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Abstract: This course is based on the textbook A first course in String Theory (2nd

Ed. Cambridge 2009) by Barton Zwiebach from MIT, Boston. The book has two parts:

Part 1 is called Basics and starts from very basic physical principles and provides a logical

chain of arguments that ends with a clear picture of our present understanding of string

theory. This part, plus Chapter 24, of the book will be covered in the lectures almost com-

pletely. The Canvas lecture notes will have some additional comments and details on the

superstring which is the most important kind of string theory. These notes will also have

some material on M-theory which is a theory that unifies all the different string theories

into a unique theory living in 11 spacetime dimensions. This first part of the course is

accompanied by 15 rather short home problems, that is, one problem per chapter of the

book. The plan is to cover Part 1 (plus Chap 24) in the first five weeks of the course. This

means reading over 300 pages but some material in the beginning should be familiar to

Swedish students. Some less important sections of Part 1 of the book will also be identified

in the lectures.

Part 2 of the book is called Developments. It contains separate chapters on a number of

absolutely crucial features of string theory that any serious course must discuss. This part

of the course contains Chapters 15 - 21, and 23. (Chapter 24 from Part 2 is included in

the lectures for Part 1.) These chapters are only summarised in the lectures during week 6

and 7 of the course. This way the course (having in total 16 lectures) leaves time for a final

short project that the student can choose from either one of the chapters summarised in

Part 2 or from a list of slightly more advanced problems provided at the end of the course.

The short project will also require a short report and a short presentation of the results in

a seminar (15 minutes plus 5 for questions on zoom).

Examination consists of three parts:

1. 14 home problems (3 points each, 20 points are needed to pass).

2. A short project with report and presentation (on zoom and graded).

3. A mandatory oral exam (45 min on zoom).

Final grade: 1. and 2. have together weight 1/3, and 3. has weight 2/3.
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1 Lecture 1

Read BZ, chapters 1 and 2 and these lecture notes. Then do the first home problem (Hp):

Hp 1: Deadline: November 13, 2020, at noon sharp.

Read sections 1 and 2 of the paper Mike Duff on Kaluza-Klein theory, hep-th/9410046,

and answer the following questions. No calculations are required!1:

The questions below concerns gravity in 5 spacetime dimensions and how it can be ex-

pressed as a theory in 4 spacetime dimensions. The starting point is the 5-dimensional

equations (indicated by the hat-notation):

dŝ2 = ĝµ̂ν̂dx
µ̂dxν̂ , (1.1)

and

ĝµ̂ν̂ = eφ/
√

3

(
gµν + e−

√
3φAµAν e−

√
3φAµ

e−
√

3φAν e−
√

3φ

)
. (1.2)

Here the hatted indices run over µ̂ = 0, 1, 2, 3, 4 which we can express as the 4+1 split

µ̂ = µ, 4. For the coordinates we write x̂µ̂ = (xµ, y) where we have renamed x̂4̂ as y.

a) What is the main difference between the ideas of Kaluza and those of Klein?

b) Explain how one arrives at the relation 2πκ2 = mκ̂2 between the Newton constant in 4

dimensions (κ) and the one in 5 dimensions (κ̂) (see eq. 8). What is m in this equation?

Note: 8πGN := κ2 in d=4 with a similar equation in d=5.

c) What are the changes needed in the ansatz for the metric in 5 dimensions (eq. 2) to

lead to fields in 4 dimensions with canonical dimensions? You can use the fact that the

metric is dimensionless in any dimension and that vector and scalar fields have dimension

1/L in natural units (see BZ p. 177 and p. 60-61)) in four dimensions. Recall that the

action is always dimensionless (in natural units) and hence that the dimension of Newton’s

constant depends on the dimension of spacetime. Note that in eq. 8 in Duff’s paper the

κ2 is multiplying the whole action which means that the vector and scalar fields in this

equation do not have canonical dimensions (in accord with eq. 2).

d) The compactified theory contains charged fields and a U(1) gauge theory (Maxwell’s

theory). What is the d=5 origin of the gauge symmetry?

e) How does the Kaluza-Klein theory explain the quantisation of electric charge?

Comment: This so called Kaluza-Klein compactification shows that the higher Fourier

modes of the fields in 5 dimensions have non-zero masses (mn) and charges (en) both given

by the radius of the extra dimension. In fact, in Duff’s paper he gives the relations

mn = |n|m, en = n
√

2κm, n ∈ Z. (1.3)

In most discussions about extra dimensions in this course we can think of them as having

a size close to the Planck length LP = 1.6× 10−35m. One reason for this can be seen from

the above expression for the charge (how?).

1If you are interested you may read Klein’s original article in Nature 118 (1926) p. 516.
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1.1 BZ Chapter 1: Introduction to string/M-theory

Let us start by defining the concept unification:

This refers to the process of collecting a number of different phenomena, formulas, etc and

express them as consequences of some more general concepts thereby reducing the number

of basic concepts and formulas. This is also referred to as ”reductionism” discussed in

detail by Steven Weinberg in his book ”Dreams of a final theory”.

Question: This seems like an obvious goal but what about the human mind, life etc?

These deeper aspects of nature are discussed by Roger Penrose in his book ”The emperor’s

new mind”.

String theory is a natural next step in the following sequence of historical unifications:

1687: Newton’s ”Principia”,

1865: Maxwell’s equations,

1905: Einstein’s special relativity,

1914: Einstein’s theory of general relativity,

Late 1960’s: The electroweak theory in the Glashow-Weinberg-Salam model (Nobel prize

1979).

Comment: Einstein also tried to unify gravity and electromagnetism by defining a new

field

Gµν := gµν + Fµν , (1.4)

which does not work! Why is this not a good idea? In string theory this step is natural

but then Fµν is replaced by Bµν , the so called Kalb-Ramond field which has nothing to do

with electromagnetism as we will see later.

Kaluza-Klein theory: A unification of gravity and electromagnetism can be accom-

plished if one introduces ”higher dimensions”, here ordinary general relativity in 5 dimen-

sions as done by Kaluza in 1919 and Klein in the 1920s. The Swedish physicist Oskar Klein

was very close to discovering non-abelian gauge theory (in fact SU(2)) which was not found

until 1954 by Yang and Mills. Einstein was the referee on Kaluza’s paper and he was very

sceptical!

”Extra dimensions”, i.e., dimensions not among the standard three space and one time,

can not immediately be dismissed as nonsense. This becomes obvious by looking at the

experimental status of such dimensions: see Hoyle et al, hep-th 0011014: Compact dimen-

sions smaller than about a micron are still beyond experimental observation using gravity!

Please have a look at this paper and try to verify this statement about the smallest possible

extra dimension detectable. Note that the electron is known to be point-like down to about

10−20m. The reason why there can be two different smallest scales will be very important

later when we discuss how the Standard Model can be extracted from string theory (Part

2 of BZ).
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String theory predicts that physics takes place in ten dimensions (with Lorentzian sig-

nature) and M-theory that it is in eleven dimensions. M-theory is strongly believed to be

a completely unique theory containing only one free parameter (with dimension length).

String theory on the other hand comes in several versions but they can all be seen to be

just various limits of M-theory. These fundamental aspects will be briefly elaborated upon

later in the course. The fact that string/M-theory predicts the dimension of spacetime

is why Kaluza-Klein theory and ”compactifications” are so extremely important to study:

We must of course at the end of the day derive physics as we see it in four dimensions which

forces us to somehow ”eliminate” the extra dimensions between four and ten or eleven.

Other possible unifications are:

1970s: A further, but not established, step in this direction is ”GUT” theory (Grand

Unified Theory). If true GUT unifies all the three non-gravitational forces in the Stan-

dard Model (SM) of elementary particles, i.e., the gauge theories based on the the groups

U(1)× SU(2)× SU(3) (i.e., EM plus the weak and the strong nuclear forces) into a single

Yang-Mills theory based on SU(5) or some even bigger gauge group. In string theory the

group E8 plays a special role in this context.

Quantum mechanics: Another fundamental result in this sequence of unifications in-

volves QM:

1970s: ’t Hooft (Nobel prize 1999) proved that Yang-Mills theory (YM) is renormalisable,

i.e. that YM is consistent as a quantum field theory. This is not the case for Einstein’s

general relativity.

The main result of string/M-theory is that it predicts both the existence of the graviton (or

rather ”postdicts”) as a consequence of quantum mechanics and explains how Einstein’s

general theory of relativity can be improved to give a theory without any infinite Feynman

diagrams. Such a theory is called a quantum gravity theory. String theory also contains

the Standard Model if the compactification (see Duff in Hp 1) to four dimensions is done

properly (more later). In this sense string/M-theory therefore unifies particles with all

spins from 0 to 2 including half-integer ones in a way compatible with quantum mechanics.

At a deeper level it also seems to unify particles with objects like solitons2, a feature related

to what is called duality.

What is string theory: There is no known principle, like general coordinate invari-

ance in GR, that gives rise to string theory. String theory is therefore usually obtained by

constructing its perturbation theory which can be done in a unique way. Although we will

not get that far in this course we will develop the theory to the point where we can start

addressing this issue.

2If you want more information on this issue you can have a look at the review article by Joe Polchinski

”Dualities of fields and strings” hep-th/1412.5704.
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In more philosophical terms it seems that string/M-theory is actually not a theory (like GR

and the Standard Model) but rather a framework similar to quantum mechanics. Thus

we should perhaps instead think of string theory as a generalisation of quantum mechanics

that can also be applied to gravity. Recall that Einstein’s theory of gravity (i.e., GR) is not

consistent with QFT which, however, string/M-theory is. How this works will be briefly

explained later in the course.

Another nice property of string/M-theory is that it introduces new bridges to mathematics.

In fact, some of the modern areas of mathematics started with ideas in string theory which

then were developed both by physicists and mathematicians often in joined collaborations.

Question: Why was such a strange theory based on fundamental strings developed in

the first place?

Answer: Historically, the string was discovered by accident from hadron physics and QCD.

In a meson one can not pull the quark and the anti-quark apart to make them move freely.

