
Lecture 7
Introduction to bioinformatics (MVE510)

Autumn, 2020

Additional reading: Measuring differential gene expression with RNA-seq: challenges and strategies for data 
analysis. Finotello F and Di Camillo F. Briefings in Functional Genomics, 14(2) 2014.



Repetition from last lecture

• Suffix trees are created from the suffixes of a DNA sequence. By 
traversing the tree we can find the position of any subsequence.

• The Burrows-Wheeler transform orders the genome in a specific way
that makes identification of subsequences highly efficient.

• Read alignment using suffix arrays and the Burrows-Wheeler 
transform are as fast as a suffix tree but does not require the entire 
tree to be created and stored in memory.



Today agenda

• RNA-seq: Gene expression analysis using next generation sequencing

• The principles of RNA-seq

• Data analysis of RNA-seq data
• Gene quantification

• Normalization

• Identification of differentially expressed genes



The central dogma



The structure of genes – some nomenclature

• The gene structure in many eukaryotic genomes is highly complex
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The RNA-seq process
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Analysis of RNA seq data

Three main steps

1. Quantification of the gene expression
• From reads to a (semi)quantitative measurements of gene 

expression

2. Normalization
• Correction of systematic errors within and between samples

3. Identification of  differentially expressed genes (DEGs)
• Find genes with a significant difference in gene expression



Quantification of gene abundances

• Read mapping is used to identify the origin of each fragment.

Garber et al, Computational methods for transcriptome annotation and quantification using RNA-seq, Nature Methods 8(6) 2011.

Transcriptome

Challenges

• A large number of fragments (>10 million/sample)

• Short fragments (35-150 bases)

• Sequencing errors (substitutions, indels)

RNA-seq
Mapping to 
reference



Common references

• Genome
• Requires high quality genome assembly

• The mapper needs to be able to handle splicing (splice-aware)

Garber et al, Computational methods for transcriptome annotation and quantification using RNA-seq, Nature Methods 8(6) 2011.

Exon 1 Exon 2

Quantification of gene abundances

• De novo assembled transcriptome
• Construction of the transcripts from the sequence data

• Hard to identify splicing. Representing mainly mature spliced transcripts.



Gene quantification

• Count the total number of fragments for each gene

Exon quantification

• Counting the number of fragments for each exon.

• Splicing can be identified from fragments mapping junctions

Isoform quantification 

• Estimates the abundance for each isoform. 

• Requires mathematical models and complementary data such as a 
database of known splice variants.

Quantification of gene abundances



Quantification of gene abundances
Multiple matches is common and caused by

• Genes with regions that are similar within the genome (e.g. recent paralogs)

• Repetitive regions in transcribed areas

• Errors in the reads caused by problems in the sequencing

Approaches to handle reads with multiple matches includes

• None – the reads are excluded from the analysis

• All – assign the reads to all its matching all regions

• Random – assign the read randomly to one of its machting regions

• Statistical predictive models

One read matching two different genes



Counts

Gene Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

ENSG00000000419 11 16 10 19 8 24 14 19

ENSG00000000457 28 22 17 21 18 15 21 13

ENSG00000001167 112 107 89 95 75 87 80 73

ENSG00000002016 1 1 1 1 0 0 0 0

ENSG00000002834 54 83 59 76 104 88 61 73

ENSG00000002919 1055 865 481 738 402 533 351 404

ENSG00000004700 79 162 125 124 45 118 99 146

ENSG00000004777 4 1 1 5 3 1 5 0

ENSG00000004779 256 327 227 234 278 364 214 276

ENSG00000004897 126 151 111 163 96 97 110 156

ENSG00000005175 49 59 57 37 26 47 52 53

ENSG00000005187 9 18 12 47 23 22 18 42

ENSG00000005339 895 404 422 985 393 188 613 635

ENSG00000005844 82 110 93 66 149 130 207 330

ENSG00000006007 180 173 147 196 132 186 148 208
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Normalization

Data from different gene sand samples are not directly comparable due 
to systematic errors

Sequencing depth

The number of fragments sequenced in each sample differs

Gene lengths

Longer genes are represented by more RNA bases and will be 
represented by more fragments



Normalization
Sample quality

Errors affecting large part of a sample is introduced by quality issues in 
the sample preparation and sequencing.

Other systematic errors

• Sequencing errors

• Fragment distribution over the gene

• G/C-bias

Normalization aims to reduce the noise by identifying and removing 
systematic effects.



Normalization

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Between sample normalization

Within sample 
normalization
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Normalization

CPM – Counts per million mapped reads

Estimates the relative abundance of a gene in relation to the total 
sequencing depth (total number of successfully mapped reads).

