
Lecture 1
Introduction to bioinformatics (MVE510)

Autumn, 2020

Bioinformatics

The genome contains vast amount
of information

• Genome size (in bases: A,C,G or T)
• Bacteria: 5 million bases

• Humans: 3,2 billion bases.

• Amoeba: 670 billion bases

Example: Genome sequencing

• Sequencing of the human genome results in 3
billion observations

• The genome of half of the Icelandic population is
under sequencing. This will result in 500 trillion
(5×1014) observations. The aim is to find patters
that explains heritable diseases.

Example: Transcriptome sequencing

• Cancer patients are today analyzed by
transcriptome sequencing at several hospitals.

• For each patient, the 50 million nucleotides of the
’exome’ (i.e. the part of the genome that
corresponds to the genes) is sequenced.

• In Sweden alone, more than 60,000 people are
diagnosed with cancer each year.

Example: Sequencing of baceria

• There are 1014 bacterial cells in the human gut
carrying more than 3 million genes and 1020

nucleotides

• Changes in the type and the genomes of these
bacteria is associated with diseases, such as
diabetes.

1 gram of soil

• 100 million bacteria

• DNA: >100 terabases (1014)

There are also a lot of bacteria in the environment!

High-throughput sequencing

Bioinformatics

Bioinformatics is the analysis and interpretation of
molecular data

• How should data be generated?

• How should data be analyzed and interpreted?

• What biological conclusions can I draw from the
data?

Important aims of this course

This course is about understanding complex
biological data with focus on DNA sequencing.

• How can biological questions be addressed and solved using
high-throughput molecular data?

• What are the advantages and disadvantages of different
technologies for high-throughput DNA sequencing?

• How should high-throughput DNA sequencing data be
analyzed and visualized?

• What are the challenges and limitations of the
interpretation of high-throughput data?

Bioinformatics is interdisciplinary

Biology

Computer
Science

Statistics

This course is problem-oriented!

This means that we will

• Focus on biological problems and use high-
throughput data to solve them

• Learn methods and algorithms that are necessary
to solve the problems

• Emphasis on biological interpretation. What can we
actually say about the results?

Course organization

• Lectures over Zoom
• 14, 2x45 minute lectures. Two extra 5 min breaks.

• Two lectures per week (Tuesday and Fridays)

• Computer exercises of Zoom
• 4 compulsory exercises

• Scheduled exercises on Tuesdays (2x45 min) and
Wednesday (4x45 min).

• Two assistant available for any forms of questions

• Use these sessions to ask questions!

Course organization – lectures

• Next generation DNA sequencing

• Quality assessment of DNA sequence data

• DNA sequence alignment and mapping

• Supervised analysis of high-dimensional data: linear
models

• Unsupervised analysis of high-dimensional data:
clustering and principal component analysis

• Applications to
• Genome sequencing

• Transcriptome sequencing (RNA-seq)

• Metagenomics

Course organization – exercises

Four computer exercises

The exercises requires you to do bioinformatics and
analyze real data. The exercises are the core of the
course.

1. Introduction to R

2. Genome (re)sequencing with applications to
clinical microbiology

3. Transcriptome sequencing (RNA-seq) with
application to human medicine

4. Metagenomics with application to environmental
sciences

Guest lectures….

To be decided!

Last year we had

Diagnostics

Course organization - examination

The course is examined in two ways

1. Written exam, 14 January 2021

2. Approved reports from computer exercises.
Exercise 1 is examined during the computer
exercise. Exercise 2-4 requires a report that is
handed in through the course homepage.

Course literature

• Lecture notes

• Selected research papers

• Xinkun Wang, Next-Generation Sequencing
Data Analysis, CRC Press,
ISBN:9781482217889. Available at
Cremona. Summarizes the course.

See the course homepage
for full information.

Course organization - teachers
Erik Kristiansson

erik.kristiansson@chalmers.se

Examiner, course administrator and lecturer

Juan Salvador Inda Diaz

inda@chalmers.se

Assistant

David Lund

dlund@chalmers.se

Assistant

mailto:erik.kristiansson@chalmers.se
mailto:iinda@chalmers.se
mailto:dlund@chalmers.se

Course organization – important links
The course homepage is available at Canvas

https://chalmers.instructure.com/courses/10879

The course homepage contains

• All necessary reading material

• The compulsory exercises

• Zoom-links to all online sessions

• Recordings of all lectures

The syllabus is available at (please read it!):
https://www.student.chalmers.se/sp/course?course_id=30425

https://chalmers.instructure.com/courses/10879
https://www.student.chalmers.se/sp/course?course_id=30425

Course evaluation

The following persons has been randomly selected to
be student representatives

Leo Benson

Edwin Eliasson

Louise Stauber Näslund

Hannah Steinhausen

Chattarin Wangwittaya

Extra meeting already after two weeks.

Introduction to

What is R?

• R is a statistical programming language for data
analysis. All exercises in this course will be done in R.

• R contains many methods for statistical analysis, data
interpretation and visualization.

• R is open source and continuously developed by the
research community.

• R is free available at https://www.r-project.org/

Why do you need to learn R?

• R is the standard environment for analysis of
biological and high-dimensional data.