This is called confinement and means that if you increase the distance (by adding energy)

between the quark and the anti-quark the gluon field starts behaving as a thin tube of field

lines with properties similar to a rubber band, or an elastic piece of string with a quark at

each end. If enough energy is added the QCD-string will snap and produce two more ends

that will be associated with a new q − q̄ pair resulting in two mesons. When the idea of a

QCD-string was developed in the 70’s one soon discovered that the spectrum contained a

massless spin-2 particle which had to be identified with the graviton (see, e.g., the famous

paper by Gliozzi, Olive and Scherk from 1976). This fact turned string theory into a theory

of gravity and other fundamental fields.

The swampland program: There seems to be a huge number (>> 10500) of possi-

ble compactifications turning the 10-dimensional string theory into a field theory in four

spacetime dimensions. These four-dimensional field theories are then said to be part of

the landscape. All other possible field theories that we can construct directly in four di-

mensions, like the Standard Model, might then not be compatible with quantum gravity

(i.e., not derivable from string theory). If not they end up in the swampland. In recent

years a lot of research has been done trying to formulate criteria that will tell us if a given

four-dimensional field theory belongs to the swampland or not. The fact that our universe

is in a de Sitter phase is a problematic issue that is addressed in the swampland program.
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1.2 BZ Chapter 2: Special relativity and extra dimensions

Below we will discuss

1. Units and parameters in physics

2. Light-cone coordinates

3. Extra dimensions: Lorentz invariance, compact dimensions, orbifolds and how energy

spectra can depend on compact dimensions.

Units and parameters

The following very basic facts are quite important in string theory:

1. There are only three basic units in nature: kg (mass), m (length) and s (time). These

units will generally be denoted as M,L, T . Quantities (e.g., ds2 in GR) then have di-

mensions given by powers of M,L, T written with a bracket as [ds2] = L2. The unit N

(Newton) means that [Force] = ML/T 2.

All other units, e.g., the one related to charge, can be expressed in terms of these three

basic units.

2. There are (exactly) two fundamental parameters relating them3:

c (m/s) : the velocity of light

~ (Nms=kg m2/s): Planck’s constant

⇒ Hence only one of kg, m and s is independent.

Natural units: Defined by setting c = ~ = 1 which means that T = L and M = 1/L

(see BZ p. 177 - 178).

The choice of units is a messy issue. Three often used sets of units are

1. Gaussian units (uses CGS (centimeters, grams and seconds)) where the electrostatic

force is given by

F =
q1q2

r2
. (1.5)

Here electric charge has dimension, [q] = esu, with (1 esu)2 = 10−5N · (10−2m)2 =

10−9Nm2. This implies that esu has unit kg1/2m3/2

s which is not a new unit.

2. SI units: Here the electrostatic force reads

F =
q1q2

4πε0r2
. (1.6)

Charge has here dimension Coulomb ([q] = C) where 1C = 1As with 1 ampere (A) defined

as the current in two wires 1 m apart effecting each other by a force F = 2 · 10−7N per

3These are today exactly defined numbers, see e.g. Wikipedia ”2019 redefinition of the SI base units”: 1

second = 9192631770 periods of the radiation of a specific transition in Ce133 while c is exactly 299792458

m/s and h is exactly 6.62607015 · 10−34kgm2/s. Thus c and ~ are numerically fixed and can not depend

on either time or space. However, this last fact has been debated a bit in the past, see e.g. M.J. Duff,

hep-th/0208093 and hep-th/0110060.
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meter of the wires. Coulomb is just an auxiliary unit since it actually cancels in the force

law since the constant ε0 has dimension [ε0] = C2/Nm2.

3. We will in this course use the Heaviside-Lorenz system of units (BZ p. 45) with the

definition of charge:

F =
q1q2

4πr2
. (1.7)

Here the charge has the same unit as in 1) above, i.e., Nm2, but its numerical value differs

from esu due to the 4π factor in the force equation. Note that in three space dimensions

esu is dimensionless in natural units [esu] = L0 (more on this below)!

Intervals and Lorentz transformations

Here we will specify some notation and give some of the conventions used throughout

the course. First, coordinates are denoted

xµ = (ct, x, y, z) := (x0, x1, x2, x3), (1.8)

which are coordinates in spacetime, either flat or curved. The metric is ”mostly plus”, i.e.,

the Minkowski metric is ηµν = diag(−1,+1,+1,+1).

In BZ the interval is denoted ds and defined by

− ds2 := −(ds)2 = ηµνdx
µxν = dxµdxµ. (1.9)

(This interval is sometimes denoted dτ as, e.g., in Weinberg’s book on general relativity.)

Note that we call

ds2 > 0 time-like, (1.10)

ds2 = 0 light-like, (1.11)

ds2 < 0 space-like. (1.12)

Lorentz transformations are as usual given by (often denoted Λµν)

x′µ = Lµν x
ν , (1.13)

where, if the primed inertial frame moves with velocity v in the x-direction of the unprimed

system

Lµν =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 where β = v/c and γ = 1/
√

1− (v/c)2. (1.14)

These are the transformations that leave the interval invariant, i.e., (ds′)2 = (ds)2. This

fact is equivalent to the invariance of the metric, i.e.,

ηρσL
ρ
µL

σ
ν = ηµν ⇔ LT ηL = η, (1.15)
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where in the last equation we use matrix notation. Since these transformations leave a

scalar product in a 4-dimensional Minkowski spacetime invariant the group they belong to

is called SO(1, 3). We can turn this around and define Lorentz transformations as those

coordinate transformations that leave the Minkowski metric numerically invariant. This

discussion will in this course often be applied to spacetimes with more dimensions than four.

Comment: For light we have that ds2 = 0. If we now ask what transformations leave

ds2 = 0 invariant one finds that the Poincaré group leaving ds2 6= 0 invariant is extended by

some new transformations, one being dilatations (that is, scale transformations) x′µ = λx

where λ is a spacetime independent parameter. Analysing this in detail leads to the con-

clusion that there appears a new group consisting of the following generators: Lorentz

transformation Jµν , a non-trivial set of spacetime translations also denoted Pµ, and the

new dilatation generator D and special conformal generators Kµ. The group generated

by these 10 generators turns out to be SO(2, 4), which is the conformal group in four-

dimensional Minkowski space. However, it is also the isometry group of AdS4 as we know

from the gravity course. This extremely important fact is, as we will see in Chapter 23,

the starting point for understanding the so called AdS/CFT correspondence (found by

J. Maldacena in 1997).

Light-cone coordinates

This is perhaps the first concept that may be unfamiliar to you. To define light-cone

coordinates we first give the definition and then discuss why they are useful. We will di-

vide the set of coordinates xµ into two sets x0, x1 and the rest x2, x3 (which in a general

spacetime dimension D = d + 1 becomes x2, x3, ...., xd). This last subset of the coordi-

nates are called transverse. Next we define the light-cone coordinates (x+, x−, x2, x3) by

combining x0 and x1 into

x+ :=
1√
2

(x0 + x1), x− :=
1√
2

(x0 − x1). (1.16)

This definition implies a number of things:

1. The invariant interval becomes (just use that 2x+x− = (x0)2 − (x1)2)

− ds2 = ηµνdx
µdxν = −2dx+dx− + (dx2)2 + (dx3)2. (1.17)

This can be written

− ds2 = η̂µνdx̂
µdx̂ν , (1.18)

where

x̂µ := (x+, x−, x2, x3), (1.19)

and

η̂µν =


0 −1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1

 which means η++ = η−− = 0 and η+− = η−+ = −1. (1.20)
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Question: Is the transformation between xµ and x̂µ a Lorentz transformation?

2. In these light-cone coordinates there is no clear distinction between x+ and x− so

which one is ”time”? This is a matter of definition and we will choose x+ as the light-cone

”time”. Thus x− is a light-cone ”space” coordinate. Note the unfamiliar-looking relation

x− = η−+x
+ = −x+. To avoid sign mistakes we will always use upstairs + and − indices,

that is x+ and x−.

3. If we consider a particle with constant velocity v in the x1-direction we will discover

some peculiar properties of light-cone coordinates:

Consider a particle trajectory given by (β := v/c)

x0(t) = ct = x0, x1(t) = vt = βx0, x2(t) = x3(t) = 0. (1.21)

These equations imply

dx+ =
1√
2

(dx0 + dx1) =
1√
2
dx0(1 + β), (1.22)

dx− =
1√
2

(dx0 − dx1) =
1√
2
dx0(1− β), (1.23)

and hence the light-cone velocity becomes

v̂ = (v̂−, v̂2, v̂3) = (
dx−

dx+
,
dx2

dx+
,
dx3

dx+
, ) = (

1− β
1 + β

, 0, 0). (1.24)

This result is a bit strange since −1 < β < 1 and thus ∞ > v̂− > 0, so it has no limit

(like in non-relativistic physics) but what is perhaps even more weird; it is never negative.

These strange features one just has to accept.

4. Recall the standard relations in special relativity:

4-velocity:Uµ = c
dxµ(s)

ds
⇒ 4-momentumPµ = mUµ. (1.25)

We also have in special relativity the interval

ds =
√
ds2 =

√
c2dt2 − (dr)2 = cdt

√
1− β2, (1.26)

which implies that, using Pµ = (E/c, P 1, P 2, P 3),

Pµ =
m√

1− β2
(c,v) ⇒ E = γmc2, P = γmv. (1.27)

We also see that

P 2 = PµPµ = −m2c2. (1.28)

Having reviewed the standard relations we can now answer the following question:

What is the generator of translations in the light-cone ”time” coordinate x+?
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In QM we know that the unitary translation operator is

U(t, r) = e
i
~x·p̂ (1.29)

In ordinary coordinates the exponent reads

x · p = −x0p0 + x1p1 + x2p2 + x3p3 = −tE + r · p. (1.30)

We know (for instance, from the Schrödinger equation) that the operator corresponding to

the energy E is the Hamiltonian so Ĥ = cp̂0 is the generator of time translations.

In light-cone coordinates the corresponding equation (dropping the hats) is

x · p = x+p+ + x−p− + x2p2 + x3p3 = −x+p− − x−p+ + x2p2 + x3p3, (1.31)

which means that H is replaced by

Hl.c. = cp−. (1.32)

This fact then gives the light-cone version of the Schrödinger equation. Later we will have

problems dealing with the square root solution of p2 = −m2, p0 = ±
√

p2 +m2, which

in light-cone coordinates is replaced by the much simpler p− = 1
2p+

((pT )2 + m2). Here T

refers to the transversal directions pµ 6= p± and we assume p+ 6= 0.