CPM𝑔 =
𝑅𝑔

𝑀/106

Reads for gene g

Total number of mapped fragments



Normalization

RPKM – Reads per kilobase per million

Estimates the relative abundance for each gene in relation to its length 
and total sequencing depth (total number of successfully mapped 
reads). 

RPKM𝑔 =
𝑅𝑔

(𝐿𝑔/10
3)(𝑀/106)

Reads for gene g

Length of gene g Total number of mapped fragments



Normalization

Normalization based on the total number of counts may introduce
systematic errors

• The total RNA pool is often dominated by  few highly expressed genes (e.g. 
actin). The crude rule of thumb is that “50% of the total number of RNA 
transcripts from 5% of the genes”. 

• Variation in expression of the high abundant genes can therefore have big 
impact on the normalization.

• Even more important, systematic changes in their expression between the 
experimental conditions can lead to incorrect results.



Normalization – robust alternatives
There are several robust alternative that can be used instead of the total 
number of mapped reads:
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It is also possible to normalize in relation to a set of reference genes.



RNA-seq data is semiquantitative

Sample 1 Sample 2

Gene 1 10 10

Gene 2 10 10

Gene 3 10 10

Gene 4 10 10

Gene 5 10 10

Total 50 50

Sample 1 Sample 2

Gene 1 0.2 0.2

Gene 2 0.2 0.2

Gene 3 0.2 0.2

Gene 4 0.2 0.2

Gene 5 0.2 0.2

Total 50 50

Counts Proportions



RNA-seq data is semiquantitative(!!)

Sample 1 Sample 2

Gene 1 10 30

Gene 2 10 5

Gene 3 10 5

Gene 4 10 5

Gene 5 10 5

Total 50 50

Sample 1 Sample 2

Gene 1 0.2 0.6

Gene 2 0.2 0.1

Gene 3 0.2 0.1

Gene 4 0.2 0.1

Gene 5 0.2 0.1

Total 50 50

Counts Proportions

Up-regulated
gene



Normalization - TMM

Trimmed mean of M-values

Let 𝑌𝑖𝑗 be the number of counts for gene 𝑖 and sample 𝑗 and 𝑁𝑗 be the total 
number of reads for sample 𝑗. Select a sample (sample 𝑟) as the reference.

For a sample 𝑗 define

𝑀𝑖 = log2 ൗ
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Normalization - TMM
TMM assumes that only a small proportion of the genes are differentially
expressed. This means that 𝑀𝑖 is close to zero the vast majority of the 
genes.

Total number of 
reads for sample j

An adjustment factor for sample j, 𝑓𝑗 is calculated as

log2(𝑓𝑗)=TrimmedMean(𝑀𝑖) 

In the trimmed mean, the largest 30% and the lowest 30% of the 𝑀𝑖 values
are not included. This mean that only the middle 40% of the values are
included in the mean.

A normalization factor is then calculated as ෩𝑁𝑗= 𝑓𝑗 × 𝑁𝑗. 



Robinson & Oshlak, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biology 11 2010

𝑀𝑖

log2(𝑓𝑖)



Robinson & Oshlak, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biology 11 2010

𝑀
𝑖

𝐴𝑖



Normalization – two general remarks

Remark 1: Within sample normalization is often not be necessary! 
Systematic effects that are similar between samples may be canceled 
out when estimating the difference in expression.

Remark 2: Many methods for identification of differentially expressed 
genes works with counts. Some normalization methods modifies data 
in way that the counts are lost. It is therefore important to use a 
normalization method that is appropriate for the downstream 
statistical analysis.



Normalization

Dillies et al, A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis, Briefings in Bioinformatics 14(6) 2013.

TC=Total counts, UQ=Upper quartile, Med=Median, DESeq=Method implemented in DESeq, TMM=Trimmed Mean 
of M values, Q=Quantile, RPKM=Reads Per Kilobase per Million mapped reads.



Improper normalization can reduce 
performance

• Receiver operating characteristics 
(ROC) curve on MAQC data.

• RNA sequencing of two reference 
pools of RNA. 

• Comparison between RNA-seq and 
qPCR (golden standard).

• Upper-quartile normalization 
significantly improves identification 
of differentially expressed genes.

Bullard et al, Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments, BMC Bioinformatics 11(94) 2010.



Identification of differentially expressed genes

Aim: Identify genes with altered gene expression level between 
experimental conditions.

