       # Loop over the number of transcripts 

   

  # Extract the data for transcript i by indexing ‘data.exp’and ‘annotation’. Note 

  # that this new data needs to be a data.frame in order to feed it into lm 

  data.cur=data.frame(data.exp[i,], annotation[,2], annotation[,3], annotation[,4]) 

 

  # Add column names to ‘data.cur’ 

  colnames(data.cur)=c("Expression", "Group", "Sex", "Age") 

   

  # Fit the linear model to the data 

  res.lm=lm(Expression~Group, data=data.cur) 

   

  # Save the parameter 1 ("Group") from the result. Note that res.lm$coefficient[1]  

  # is the intercept.   

  parameter1[i]=res.lm$coefficient[2] 

   

  # Calculate p-values (and other stuffs for the model) 

  res.summary.lm=summary(res.lm) 

     

  # Extact the p-value. Note that $coefficient after running summary  

  # is a matrix with a row for each parameter. 

  pvalue1[i]=res.summary.lm$coefficient[2,4] 

} 

 

The model can be extended by adding more independent variables in the formula to lm. For 

example,  

 
res.lm=lm(Expression~Group+Age+Geneder, data=data.cur) 

 

corresponds to the full model described on page 4. 

 

Interpretation of the result, which consist 45,015 linear models, is not trivial. This is however 

beyond the scope of this text. Refer instead to the notes from the lecture addressing analysis of 

RNA-seq data. 