Extra dimensions and their effect on energy spectra

First two comments:

1. More time directions than one is not easy to make sense of in physics (but there have

been many attempts).

2. Having more space directions than three is (fairly) easy to deal with and they are actually

predicted by the string. Moreover, as seen from the paper by Hoyle et al (hep-th/0011014),

extra space dimensions with size around a micron or smaller can not yet be ruled out by

gravitational experiments. The possible existence of micron sized extra dimensions is quite

remarkable.

What would a spacetime with extra space dimensions mean?

As an example consider a 6-dimensional spacetime with coordinates xM = (x0, x1, x2, x3, x4, x5) =

(xµ, ym). Here we have introduced the notation ym = (y1, y2) = (x4, x5) for the dimen-

sions added to our ordinary 4-dimensional spacetime. Thus we have the 4+2 index split

M = (µ,m). (If needed one could have used a hat: x̂M .)

Almost all properties of ordinary spacetime are easily generalised to higher dimensions:

1. SO(1,3) → SO(1,5) which means that the invariant interval is now

− ds2 = −c2(dt)2 + (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2 + (dx5)2 = ηMNdx
MdxN , (1.33)
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where we also used the higher dimensional Lorentz metric

ηMN =



−1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (1.34)

Here we see that the upper left hand 4×4 block is just ηµν and that in the extra directions

the metric is ηmn = δmn. All mixed components are zero (ηµn = 0).

In a similar spirit we can decompose the Lorentz rotation matrix:

LMN =

(
Lµν Lµn
Lmν L

m
n

)
. (1.35)

The interpretation of these four blocks is clear:

Lµν is just the ordinary Lorentz rotations in four dimensions SO(1,3),

Lmn are rotations in two Euclidean dimensions i.e. SO(2),

Lµn and Lmν mix the 4-dim spacetime directions and the extra ones.

Properties of extra dimensions:

1. In field theory we consider only extra dimensions that are smooth manifolds (having

no singular points) so only torii, spheres and some other more complicated (but smooth)

mathematical manifolds are possible. In five dimensions the 5th direction can then only be

a circle. In this case the whole spacetime can be viewed as a generalised ”cylinder”: The

uncompactified dimension along the cylinder then has a circle attached to it at each point.

There are two different ways to describe a circle:

a) As a circle with an angle coordinate 0 ≤ θ < 2π. This coordinate is single-valued

over the circle but it is discontinuous: It jumps from 2π back to 0 after one revolution.

b) Instead one can use a multi-valued but continuous coordinate y if one unwraps the

circle so that it covers the whole y-axis from −∞ to +∞. In this case the circle is the

fundamental region under the equivalence relation

circle : y ∼ y + 2πR, (1.36)

where R is the radius of the circle.

In string theory it is often easier to use the second kind of coordinates, i.e., multival-

ued and continuous ones!
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Example in 2 dimensions: By dividing the plane with coordinates (x, y) into squares and

identifying all opposite sides one ends up with a fundamental region which is a flat two-

dimensional torus. Such a torus can not be embedded in R3.

2. In string theory the above manifolds can be generalised to orbifolds which is not

possible in field theory. Orbifolds are singular and thus not really manifolds. Such objects

arise as the fundamental region due to a transformation with fix-points. The simplest ex-

ample is the cone: Consider the plane again with coordinates (x, y). The torus above was

obtained by using equivalence relations based on translations in the two directions (as for

the circle) which have no fixpoints: Translations are effective everywhere on the plane.

Use instead polar coordinates (r, θ) and consider the following equivalence relation:

θ ∼ θ + π/2. (1.37)

Identifying the two sides of the segment between θ = 0 and θ = π/2 gives a cone with a

singular point at the tip. This tip arises because the equivalence relation has no effect at

the origin of the plane.

Energy levels and compact dimensions: As a final point in this chapter we discuss

how the energy spectrum of a physical system depends on the presence of an extra circular

dimension. This will explain the importance of understanding the different energy scales

that occur in theories with extra dimensions and how it might be possible to detect such

compact extra dimensions. Experiments of this kind are currently conducted at CERN

(see ATLAS, June 20164) and many other large colliders.

To understand this phenomenon in a very simple setting let us consider the Schrödinger

equation for a particle in a square well potential in one dimension (x) studied in every

basic course on quantum mechanics. To get the energy levels we need to solve(
p2

2m
+ V (x)

)
ψ(x) = Eψ(x), where p = −i~ d

dx
. (1.38)

The potential is given by

V = 0, 0 < x < a,

V =∞ for x ≤ 0 and x ≥ a ⇒ ψ(x) = 0 in this range.

The equation to solve inside the square well is

− ~2

2m

d2ψ

dx2
= Eψ, (1.39)

giving, with
∫ a

0 |ψk(x)|2 dx = 1, for each integer k = 1, 2, ...,

ψk(x) =

√
2

a
sin(

kπx

a
), Ek =

~2

2m

(
kπ

a

)2

. (1.40)

4More details can be found concerning searches for both supersymmetry and extra dimensions in the

2017 PhD thesis by G. Bertoli from Stockholm University.
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We now solve the same problem but in a space with an extra circular direction with

coordinate y. So x ∈ R and y ∈ S1
R where R is the radius of the circular dimension.

Outside the well in the x-direction the wave function is zero for all values of y. Inside the

well we must solve the equation

− ~2

2m

(
∂2Ψ(x, y)

∂x2
+
∂2Ψ(x, y)

∂y2

)
= EΨ(x, y). (1.41)

Here the variables x and y can be separated by writing the wave function as

Ψ(x, y) = ψ(x)φ(y), (1.42)

which gives the answer that ψ(x) is the same as before (the ψk(x) quoted above) while

φl(y) = al sin( lyR ) + bl cos( lyR ). (1.43)

Note that the expansion on the circle contains both sin and cos modes while on the interval

[0, a] in the x-direction only sin modes can appear since the wave function has to vanish

at x = 0 and x = a. Solving the Schrödinger on the cylinder space gives

Ek,l =
~2

2m

(
(
kπ

a
)2 + (

l

R
)2

)
, k = 1, 2, 3, ... , l = 0, 1, 2, 3, ... (1.44)

Note the absence of the k = 0 mode!

This result is very interesting when trying to understand the relevance and detectabil-

ity of extra dimensions. In a physical situation we can let a be the size of an atom, 10−9m,

and R the Planck length, about 10−35m. So a >> R and hence π
a <<

1
R . The conclusion is

that it is easy to see the excited k-levels but the first excited l-level requires an energy close

to the Planck energy 1019GeV to see. This is an energy that never will be produced in any

collider on Earth. It is therefore a big challenge to design experiments that can circumvent

this problem. The modern approach to confront string theory with experiments is via the

swampland program. More on this at the end of the course if time permits.

Comment: As we will see later, a closed string living on the cylinder, compared to the

particle above, will have more degrees of freedom corresponding to the fact that it can

wind any number of times around a non-trivial direction like the circle in this case. A

space with no non-trivial loops is called simply connected and one with non-trivial loops

non-simply connected. This new feature of strings living on such non-trivial spaces is

very important in string theory and we will return to it later in this course.

Field theory on a ”cylinder”: What happens to a field theory in Mink4 if we add

a circular dimension S1 at each point? As a simple example consider a free Klein-Gordon

scalar field in five spacetime dimensions with one compact dimension. Replacing Mink5

by Mink4 × S1 with coordinates (xµ, y) then means that

�5φ(xµ, y) = 0⇒ �4φ(xµ, y) + ∂2
yφ(xµ, y) = 0. (1.45)
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The mode expansion on a circle with radius R reads (0 ≤ y < 2πR)

φ(xµ, y) = Σn∈Z φn(xµ)einy/R. (1.46)

It is clear that the five dimensional Klein-Gordon field gives rise to an infinite set of

scalar fields φn(xµ) in four dimensions. The five-dimensional Klein-Gordon equation is

now equivalent to the set of equations

�4φn(xµ)− (
n

R
)2φn(xµ) = 0⇒ mn = |n| 1

R
. (1.47)

Once again we see the consequences of a compact dimension of Planck size: The fields with

a Planck size mass are basically impossible to create in the lab. This means that in most

approaches to deriving Standard Model type field theories from strings only the ”massless”

sector is of interest.
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2 Lecture 2

2.1 BZ Chapter 3: EM and GR in various dimensions

Maxwell’s equations in Heaviside-Lorentz units, in four dimensions with coordinates (t, r) =

(t, x, y, z), read:

∇ ·E = ρ, ∇×B =
1

c
j +

1

c

∂E

∂t
, (2.1)

∇ ·B = 0, ∇×E = −1

c

∂B

∂t
. (2.2)

In these units the two fields E and B have the same dimension. The first equations are

the dynamical ones while the last two are Bianchi identities. The sources are ρ, the charge

density with dimension [ρ] = esu
L3 = esu/volume, and j, the charge current density with

dimension [j] = esu
L2T

= esu× v/volume.

Note that [E] = [B] = esu
L2 which follows from Gauss’ law: q =

∫
S2 E · da. Thus since

esu is dimensionless in natural units these fields have dimension 1/L2 and the potentials

(φ,A) have dimension 1/L.

The Lorentz force law is (β = v/c)

F =
dp

dt
= q(E + β ×B), (2.3)

Now we can introduce the potentials (φ,A) by solving the two Bianchi identities:

∇ ·B = 0 ⇔ B = ∇×A, (2.4)

∇×E = −1

c

∂B

∂t
⇔ E = −∇φ− 1

c

∂A

∂t
. (2.5)

The potentials φ(t, r),A(t, r) are not uniquely specified by their relations to the field

strengths E,B. In fact, if we perform the gauge transformations

φ′(t, r) = φ(t, r)− 1
c ε̇(t, r), A′(t, r) = A(t, r) +∇ε(t, r), (2.6)

where φ̇ = ∂tφ, the parameters ε(t, r) cancel when computing E and B.

Exercise: Check this last statemant about the gauge invariance.

Another way to express the physical content of gauge invariance is to say that the two

sets of potentials (φ(t, r),A(t, r)) and (φ′(t, r),A′(t, r)) are physically equivalent! Note

that there are situations where the potentials must be used, e.g., in the Aharonov-Bohm

effect in QM and the covariant derivative in QFT.