Advantages

• Straight-forward and limits complexity of the analysis

• Provides gene-level information

Disadvantages

• Many genes implies many comparisons

• Information for each gene is limited (e.g. few samples)

Strategy: Examine and analyze each gene separately.



Identification of differentially expressed genes

When can we considered the  expression to be altered?

Example 1:
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Identification of differentially expressed genes

The difference needs to be interpreted with respect to the variability!

Example 2:
R

e
la

ti
ve

  g
e

n
e

 e
xp

re
ss

io
n

Relative  gene expression

fold-change=2.4



Identification of differentially expressed genes

Technical variability

• Sample quality

• Sample preparation, e.g. RNA extraction and cDNA preparation

• Sequencing errors and quality, errors from the mapping

Biological variability

• Genotype and other effects on individual level

• Effects introduced by sampling and/or experimental setup

• Transcription is a stochastic process with spatial and temporal 
differences



Identification of differentially expressed genes

Challenges in the statistical analysis

1. Data consists of count (discrete)

2. Large number of genes 

3. Typically few replicates (replicates << genes)

4. Large gene-specific variability

Statistical approach includes

• A model describing the data and its variance structure

• A test for identification of differentially expressed genes



Three main approaches

Methods based on normal assumptions

• Use a variance-stabilizing transformation to make the distribution of 
the data a close to a normal distribution as possible.

• Common transformation are the square-root and log transformations.

• Normally distributed data enabels the use of more flexible statistical
tools such as linear models (the topic of the next lecture!)



RNA-seq data from 129 samples for the gene FGR



After normalization



After log-transformation



Three main approaches

Methods based on non-parametric methods

• Makes no explicit distributional assumptions

• Can be sensitive to ties, i.e. values that are identical between 
samples. This can occur frequently for genes with low abundance and 
thus low counts.

• Common non-parametric methods include the Wilcoxon-Mann-
Whitney test (Wilcoxon rank sum), the Kruskal-Wallis test and Fisher’s 
exact test.



Three main approaches

Methods based on count distributions

• Assumes specific count distribution to the data. Common 
distributions include
• Poisson distribution

• Binomial distribution

• Negative binomial distribution

• Often overdispersed count-models are required. These models add
extra variability than present in the standard models.



Count models for RNA-seq data
Statistical fact 1

Count data has a mean-variance dependence.

Statistical fact 2

The variance of count data can be divided into two parts

Total variance = Sampling variance + Overdispersion

Random selection of DNA 
fragments 

Dominated by biological 
variation

42



Count models for RNA-seq data

The Poisson model
• A basic model for describing counts

• The variability depends on the expression level

𝑋𝑔𝑖 = counts of gene g in sample i

Exp[𝑋𝑔𝑖] = μ𝑔

Var[𝑋𝑔𝑖] = μ𝑔

The Poisson model assumes that two genes with the same 
expression level have the exact same variability!



Count models for RNA-seq data

The negative binomial model

• Provides more variability than the Poisson 
model

• Variance divided into two parts
1. Poisson noise from random sampling of DNA 

fragments

2. Gene-specific technical and biological noise -
overdispersion

𝑋𝑔𝑖 = countes of gene g in sample i

Exp[𝑋𝑔𝑖] = μ𝑔

Var[𝑋𝑔𝑖] = μ𝑔+𝜑𝑔μ𝑔
2

Gene-specific overdispersion



Anders & Huber, Differential expression analysis for sequence count data, Genome Biology 11:R106, 2010.

Poisson

Negative binomial

Empirical fit 



Count models for RNA-seq data

• Estimation of the gene-specific overdispersion is hard when few 
samples are available.

• Sharing of information between genes generates more robust 
estimates.

• This is called a shrinkage model. Often implemented by using Bayesian 
statistics.

Gene-specific observations Observations from other genes

Estimation of 
overdispersion



Identification of differentially expressed genes

• The differentially expression is assessed fro each gene using a 
hypothesis test. 

• The p-value provide information about rejecting H0.

• Multiple testing: many tests – many p-values. More on this later!

For each gene g,

H0: Gene g is not differentially expressed

HA: Gene g is differentially expressed



edgeR and DESeq

• Two R-packages for analysis of RNA-seq data

• Implements
• Normalization (TMM and REL)

• A statistical models based on negative binomial distributions

• Robust estimation of gene-specific overdispersion

• Can handle many experimental designs, including comparisons of 
groups, regression and ANOVA-like analyses (GLM-based).

• Easy-to-use, well-tested and have reliable performance for most RNA-
seq datasets.

• http://bioconductor.org/packages/release/bioc/html/edgeR.html

• https://bioconductor.org/packages/release/bioc/html/DESeq2.html

http://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html


Method Model
Sharing of overdisp
between genes?