• R has hundreds of different ‘R packages’ specialized
for molecular biology containing the state-of-the-
art methods.

• Learning more languages improve your overall
programming skills.

• In this course you learn R and are expected to
independently work with R to solve biological
problems.

Is there a difference between R
and MATLAB?
Yes!

• R uses a different syntax and different functions
and commands

• R is slightly less user friendly but offers a much
larger set of tools for data analysis, interpretation
and visualization

But….

• The concept is the same! You write programs in
scripts, that are run in an ‘interpreter’.

• Many of the commands will be similar to MATLAB.

The interface of Rstudio

The interface of R

R has a nice help function

• R contains help information about every command!

• The help is informative but sometime a bit
overwhelming. Always take your time when reading the
R help.

The help function is activated using either ‘help’ or ‘?’,
that is

> help(sum)

or

> ?sum

Introduction to R: scripts

• R scripts are files with multiple commands that are
executed at once. Load a script into R using the
source command

• R scripts can be written in any text editor or using
the build in editor (available under File->New
Script)

> source(“myscript.R”)

• Note that you need to point R to the directory
where you have your scripts.

Example of an R script

Content of ‘example1.R’
Vector of probabilities

p=c(0.01, 0.05, 0.1, 0.5)

Opens a plot window and set the layout to a 2x2 grid

layout(matrix(1:4, nrow=2, ncol=2))

Loop over the 4 probabilities

for(i in 1:4){

Sample 10000 observation from a binomial with parameters

n=25 and p according to the probability vector

x=rbinom(10000, 25, p[i])

Create a histogram with no title

hist(x, breaks=100, main="")

Set the title

title(paste("n=25, p=", p[i],sep=""))

}

Example of an R script

Vector and matrices in R

• R is, similarly to MATLAB, very efficient in working with

vectors and matrices.

> x=c(1,2,3,4,5,6,7,8,9,10,11,12)

> x

1 2 3 4 5 6 7 8 9 10 11 12

> x[4:7]

[1] 4 5 6 7

> 2*x

2 4 6 8 10 12 14 16 18 20 22 24

> exp(x)

2.718282e+00 7.389056e+00 2.008554e+01 5.459815e+01

1.484132e+02 4.034288e+02 1.096633e+03 2.980958e+03

8.103084e+03 2.202647e+04 5.987414e+04 1.627548e+05

Vector and matrices in R

• R is, similarly to MATLAB, very efficient in working
with vectors and matrices.

> y=matrix(x, nrow=3, ncol=4, byrow=T)

> y

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

> y[1,]

1 2 3 4

> y[,2]

2 6 10

Using plots and devices

• R has a powerful, but slightly complex, system for
making plots.

• An R-plot are created using the following steps:

1. Open a plotting device

2. Plot the figure

3. Close the plotting device

• Commonly used devices are pdf and bitmap.

Using plots and devices

Example 1: Creating plotting in a pdf-file.

pdf(”myplot.pdf”, width=12, height=8)

x=rbinom(10000, 25, 0.5)

hist(x, breaks=100, main="")

dev.off()

Example 2: Plotting in a window in R

windows()

x=rbinom(10000, 25, 0.5)

hist(x, breaks=100, main="")

Call dev.off() if you want to close the window.

Using plots and devices

• When you use pdf and bitmap, you need to close
the devices before the file is viewable.

• graphics.off closes all open devices. This is very
useful if your script stops due to an error during the
plotting of a figure.

• A good strategy is to first design your figures and
then use pdf or bitmap to plot the ‘final’ figure to a
pdf/png-file.

• Note that pdf and bitmap has many arguments
where you can set the type of image, its resolution,
etc.

Writing functions

• In R it is very easy to write your own functions

myfun=function(x){

average.value=sum(x)/length(x);

return(average.value)

}

> x=c(1,2,3,4,5,6,7,8,9,10,11,12)

> x

1 2 3 4 5 6 7 8 9 10 11 12

> myfun(x)

6.5

• Use scripts to define functions!

For-loops in R

• Similarly to other programming languages, R can
use for-loops

for (i in 1:100){

print(i)

}

1

2

3

• Note that 1:100, which creates a vector with the
numbers between 1 and 100 can be exchanged for
any vector.

Removing stuff

• The command ls lists all defined variables,
functions and objects

> ls()

"myfun" "x" "y"

• Old variables can sometimes introduce bugs. To
remove a variable you can use the rm command.

> rm(x)

> ls()

"myfun" "y"

> rm(list=ls()) # This clears everything!

> ls()

character(0)

Tips for learning R

• Hands on experience is very important! You will not
learn programming by reading texts.

• Read the R help!

• If that does not help, use Google to search for a
solution!

• If that does not work, ask for help. We have two
very competent assistants.

• Be persistent and a bit stubborn – once you are
‘over the top’ things will become much easier.

Introduction to computer exercise 1

• The aim of this exercise is to introduce you to R

• Covers many of the basic elements of R
• Fundamentals

• Vector and matrix manipulations

• Writing scripts

• Plotting figures

• Writing functions

• Examination at the end of the lecture

• Use this opportunity to learn R – you will need it
later in the course.