Comment: Potentials defined on non-trivial spaces pick up some new very interesting

properties. Such spaces are, e.g., non-simply connected ones like spaces with compact
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circle dimensions or spaces with a wire with a current. Note that the magnetic field at

the position of the wire is infinite and therefore not part of the space anymore (recall the

Aharonov-Bohm effect). The following may happen:

1. On a circle different vector potentials are not always physically equivalent since any

constant vector potential around a non-trivial circle gives rise to a gauge invariant Wilson

loop = e
∮
A·dr (more on this later).

2. While the physically measurable field strengths E,B must be uniquely defined ev-

erywhere on any spacetime (also non-trivial ones) this is not the case for the potentials

(φ(t, r),A(t, r)). From QM we may recall that A(t, r) for a magnetic monopole is not

unique over the whole space R3 around the monopole. In fact, on a 2-sphere around the

monopole one has to give A(t, r) different values typically on the northern and southern

hemi-spheres related by gauge transformations.

EM in general dimensions: Our main objective now is to find out what happens to

electromagnetism given by Maxwell’s equations if we change the number of space dimen-

sions, either to only two (or even one) or to more than three. We will later need theories

similar to the Maxwell theory in one time and nine or even ten space dimensions if gravity

is involved (discussed briefly if time permits).

The case of two space dimensions is discussed in BZ but here we turn directly to the

general case. The reason for this is that if we formulate the equations above relativistically

then they are automatically correct in any spacetime dimension with Lorentz symmetry

SO(1,d) where d is the number of space dimensions. Thus we rewrite the above equations

as follows (which should be well-known from any course in special relativity):

Aµ = (φ,Ai), Aµ = (−φ,Ai), (2.7)

where it is important to note that the space components (the vector potential A) are here

written with a space index i = 1, 2, ..., d, i.e., as Ai. Thus we use the index split µ = (0, i)

in any number of dimensions. Then derivatives in four dimensions (∂0,∇) become

∂µ :=
∂

∂xµ
= (∂0, ∂i), (2.8)

and the field strength reads

Fµν = ∂µAν − ∂νAµ. (2.9)

The four-dimensional E,B defined by F0i = −Ei and Fij = εijkB
k then generalise in higher

(or lower) dimensions to

F0i = −Ei, Fi1i2 = εi1i2i3....idB
i3...id . (2.10)

We see directly that the number of components of the electric field strength follows the

number of space dimensions but that the number of magnetic components increases much

more rapidly: in 9 space dimensions we have 9 electric but [ij] magnetic ones, that is

9 · 8/2 = 36. In two space dimensions this gives two electric components but only one
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magnetic one. In higher dimensions it is better to use Fi1i2 than Bi3...id .

The other relativistic equations we need are the dynamical ones

∂νF
µν = 1

cJ
µ, where Jµ = (cρ, ji) (2.11)

and the Bianchi identities

∂[µFνρ] = 0, (2.12)

all invariant under the gauge transformations

A′µ = Aµ + ∂µε, (2.13)

and valid in a spacetime of any dimensionality.

When we now start to discuss the fields generated by point charges in a general spacetime

(with d space dimensions) we will use Gauss’ law and thus integrals over higher-dimensional

spheres Sd−1. Note the relation between a ball Bd and a its boundary, the sphere Sd−1,

is written

Sd−1 = ∂Bd, where ∂ is the boundary operator satisfying ∂2 = 0. (2.14)

The method used to obtain the volume of these spheres is standard (see BZ sect. 3.4 or

the QFT course). The answer is

V ol(Sd−1
unit) =

2πd/2

Γ(d/2)
. (2.15)

The Γ-function is defined by Γ(n+ 1) = nΓ(n) for integers n or as an integral for any real

x ∈ R

Γ(x+ 1) =

∫ ∞
0

dte−ttx. (2.16)

We can now check how the component equations generalise to higher dimensions. So

starting from the fact that the dynamical equations ∂νF
µν = 1

cJ
µ are true in any spacetime

dimension D = 1 + d we set µ = 0 and find that Gauss’ law

∂iF
0i =

1

c
J0 ⇒ ∇ ·E = ρ, (2.17)

is valid in any dimension (here we have just used F 0i = Ei and J0 = cρ). Then

[ρ] = esu/Ld ⇒ [E] = esu/Ld−1. (2.18)

But using the force equation F = qE we also find that

[F] = (esu)2/Ld−1 ⇒ esu =

√
MLd

T 2
=
√
Ld−3, (2.19)

where the last equality follows if we use natural units. The conclusion is therefore that

charge is a dimensionless quantity only in 4 spacetime dimensions.
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Let us now repeat some standard manipulations in 3 space dimensions but now in d space

dimensions. Integrating Gauss’ law over a d-dimensional ball Bd gives the charge q inside

the ball

q =

∫
Bd
ρ d(V ol) =

∫
Bd
∇ ·E d(V ol). (2.20)

Applying Gauss’ theorem (valid in any dimension, see BZ sect. 3.5) to the last expression

as usual, it becomes (if the ball is round, i.e., ∂Bd = Sd−1
r ),

q =

∫
Sd−1
R

E · dA = flux through the surfaceSd−1
r . (2.21)

Here dA is the (d−1)-dimensional area element converted into a (d−1)-dimensional vector

perpendicular to the surface in question. This is done using the ε-tensor in d-dimensional

space: (dA)i1...id−1εi1...id = dAid .

As usual we can now apply this to a point charge at the origin of d-dimensional space.

To do this we use the form of the volume element expressed in terms of spherical coordi-

nates (r, θ1, ...., θd−2, φ) in d dimensions:

d(V old) = dr rd−1dΩd−1. (2.22)

This gives the electric field from a point charge E = (Er(r), 0, ...., 0) as follows

q =

∫
Sd−1
r

E · dA = Er(r) r
d−1V ol(Sd−1

unit) = Er(r) r
d−1 2πd/2

Γ(d/2)
. (2.23)

So we finally find that

Er(r) =
Γ(d/2)

2πd/2
q

rd−1
. (2.24)

This clearly generalises the usual Heaviside-Lorentz formula in three dimensional space:

d = 3 implies with Γ(3/2) = 1
2

√
π that Er(r) = q

4πr2
.

Comment: A slightly different way to say this is to recall that in d = 3 space dimensions

functions f(r) = r−1 are called harmonic since they satisfy ∇2 f(r) = 0 for r > 0 and gives

a delta function at the origin. This follows from the integrals above and that in spherical

coordinates ∇2 f(r) = r−2∂r(r
2∂r)f(r). In d dimensions ∇2f(r) = r−(d−1)∂r(r

d−1∂rf(r))

so harmonic functions now behave as f(r) ∼ r−(d−2) = r−d+2 which is what we saw above

(remember that E = −∇φ(r) where φ(r) is harmonic). Note that these expressions are

obtained using
√

det gij ∝ rd−1 as seen from the volume formula above.

Gravity in general dimensions: Our next task is to repeat the above considerations

in the case of gravity. As we will see this is a lot more interesting than electromagnetism.

In particular, the results will be needed later when we study the relation between gravity

and string theory which is one of the key things to understand in this course. The issue is

connected to the following question:
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Question: As will become clear later string theory has only one free parameter, the

string length, denoted ls and having dimension L. String theory has no other free pa-

rameters, dimensionless or with dimension. This is quite remarkable since we eventually

must be able to derive standard model type physics in 4 spacetime dimensions which today

requires a QFT with about 20 free parameters. The parameter with dimension in field

theory (in D = 4) is Newton’s constant G (often denoted GN ) with dimension L2 (recall

the Lagrangian in GR) in natural units. So what is the relation between ls and G? The

answer depends on the dimension of spacetime so this is what we need to discuss first.

Consider the force law in Newtonian mechanics, now in a general dimension d. First

we note that force, coordinates and masses have dimensions (N , m, kg) which are the

same in all space dimensions. This means that the force in any dimension reads5

F = G(D)m1m2

rd−1
× 2Γ((D−1)/2)

π(D−1)/2−1 . (2.25)

Here G(D) is the Newton constant in spacetime-dimension D = d + 1, so G(4) := G. It is

clear that Newton’s constant has a dimensionality that depends on the dimension of space-

time due to the rd−1-dependence of the force law (recall the result in electromagnetism).

Thus

[G(D)] =
NmD−2

kg2
=
LD−1

MT 2
= LD−2, (2.26)

where the last expression is in natural units.

We can now make the differences between electromagnetism and gravity clear by com-

paring the Newtonian force laws:

Fe = qE, Fg = mg. (2.27)

The force is independent of the spacetime dimension D, which is the case also for the mass

m and thus also for the gravity field g. In the electric case, on the other hand, both the

charge q and the field E depend of D as we saw above.

It is very useful to define Planck size quantities in D = 4 as follows (here [G] = L2):

Planck length : lP =

√
G~
c3

= 1.6× 10−35m, (2.28)

Planck time : tP =
lp
c

=

√
G~
c5

= 5.4× 10−44s, (2.29)

Planck mass : mP =

√
~c
G

= 2.2× 10−8kg, (2.30)

Planck energy : EP = mP c
2 =

√
~c5

G
= 1.2× 1019GeV. (2.31)

5The last factor is designed to give 1 in D = 4 and thus ∇2V (D) = 4πρ(D) in all dimensions D. The

Einstein-Hilbert action is then also the same for all D.
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Recall that 1 eV := 1.6 × 10−19Nm. Note that these scales are associated with quantum

gravity. That is, at the energy 1.2×1019GeV , or length scale 1.6×10−35m, gravity must be

treated as a quantum theory. Since Einstein’s theory of gravity (GR) is not renormalisable

(i.e., not consistent as a QFT) it has to be modified. String theory will explain exactly

how this can be done!

Comment An important question in the formulation of the laws of nature is why the

Planck scale is so much different from other scales, e.g., the scale of the weak nuclear force

around 100 GeV, and the scale of neutrino physics around 0.1 - 1 eV. It is an amazing

fact that the latter is very close to the scale of the curvature of the universe as given by

the measured cosmological constant. The existence of several different scales in nature is

called the hierarchy problem to which we have no really good answer.