Multifactorial 
designs

Reference

Fisher’s exact test Hypergeometric No No Bullard et al 2010

PoissonSeq Overdisp. poisson No No Li et al 2012

baySeq Negative binomial Yes, hierarchical 
Bayesian

No Hardcastle et al 2010

edgeR Negative binomial Yes Yes Robinson et al 2010, 
McCarthy et al 2012

DESeq2 Negative binomial Yes, empirical Bayes Yes Love et al 2014

voom Approx. normal Yes, empirical Bayes Yes Law et al 2014

Methods for RNA-seq data



Which method is best?

Rapaport et al, Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data, Genome Biology 14:R95 2013.



Interpretation of gene lists

• Gene lists should be interpreted with care
• P-values are often biased due to incorrect model 

assumptions

• False positives are common! 

• PCR verification of selected genes is highly 
recommended. Preferably on a independent 
and larger set of samples.



Experimental design of RNA-seq experiments

Biological replication is essential in high-throughput experiments!

Condition 1 Condition 2



Experimental design of RNA-seq experiments

Biological replication is essential in high-throughput experiments!

Condition 1 Condition 2



Experimental design

• Few biological replicates are often not representative for the entire 
population!

• How many replicates do you need in RNA-seq?
• The more replicates you have, the higher is the power to identify differentially 

expressed genes!

• User more replicates if you have
• High biological and/or technical variability

• Expect small changes in gene expression

• Expect that samples may fail or have reduced quality.

• Completely unreplicated experiments is never (ever!) recommended!



Experimental design

• Biological replicates should be prioritized over technical replicates
• Technical replicates can not replace biological replicates

• Biological variability is often substantially higher than the technical variability

• The technical variability is often unnecessary to estimate separately. Only the 
total variability is of interest.

• Pooling of biological replicates should be avoided as a mean to reduce 
variability
• Destroys information about the biological variability



Introduction to computer exercise 3

Gene expression analysis of patients with and without irritated bowel
disease (IBD). The aim is to understand the mechanisms behind Crohn’s
disease among children.

40)40) 40)

Ileum



SRR1782694 SRR1782695 SRR1782703 SRR1782712 SRR1782715 SRR1782717 SRR1782718 SRR1782719

ENSG00000000003 28384 21884 18484 26677 24318 17669 21352 16472

ENSG00000000005 50 0 50 150 50 100 0 49

ENSG00000000419 14900 23534 18651 17129 18633 16759 19626 16194
ENSG00000000457 14965 20808 19651 14428 18381 20800 15498 13258
ENSG00000000460 6488 9787 8693 6965 8047 9164 8604 6380
ENSG00000000938 2953 16721 15111 7177 14184 26891 9213 12585

ENSG00000000971 55143 80409 51342 50532 72553 102001 41232 34952

ENSG00000001036 60404 41600 35658 59473 49857 34174 38756 40068

patient.id tissue Sex age.at.diagnosis paris.age diagnosis

SRR1782694 tissue: Ileal biopsy Male 10.33 A1b Not IBD

SRR1782695 tissue: Ileal biopsy Male 10.83 A1b Not IBD

SRR1782703 tissue: Ileal biopsy Female 15 A1b Not IBD

SRR1782712 tissue: Ileal biopsy Female 16.92 A1b Not IBD

SRR1782687 tissue: Ileal biopsy Female 12.5 A1b CD

SRR1782697 tissue: Ileal biopsy Male 9.25 A1a CD

SRR1782708 tissue: Ileal biopsy Male 4.5 A1a CD

SRR1782709 tissue: Ileal biopsy Female 6.33 A1a CD

SRR1782716 tissue: Ileal biopsy Female 8.67 A1a CD

Introduction to computer exercise 3
G

en
es

Samples



Summary of todays lecture

• Analysis of RNA-seq data consist of three main steps
1. Quantification of gene expression

2. Normalization

3. Identification of differentially expressed genes.

• Quantification of gene expression is based on mapping of the 
sequenced fragments against a reference. The reference typically 
consists of a genome or a de novo assembled transcriptome.

• Normalization within and between samples is necessary for 
comparability. Common methods includes RPKM, upper quartile and 
TMM.



Summary (cont)

• Identification of differentially expressed genes is done by hypothesis 
testing. Statistical models are used to describe the data and its 
variability.

• Estimation the gene-specific overdispersion is important. Sharing of 
variability between genes significantly improves the performance in 
datasets with few samples.

• Biological replication is essential. More biological replicates means 
higher power. Pooling should be avoided!