It is convenient to define the Planck length in a general spacetime dimension:

l
(D)
P =

(
G(D)~
c3

)1/D−2

. (2.32)

This may be expressed as

G(D) =
(l

(D)
P )D−2

(lP )2
G. (2.33)

This follows directly since ~
c3

=
l2P
G where G and lP are the 4-dimensional quantities.

Compactified dimensions: Having understood the properties of the gravitational con-

stant and the Planck length in general dimensions we should now try to relate them to

each other when some directions of spacetime are compactified, via some Kaluza-Klein

procedure. The simplest case to look at is to let the compact dimensions be circles, that

is, a torus-compactification.

The simplest possible torus-compactification is obtained if the radius of all the circles

are the same, say R. We then consider the Lagrangian for gravity in D dimensions written

on a spacetime with 4 ordinary (non-compact) dimensions and n circular ones (an n-torus):

thus D = 4+n. Then the Einstein-Hilbert action can be written (with an explicit Newton’s

constant G(D) and L :=
√
−gR)

S(D=4+n) =
1

16πG(D)

∫
d4x

(∫ 2πR

0
dy1...

∫ 2πR

0
dyn

)
L(gMN (x, y)). (2.34)

Expanding the D-dimensional metric in Fourier-components on n circles is not hard to do

but when inserted into S(D=4+n) it gives rise to a rather complicated expression. However,

here we are only interested in deriving the relation between G(D) and G so the only term

we need to look at in the final result in 4 dimensions is the Einstein-Hilbert one. Hence,

we first do a 4 + n split M = (µ,m) and set to zero all higher Fourier modes of the
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4-dimensional fields:

gMN (x, y)→ gµν(x, y), Aµn(x, y), φmn(x, y)→ gµν(x), Aµn(x), φmn(x). (2.35)

In a second step we also drop the zero modes Aµn(x), φmn(x) leaving only gµν(x). Then

we can do all the y-integrals trivially

S(D=4+n) → (2πR)n

16πG(D)

∫
d4xL(gµν(x)) :=

1

16πG

∫
d4xL(gµν(x)). (2.36)

The definition of the D = 4 Newton’s constant in the last equality leads to the relation

G(4+n) = (2πR)nG. (2.37)

This is sometimes expressed in terms of the compactification length given by lc := 2πR.

Then for a torus compactification we have

G(D) = (lc)
D−4G. (2.38)

This result can also be obtained by considering, as in BZ, the Poisson equation in some

higher dimensional space with n torus dimensions where the mass source is spread evenly

over the compact dimensions. The mass density then becomes

ρ(4+n) =
ρ

(2πR)n
. (2.39)

The above G-result then follows from the fact that for the Poisson equation in this situation

the right hand side is dimension independent, i.e., G(D)ρ(D) = Gρ. (Verify this statement!)

Having obtained the two equations G(D) =
(l
(D)
P )D−2

(lP )2
G and G(D) = l

(D−4)
c G above we

can now play around with dimensions and check some scale relations. An interesting ques-

tion is how big the compact dimensions can be. To address this question we eliminate both

Newton constants from the two equations above. We get, for an internal torus with all

directions of the same size lc,

(l
(D)
P )D−2 = (lP )2(lc)

D−4. (2.40)

Let’s consider a couple of examples. For D = 5 this relation reads

(l
(5)
P )3 = (lP )2 lc. (2.41)

If the smallest length structure we can detect today, namely about 10−20m (using 10 TeV

beams at CERN)6, is assumed to be the one relevant for the Planck length in D = 5 then

we find, using lP = 10−35m, that

lc =
10−60m

10−70m
= 1010m, (2.42)

6The relation between length scales and energies scales is most easily obtained from the observation that

lpEP = ~c ≈ 10−16m · GeV . Then one just scales lengths and energies in opposite directions to maintain

the result ~c. For instance, 1 Fermi=10−15m which is 1020lP which means that it corresponds to the energy

10−20Ep = 100MeV which is roughly the energy scale in nuclear physics (QCD). Recall that 1 Fermi is the

size of the proton.
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which is crazy. Try now two circular dimensions instead, i.e., set D = 6. Then

(l
(6)
P )4 = (lP )2 (lc)

2 ⇒ lc =
10−40m

10−35m
= 10−5m, (2.43)

which is quite reasonable! Note that in this case, with D = 6, gravitational forces will

behave as follows

F ∼ r−2 for r >> lc, (2.44)

F ∼ r−4 for r << lc. (2.45)

This is precisely where the limit for detectability of extra dimensions is today, see Hoyle et

al . As we will discuss in detail later, one may define gravity to live in the whole spacetime

(as done above) but define the Standard Model to live on a surface (D-brane) containing

the non-compact four-dimensional spacetime that we normally regard as a our universe.

This is called the Brane world scenario.
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2.2 BZ chapter 4: Non-relativistic strings

It is now time to introduce strings which we first do in the simplest possible setting: Non-

relativistic strings. These are physical in the same sense as a violin-string or the mesonic

QCD-string that was mentioned above. This kind of string is the subject of this chapter

but when we come actual string theory later the string is a generalisation of a point-particle

and hence a fundamental object and not physical in the violin-string sense. For the fun-

damental string it is not possible to mark the points along the string since they are all

identical, much like two electrons.

The string to be discussed here has its two ends fixed at r1 = (0, 0, 0) and r2 = (a, 0, 0). If

left alone and without any gravitational field acting on it, its tension will force it to be a

straight line in the x-direction between the two end points. We will then pull it out a small

distance in the y-direction. When let go it will start oscillating with a small amplitude

compared to its length, i.e., the amplitude y is a function of t, x with y(t, x) << a for all

x ∈ [0, a] and all t.

The string has two basic properties: Tension, T0, and mass/unit length, µ0. Note that

[T0] = [force] = N = Nm
m = energy

length and [µ0] = kg
m . For small oscillations we can consider

the total length to be the same throughout the oscillations and hence the total mass to be

given by M = µ0a.

It is now rather straightforward to derive the differential equation that will govern these

oscillations. Let us consider a small piece of the string, between x and x + ∆x, where

the amplitudes are y(x) and y(x) + ∆y(x) (at some time t). Since we consider only small

oscillations we have ∆y
∆x << 1.

The force in the y-direction on the piece of the string between x and x+ ∆x is

∆Fy(x) = Fy(x+ ∆x)− Fy(x). (2.46)

The force comes from the pull on the end points from the rest of the string and is thus

given by tension as follows (the tension acts along the tangent to the string)

∆Fy(x) = Fy(x+ ∆x)− Fy(x) = T0
∆y√

∆x2 + ∆y2
|x+∆x − T0

∆y√
∆x2 + ∆y2

|x. (2.47)

Here ∆y can be neglected in comparison to ∆x which implies, letting ∆x→ dx→ 0,

dFy = T0(
dy

dx
|x+dx −

dy

dx
|x) ≈ T0

d2y(x)

dx2
dx. (2.48)

The dynamics of the dx piece of the string at x is governed by Newton’s second law which

then becomes,

µ0 ÿ = T0 y
′′(x). (2.49)
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Here we have used dFy = dmÿ, dm = µ0dx and represented an x-derivative by a prime

(and used df/dt := ḟ). This equation is just the wave equation which then identifies the

wave velocity as v2
0 = T0/µ0.

The wave equation above is second order in both time and x derivatives and hence needs

two conditions for both t, initial conditions, and x, boundary conditions. Boundary condi-

tions can be of two types. In the problem discussed above the two ends of the string are

fixed (e.g., to a wall) which is written, for all t,

Dirichlet b.c.: y(t, x = 0) = 0, y(t, x = a) = 0. (2.50)

If we had considered string ends that can slide without friction up and down (e.g., along a

pole in the y-direction) then we would have

Neumann b.c.: y′(t, x = 0) = 0, y′(t, x = a) = 0. (2.51)

These x-derivatives vanish since there are no forces (friction) from the pole in the y-direction

so the sloop of the string must vanish (i.e., it must be parallell to the x-axis).

This discussion can be generalised in many ways some of which will become extremely

important later:

1. Mixed boundary conditions: i.e, both D bc and N bc are used.

2. Adding a z-direction leads to the need for b.c. in both y and z directions and these can

be the same or different. E.g., the sliding pole case discussed above would require N bc in

the y-direction and D bc in the z direction for oscillations given by (y(t, x), z(t, x)).

Having introduced boundary conditions in the space directions the possible spectrum of

modes can be determined. To see how these modes behave in time one has to solve the

wave equation. To do this we need two initial conditions in time:

Initial conditions : y(t = 0, x) = f(x), ẏ(t = 0, x) = g(x). (2.52)

Although the procedure outlined above for how to solve the wave equation is rather stan-

dard, the fact that the string corresponds to a two-dimensional problem in (t, x) implies

that there is a more powerful way to proceed. We can start by solving the wave equa-

tion before introducing any initial or boundary conditions. To see that this is possible

we rewrite the 2-dimensional wave equation using light-cone coordinates (with a slightly

different definition from before):

x± = x± v0t⇒
∂2y

∂x2
− 1

v2
0

∂2y

∂t2
= 4

∂

∂x+

∂

∂x−
y(x+, x−). (2.53)

Note that ∂
∂x+

x+ = 1 and ∂
∂x+

x− = 0 which imply

∂

∂x+
=

1

2
(
∂

∂x
+

1

v0

∂

∂t
),

∂

∂x−
=

1

2
(
∂

∂x
− 1

v0

∂

∂t
). (2.54)
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This gives immediately the general solution of the wave equation in terms of one right-

moving (h+) wave and one left-moving one (h−):

y(t, x) = h+(x− v0t) + h−(x+ v0t) = h+(x−) + h−(x+). (2.55)

An example of the above are oscillations in the form of ”standing waves”. They can be

expressed as

y(t, x) = y(x) sin(ωt+ φ), (2.56)

which can satisfy either D bc or N bc at the two ends x = 0 and x = a, including one of

each. The initial conditions are given by the function y(x). First we shift t so φ = 0 at t = 0.

Then for t = 0 we have y(t = 0, x) = 0 but the velocity is given by ẏ(t, x)|(t=0,x) = ωy(x).

Thus the string starts along the x-axis at t = 0 but with velocity given by ωy(x). Inserting

this into the wave equation gives

y′′(x) +
ω2

v2
0

y(x) = 0. (2.57)

To solve this equation we must specify the boundary conditions. The general solution

contains both cos and sin modes. So

D bc at both ends : yn(x) = An sin
nπx

a
, n = 1, 2, .... (2.58)

Note that the zero mode (n = 0) is not present!

Using Neumann bc at both ends instead we get

N bc at both ends : yn(x) = Bn cos
nπx

a
, n = 0, 1, 2, .... (2.59)

In both cases the frequency spectrum is given by

ωn =

√
T0

µ0

nπ

a
, n = 1, 2, .... (2.60)

while for the N bc case with n = 0 we get rigid linear motion with ω0 = 0 given by the

zero modes a and b:

y0(t, x) = at+ b. (2.61)

Exercises:

1. What happens if we start form an ansatz with a cos instead of a sin for the time depen-

dence?

2. What happens if we use mixed boundary condition: D bc at x = 0 and N bc at x = a?

Comment: As already mentioned the string discussed above is not a fundamental string

like the one we will analyse in string theory. The points on the string we considered above
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can be marked with a pen and can then be followed separately as a function of time. Such a

string can also have longitudinal oscillations. This is not possible for a fundamental string:

The points can not be marked and no longitudinal motion can occur. The only thing we

can do when describing a fundamental string is to order the points with a parameter.

It is of course important to have a Lagrangian formulation of the wave equation derived

above. Since it will turn out to be very convenient to compare string theory to the simpler

case of a point particle we start by reviewing that case. The point particle action S[x] and

Lagrangian L(x(t)) read (between the initial time ti and final time tf of the motion)

S[x] =

∫ tf

ti

dtL(x(t)), where L(x(t)) =
1

2
mẋ2 − V (x). (2.62)

We get the equation of motion using Hamilton’s principle, that is, from a variational

principle: Require δS[x] = 0 under a variation of x by δx satisfying δx(t = ti) = 0 and

δx(t = tf ) = 0. Thus

δS[x] := δS[x+ δx]− δS[x] =

∫
dt(mẋδẋ− dV (x)

dx
δx) = 0. (2.63)

Since the time derivative and the variation commute δẋ = d(δx)
dt we can integrate by parts

in time to find

δS[x] =

∫
dt(−mẍ− dV (x)

dx
)δx+

∫
dt
d

dt
(mẋδx) = 0. (2.64)

The last term is a boundary term in time so it vanishes by definition of the Hamilton’s

principle. The first term is called the bulk term since the integral is over the whole

parameter space (here only time) and must then vanish by itself: This gives Newton’s 2nd

law

mẍ = −dV (x)

dx
:= F. (2.65)

This calculation is very important to understand in detail since it will be repeated below

for the (violin) string. Then there is also a boundary term in a space direction which will

produce boundary conditions like D bc and N bc discussed above. The fundamental string

case is slightly more complicated but essentially the same.

Now we turn to the (violin) string case. Then, recalling the definition of the Lagrangian,

we have

L = Ekin − Epot := T − V where


T =

∫ a
0

1
2(µ0dx)ẏ2,

V =
∫ a

0 T0 dl.

(2.66)

The potential energy term arises from to the stretching of the string dl that is due to the

oscillations. Thus dl =
√
dx2 + dy2 − dx = dx(

√
1 + ( dydx)2 − 1) ≈ 1

2( dydx)2dx since dy
dx is

assumed small here. So the Lagrangian

L =

∫ a

0
(
1

2
µ0ẏ

2 − 1

2
T0y
′2)dx :=

∫ a

0
dxL(t, x). (2.67)
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Comment: If we express the action in terms of the Lagrangian density L as follows

S[y] =

∫ tf

ti

dt

∫ a

0
dxL(y(t, x), ẏ(t, x), y′(t, x)), (2.68)

we can view this string theory as a 1+1-dimensional field theory with y(t, x) as the field in a

spacetime with coordinates (t, x). This is often very convenient and will be used frequently

in this course.

The next task is to use this action to obtain the equations of motion for the string (i.e., the

1+1 dimensional field equations) and boundary conditions. Thus we compute the variation

δS[y] and set it to zero: To first order in δy we get

δS[y] = δS[y + δy]− δS[y] ≈
∫ tf

ti

dt

∫ a

0
dx(µ0ẏ δẏ − T0y

′ δy′) = 0. (2.69)

This expression must be integrated by parts in both t and x directions to get the bulk term

proportional to δy:

δS[y] =

∫
dt

∫
dx (−µ0ÿ + T0y

′′)δy +

∫
dt

∫
dx (∂t(µ0ẏδy)− ∂x(T0y

′δy)) = 0. (2.70)

There are now two kinds of implications from this equation:

1) The bulk term=0,

2) The boundary terms =0.

Thus

Bulk terms=0⇒ −µ0ÿ + T0y
′′ = 0, (2.71)

Boundary terms=0⇒ y′δy|x=0 = 0, and y′δy|x=a = 0. (2.72)

Here we have used that the boundary terms in the time direction vanish by definition. The

first equation is just the wave equation

∂2y

∂x2
− µ0

T0

∂2y

∂t2
= 0, (2.73)

while the two boundary equations can be satisfied in two different ways (for all t):

Dirichlet bc: δy(t, x = 0) = 0 or equivalently
∂y

∂t
(t, x = 0) = 0, (2.74)

Neumann bc:
∂y

∂x
(t, x = 0) = 0, (2.75)

and similarly for the (independent) boundary equation at x = a.
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Comments: The total momentum of all the points on the string in the y-direction is

(dm = µ0dx)

py =

∫ a

0
dxµ0ẏ ⇒

∂py
∂t

= µ0

∫ a

0
dxÿ = T0

∫ a

0
dxy′′ = T0

∂y

∂x

∣∣∣a
0

=


= 0 for Neumann bc,

6= 0 for Dirichlet bc.

(2.76)

So while Neumann bc implies conservation of momentum (the string is free in the y-

direction in this case) this is not the case for Dirichlet bc. But this is also OK since the

momentum is absorbed by the wall to which the string ends are stuck.

Comments: We will also define the useful quantities (note the position of the indices)

Pt :=
∂L
∂ẏ

, Px :=
∂L
∂y′

. (2.77)

These are easily obtained from the Lagrangian above:

Pt := µ0 ẏ, Px := −T0 y
′. (2.78)

Using these quantities the equation of motion reads

∂tPt + ∂xPx = 0, (2.79)

which looks like the equation for a conserved current (more later).
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3 Lecture 3

In this lecture we will take the first serious steps towards string theory. Many properties

of the fundamental string are direct generalisations of the simpler object, the relativistic

point particle, so this is good place to start.

3.1 BZ Chapter 5: The relativistic point particle

The motion in spacetime of a point particle with mass takes place inside the light-cone.

Even if it has no velocity in space it traces out a world-line in Minkowski space xµ(τ)

where τ is a (time-like) parameter along the path. If there are no forces acting on it, we

say that it is free, and then it moves on straight lines inside the light-cone. Similarly, if

the particle is massless, like the photon, it moves on the light-cone.

The classical equation that governs its motion can be obtained from Hamilton’s princi-

ple (the variational principle) applied to the action

S = −mc
∫ p2

p1

ds = −mc
∫ τ2

τ1

√
−dxµ(τ)dxν(τ)ηµν , (3.1)

which is thus given by the proper time interval ds (ds2 > 0 or ds2 = 0). As usually done

in special relativity we can choose τ = t and extract a factor dt from the square root:

S = −mc
∫ t2

t1

dt

√
−dx

µ

dt

dxν

dt
ηµν = −mc2

∫
dt

√
1− v2

c2
. (3.2)

Let us now explain why this is the correct form of the action in this case. First we note

that it is relativistically invariant. Secondly, it must give the correct non-relativistic result

for small velocities which it does:

S ≈ −mc2

∫
dt(1− 1

2

v2

c2
+ ...) = −mc2(t2 − t1) +

1

2
mc2

∫
dt

v2

c2
+ .. (3.3)

Here we see that, since L = T − V , the rest mass mc2 belongs to the potential energy V

and 1
2mc

2 v2

c2
= 1

2mv2 is just the kinetic energy T . This also shows that S has the correct

dimension, namely the same dimension as ~: Nms = kgm2/s. This means that it is di-

mensionless in natural units!

As a further check we may compute the canonical momentum:

p :=
∂L

∂ṙ
=

mv√
1− v2

c2

, (3.4)

and the Hamiltonian

H := p · ṙ− L =
mv2√
1− v2

c2

+mc2
√

1− v2

c2
=

mc2√
1− v2

c2

, (3.5)
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both coming out correctly!

We can now vary the action to obtain the equation of motion for the relativistic point

particle (τ is a general parameter along the world-line while the time-like interval is de-

noted ds as above):

δxµ(τ)⇒ δS = −mc
∫
δ(ds) = −mc

∫
δ(
√
−ηµνdxµdxν) = −mc

∫
δ(
√
−ηµν ẋµẋν)dτ.

(3.6)

Here we have introduced the velocity with respect to the τ -parameter : ẋµ(τ) := dxµ

dτ .

Note that this is not a Lorentz vector which instead is obtained using the interval s as the

parameter, i.e., uµ := dxµ

ds .

To continue the variation of the action we write it as follows

δS =

∫
dτ

∂L

∂ẋµ
δẋµ. (3.7)

Then the answer follows directly:

δS = mc

∫
dτ

ηµν ẋ
µδẋν√

−ηρσẋρẋσ
. (3.8)

We may now choose to continue this calculation using τ as the parameter but this will

mean keeping square root expressions in various places. There is, however, a nice way to

simplify the result by observing that

√
−ηρσẋρẋσ =

√
(
ds

dτ
)2 =

ds

dτ
, (3.9)

where in the last equality we use the fact that ds
dτ > 0 since any parameter along the world-

line must parametrise the path monotonically (i.e., uniquely). So using this fact together

with

ẋµ =
dxµ(τ)

dτ
=
ds

dτ

dxµ(s)

ds
=
ds

dτ
uµ, (3.10)

the variation of the action reads

δS = mc

∫
dτ
ηµν

ds
dτ u

µδẋν

ds
dτ

= c

∫
ηµνp

µδẋνdτ, (3.11)

which can be integrated by parts in τ to give

δS = −c
∫
ηµν ṗ

µδxν + c[ηµνp
µδxν ]

∣∣∣τf
τi

= 0. (3.12)

The boundary terms are only in the time direction so they vanish by definition of Hamilton’s

principle. Hence only the bulk term is non-trivial:

ṗµ =
dpµ

dτ
= 0. (3.13)
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Note that this can be expressed in a Lorentz covariant way by using ds =
√
−ẋ2dτ as

dpµ

ds
= 0, or m

d2xµ(s)

ds2
= 0. (3.14)

Comments: The above variation of the point particle action can also be done (as in the

gravity course) in a spacetime with a general metric gµν(x) replacing the Minkowski one

ηµν . The result is then the geodesic equation

d2xµ

ds2
+ Γµνρ(g)

dxν

ds

dxρ

ds
= 0, (3.15)

where Γµνρ(g) is the affine connection constructed from the metric gµν . If this equation

is expressed in terms of a world-line parameter other than the invariant interval s, e.g.,

τ , a metric and a covariant derivative must be introduced also on the world-line by the

replacement

d2xµ

ds2
→ ∇τ∂τxµ(τ) := �(τ)x

µ(τ) =
1√
−g

∂τ
(√
−ggττ∂τxµ(τ)

)
. (3.16)

exactly as if we had viewed xµ(τ) as a set of scalar fields living in a spacetime with only a

time direction and metric gττ with ”determinant” det g = gττ < 0.

We end this discussion of the point particle by giving it a charge q and couple it to a

background electromagnetic field Aµ, i.e., this field is fixed and is not affected by the

charged particle, i.e., we are neglecting the back-reaction. The rather simple definitions

and formulas below are quite important since they will be generalised in several ways later

in the context of the string. Recall first the Lorentz force law

dp

dt
= q(E +

v

c
×B). (3.17)

The relativistic version reads, using the interval s as the parameter on the world-line,

dpµ
ds

=
q

c
Fµνu

ν . (3.18)

The action that gives rise to this dynamical equation for the charged point particle is

S = −mc
∫
ds+

q

c

∫
ds
dxµ(s)

ds
Aµ(x(s)) = −mc

∫
P
ds+

q

c

∫
P
A, (3.19)

where we have formed the so called 1-form A := dxµAµ(x) used heavily in differential

geometry. P denotes the path of the particle in spacetime (i.e., just the world-line but

without a specified parametrisation).

Comment: Note the important fact that although the field Aµ(x) is defined everywhere

in spacetime Aµ(x(τ)) is defined only on the world-line.
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Finally, the complete system of a charged particle moving in the background of a dy-

namical electromagnetic field must also contain Maxwell’s equations. The complete action

is then

S = −mc
∫
P
ds+

q

c

∫
P
A− 1

4c

∫
d4xFµνF

µν . (3.20)

Note that this action contains terms which are integrated over different manifolds (space-

time and the world-line). This way of writing the action is nice since it takes (almost)

exactly the same form (the F 2 term needs a
√
−g) if the geometry of spacetime is curved

given by a general metric gµν . If also spacetime is dynamic we need in addition Einstein’s

equations. This means adding also the Einstein-Hilbert term to the above action (all the

other terms are already made generally covariant according to the rules in GR).

Note that the 1-form term
∫
A :=

∫
dxµAµ is special: It takes the same form also in

curved spacetimes; it is by definition coordinate independent as it is written (that is, with-

out using the metric).
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3.2 BZ Chapter 6: Relativistic strings

The main goal now is to generalise the results for the point particle found above to the

case of the string. We will do this along the lines of some discussions in geometry that

should familiar to most of you (they appear in the course Gravitation and Cosmology).

First we recall that the way to get a metric on the 2-sphere S2 is simply to embed it

in flat 3-space R3 by solving the definition equation of the embedding: x2 + y2 + z2 = R2.

Introducing the angular coordinates θ, φ on S2 we get standard result (m = 1, 2, 3 and

x1 := x etc)

xm(θ, φ) : x(θ, φ) = R sin θ cosφ, y(θ, φ) = R sin θ sinφ, z(θ, φ) = R cos θ. (3.21)

The metric on S2 denoted gij(θ, φ) (i, j = (θ, φ)) is obtained from the flat metric on R3 as

follows:

ds2(S2) = (dx(θ, φ))2 + (dy(θ, φ))2 + (dz(θ, φ))2 = gij(θ, φ)dθdφ, (3.22)

where

gij(θ, φ) =

(
gθθ gθφ
gφθ gφφ

)
=

(
∂xm

∂θ
∂xn

∂θ
∂xm

∂θ
∂xn

∂φ
∂xm

∂φ
∂xn

∂θ
∂xm

∂φ
∂xn

∂φ

)
δmn. (3.23)

If we now denote the angular coordinates as σi = (θ, φ) the above equation reads simply

gij(θ, φ) =
∂xm

∂σi
∂xn

∂σj
δmn, (3.24)

which gives the crucial result that the metric gij(θ, φ) on S2 is the pull-back of the metric

δmn on R3. This fundamental result can be generalised to any situation where the embed-

ding of a surface Σd(σ
i) into some target manifold MD(xm) is defined by maps xm(σi)

from the surface to the target manifold. Here the dimensionalities of the surface and target

space are given by d and D, respectively.

The volume (or area) element of the surface is as always in general relativity given by

the determinant of the metric as

V =

∫
Σd

ddσ
√
detgij . (3.25)

As a concrete example we consider a soap film extended between two rings held parallell

to each other and a fixed distance apart. If we neglect gravity the film will intuitively be

of cylindrical shape but with a smaller radius at the middle due to the tension in the film.

The exact shape is obtained by solving the equations for the film derived by varying the

embedding functions xm(σi) using Hamilton’s principle as we did above.

This calculation will be done below but first we derive the soap film result in a second

more direct way and then we bring it over to spacetime and relativistic string theory. The

alternative derivation starts from the soap film between the two rings. Introduce now two
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arbitrary coordinates (but not parallell anywhere) spanning the surface at any point on

it. As above we denote them as (σ1, σ2) and draw lines on the film corresponding to these

coordinates. At each point (σ1, σ2) we can compute the tangent vectors to the coordinate

lines by

vm1 =
∂xm

∂σ1
, vm2 =

∂xm

∂σ2
. (3.26)

An infinitesimal area element on the film, with one corner at some given point, is then

obtained from the cross product between these two tangent vectors dA = |v1×v2|dσ1dσ2.

Note that side 1 of the parallellogram is (dxm)1 = vm1 dσ1 and the same for the second one.

However, this area element can be written dA = |v1||v2| sinαdσ1dσ2 where α is the angle

between the two tangent vectors. Then

dA = |v1||v2|
√

1− cos2 αdσ1dσ2 =
√
|v1|2|v2|2 − |v1|2|v2|2 cos2 αdσ1dσ2. (3.27)

Inserting the expressions for the tangent vectors above this becomes

dA =

√
(
∂xm

dσ1

∂xn

dσ1
δmn)(

∂xp

dσ2

∂xq

dσ2
δpq)− (

∂xm

dσ1

∂xn

dσ2
δmn)2dσ1σ2 =

√
detgijdσ

1dσ2, (3.28)

since ∂xm

dσ1
∂xn

dσ2 δmn = v1 · v2 = |v1||v2| cosα. This is what we set out to prove.

The equation we are after for the string then follows directly from the above equations

by replacing the surface of the soap film by the world-sheet, generated when the string

moves in spacetime. Thus the coordinates on the world-sheet must have one coordinate

with a tangent vector inside the light-cone and one space-like one. These are now denoted

ξα = (τ, σ) and the embedding functions Xµ(τ, σ), called string coordinates, are telling

us where in spacetime the world-sheet is:

Xµ(ξα) : Σ2 →MD. (3.29)

Here Σ2 is the world-sheet andMD theD-dimensional target space which is just Minkowski

space but could be any kind of spacetime even ones containing black holes etc. Note the

new convention to use a capital letter for the string coordinates Xµ(τ, σ).

This string has tension and hence an energy density along the string. This implies that any

finite section of the string has a finite mass and must move with a velocity less than the

speed of light. Contrary to a string that is not fundamental, our fundamental one does not

have some atom being the last one at the ends of it. Hence one can consider the motion

of smaller and smaller pieces close to a string end. Since the mass of such a piece of string

will also go to zero as the length of the piece goes to zero, the end must always move with

the speed of light! This is the first real clear (see below) new feature we encounter valid

for a fundamental string.

The string action functional is called the Nambu-Goto action and reads

S[Xµ] = −T0

c

∫ τf

τi

dτ

∫ σ1

0
dσ
√
−detγαβ, (3.30)
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where we in this relativistic case, with world-sheet coordinates ξα = (τ, σ), denote the

pull-back metric on the world-sheet as γαβ, i.e.,7

γαβ =
∂Xµ

∂ξα
∂Xν

∂ξβ
ηµν . (3.31)

The above normalisation of the action follows from the fact that the tension T0 has di-

mension [T0] = [force] = ML/T 2 and [S] = [~] = [time × energy] = ML2/T which then

implies the factor of c in the denominator. Note that the integrand is dimensionless in

natural units but has general units as [c] since coordinates in spacetime have dimension L

(there is a factor c in the X0 inside the detγαβ) while ξ0 := τ .

Explicitly the Nambu-Goto integrand reads√
−detγαβ =

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2. (3.32)

The computation of the Nambu-Goto string equations of motion will be done along the

lines discussed above. Thus we have

δXµ(ξα)⇒ δS[Xµ] =

∫
dτdσ

(
∂L
∂Ẋµ

δẊµ +
∂L
∂X ′µ

δX ′µ
)
, (3.33)

where dots are τ derivatives and primes σ derivatives. To avoid writing out complicated ex-

pressions containing squared roots we keep the notation here and continue the computation

by performing integrations by parts in the standard way in both τ and σ:

δS[Xµ] = −
∫
dτdσ

(
∂τ (

∂L
∂Ẋµ

) + ∂σ(
∂L
∂X ′µ

)

)
δXµ (3.34)

+

∫
dτdσ

(
∂τ (

∂L
∂Ẋµ

δXµ) + ∂σ(
∂L
∂X ′µ

δXµ)

)
= 0. (3.35)

To satisfy this equation we set the bulk term (first line) and the boundary terms (second

line) to zero separately. This implies

bulk term=0 : ∂τPτµ + ∂σPσµ = 0, where Pτµ :=
∂L
∂Ẋµ

, Pσµ :=
∂L
∂X ′µ

. (3.36)

Here we should note the position of the two indices on the quantities (Pτµ ,Pσµ ). Note also

that the equation of motion ∂αPαµ = 0 looks like a two-dimensional current conservation

equation as obtained from Noether’s theorem (more later).

Turning to the boundary terms we note first that the first term on the second line is

zero by definition (boundary terms in the τ direction) while the second term gives

space-like boundary terms =0: (PσµδXµ)
∣∣∣
σ=0

= (PσµδXµ)
∣∣∣
σ=σ1

= 0. (3.37)

7In differential geometry this pull-back is written γ = X∗(η).
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Again we find that there are two different ways to satisfy these equations: Making a 1+3

split of the spacetime directions according to µ = (0, i) gives, at each end of the string

and in each space direction i, one of two independent choices (for all τ)

µ = i

{
Free end bc (later Neumann): Pσi = 0,

Dirichlet bc: δXi = 0 or equivalently ∂Xi

∂τ = 0
(3.38)

The many possible combinations of these boundary conditions will be studied in detail

below. In the time direction µ = 0 only the free condition is possible (time can not stop),

i.e. at each end of the string we must impose

µ = 0 : Free end bc (later Neumann): Pσ0 = 0. (3.39)

Before discussing the various kinds of boundary condition we should write down (Pτµ ,Pσµ )

explicitly to see that they are quite complicated and that any kind of simplifications we

can find would be very useful. They read

Pτµ :=
∂L
∂Ẋµ

= −T0

c

(Ẋ ·X ′)X ′µ −X ′2Ẋµ√
(Ẋ ·X ′)2 − Ẋ2X ′2

, (3.40)

Pσµ :=
∂L
∂X ′µ

= −T0

c

(Ẋ ·X ′)Ẋµ − Ẋ2X ′µ√
(Ẋ ·X ′)2 − Ẋ2X ′2

. (3.41)

Returning to the boundary conditions we will introduce a table which provides a very

convenient way of stating them: (end 1 has σ = 0 and end 2 σ = σ1 where σ1 is just a

number at this point which will be determined later)

direction end: 1 2

x-direction N bc N bc

y-direction D bc N bc

z-direction N bc N bc

In this example the string lives in three space dimensions with the σ = 0 end stuck to

a wall at y = y0 and can hence move freely in the x and z directions. The other end has

N bc in all three directions and is therefore free to move in all space directions. We will

discuss many situations like this so we will introduce the extremely important concept of

Dp-branes.

Dp-branes are not fundamental objects like the string we study here (which generalises

the point-particles discussed previously8) but should instead be viewed as physical objects

(like a chair or a black hole build from the fundamental objects in the theory). In the above

example the σ = 0 end of the string is attached to a D2-brane parallell to the xz-plane

8These can also be viewed as the excitations created by a† operators in QFT. This point of view leads

in string theory to what is called string field theory.
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while the σ = σ1 end can be considered as stuck to a D3-brane. Since this last brane fills

all of space it is called space-filling.

Comments: Dp-branes are

1) Physical objects that extend indefinitely in all its internal directions and are hence in-

finitely heavy.

2) They can also be of finite size (like spheres) but this is rather difficult to analyse9.

3) If some dimensions are made compact Dp-branes may have no directions in the uncom-

pactified directions and will then look like a point in these directions (e.g., those of our

ordinary four-dimensional spacetime).

The static gauge: We will end this chapter by making use of the reparametrisation

invariance on the world-sheet, i.e., in the coordinates (τ, σ) to simplify the complicated

expressions for (Pτµ ,Pσµ ) given above. This will be done in three steps of which the first

one is taken here. The remaining two steps will be described in the next lecture.

Step 1: The static gauge is using the fact that, in a given Lorentz system in target

space with coordinates xµ, we may at time x0 take a snap-shop of the string when it moves

in space. On the world-sheet this string corresponds to a line from one side to the other,

a line that we can then associate with a fixed value of the τ coordinate by setting it equal

to the value of x0. Thus we have chosen the so called static gauge: If we let Q denote any

point on the snap-shot line then τ(Q) = t where x0 := ct. We write this as a condition on

the time component of the string coordinates as

The static gauge: X0(τ, σ) := cT (τ, σ) = cτ. (3.42)

The static gauge therefore says that the string coordinate component X0(τ, σ)/c and the

world-sheet time coordinate τ are both equal to the coordinate time t (in the Lorentz frame

chosen).

This gauge choice has some quite nice consequences: (using the 1+3 index split µ = (0, i))

Xµ(τ, σ) = Xµ(t, σ) = (ct,Xi(t, σ)), (3.43)

which implies

Ẋµ(τ, σ) := ∂τX
µ = (∂tX

0, ∂tX
i) = (c,v), (3.44)

X ′µ(τ, σ) := ∂σX
µ = (∂σX

0, ∂σX
i) = (0, ∂σr). (3.45)

In this gauge it is clear that the expression under the square root, that is −detγαβ, is

positive! (Check this! There is an argument in the book valued more generally.)

We will end this chapter by discussing some of the physics of the string that can be made

clear using the static gauge. So consider a fixed string in d space dimensions stretched

9See, e.g., ”Spherical branes”, arXiv: hep-th/1805.05338.
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(and at rest) in the x1 direction between (0, ..., 0) and (a, 0, ..., 0) where the former is the

σ = 0 end and the latter the σ = σ1 end. To evaluate the string action we note that

Xµ(τ, σ) = (X0(τ, σ), X1(τ, σ), XI(τ, σ)) = (cτ, f(σ), 0, ..., 0), I = 2, 3, ... (3.46)

where X1(τ, σ) = f(σ) with f(σ) an arbitrary (monotonous) function along the string such

that f(0) = 0 and f(σ1) = a. This Xµ(τ, σ) gives

Ẋµ = (c, 0, ..., 0), X ′µ = (0, f ′(σ), ...., 0), where f ′(σ) > 0. (3.47)

Using this result we get

Ẋµ ·X ′µ = 0, (Ẋµ)2 = −c2, (X ′µ)2 = (f ′)2, (3.48)

which when inserted into the action gives

S[Xµ] = −T0

c

∫
dτdσ

√
c2(f ′)2 = −T0

∫
dτdσ f ′(σ) = −T0

∫ τf

τi

dt

∫ σ1

0
dσ∂σf(σ), (3.49)

and hence since there is no time dependence in the integrand

S[Xµ] = −T0(tf−ti)(f(σ1)−f(0)) = −T0( tf−ti) a :=

∫
dtL =

∫
dt(Ekin−Epot). (3.50)

The last equality leads to the identification (V is the potential energy and M the total rest

mass)

Epot := V = T0 a = Mc2 ⇒ V/a = µ0c
2 ⇒ µ0c

2 = T0. (3.51)

For the above discussion to make sense at all the stretched string at rest must solve the

equations of motion and satisfy sensible boundary condition. However, the bc are Dirichlet

at both ends which are always correct (the wall compensates for all non-conserved quan-

tities etc). To check that the equations of motion, i.e., the Nambu-Goto (NG) equations,

∂τPτµ + ∂σPσµ = 0 are satisfied we need the two quantities Pαµ computed from the Xµ(τ, σ)

above.

Since there is no τ dependence at all in this situation the NG-equations give just ∂σPσµ = 0.

Is this correct? We have from before

Pσµ = −T0

c

(Ẋ ·X ′)Ẋµ − Ẋ2X ′µ√
(Ẋ ·X ′)2 − Ẋ2X ′2

= −T0

c

(
c2X ′µ
f ′

)
= −T0c(0, 1, 0..., 0), (3.52)

which is constant and thus shows that the NG equations are satisfied.

It is in fact quite interesting to compute the general form of the action in the static gauge.

To do this we need the expressions above for the string coordinates in the static gauge

τ = t:

Xµ(τ, σ) = Xµ(t, σ) = (ct,Xi(ct, σ)), (3.53)
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which implies

Ẋµ(τ, σ) = ∂τX
µ = (∂tX

0, ∂tX
i) = (c,v), (3.54)

X ′µ(τ, σ) = ∂σX
µ = (∂σX

0, ∂σX
i) = (0, ∂σr). (3.55)

Computing the various Lorentzian scalar products gives

Ẋ2 = −c2 + ṙ2, (3.56)

X ′2 = r′
2
, (3.57)

Ẋ ·X ′ = ṙ · r′. (3.58)

Inserted into the expression under the square root, i.e., −detγαβ, it becomes

− detγαβ = (Ẋ ·X ′)2 − (Ẋ2)(X ′2) = (ṙ · r′)2 + (c2 − ṙ2)(r′
2
). (3.59)

In order to clarify the meaning of this expression we introduce the proper space length

denoted ds̄(σ) as follows (ignoring the τ dependence for now)

ds̄(σ) :=
√
dxidxi =

√
dr · dr = |dr(σ)| = |∂σr|dσ = |r′|dσ. (3.60)

This implies some relations familiar from general relativity

(r′)2 = (
ds̄

dσ
)2,

dr

ds̄
· dr
ds̄

= 1. (3.61)

Then since r′ = ∂σr = ds̄
dσ ∂s̄r we have

− detγαβ = (ṙ · r′)2 + (c2 − ṙ2)(r′
2
) = (

ds̄

dσ
)2
(
(∂tr · ∂s̄r)2 + (c2 − (∂tr)2)(∂s̄r)2

)
. (3.62)

Using one of the equations above this becomes

− detγαβ = (
ds̄

dσ
)2
(
(∂tr · ∂s̄r)2 + (c2 − (∂tr)2)

)
= (

ds̄

dσ
)2
(
c2 − ((∂tr)2 − (∂tr · ∂s̄r)2)

)
.

(3.63)

Here we note the important fact that the expression in the last (inner) bracket is the square

of the velocity perpendicular to the string denoted v⊥ (Check this!):

v⊥ := ∂tr− (∂tr · ∂s̄r)∂s̄r. (3.64)

Thus we get

− detγαβ = (
ds̄

dσ
)2c2(1−

v2
⊥
c2

). (3.65)

So finally we see that in the static gauge the action can be written

S = T0

∫
dt

∫ σ1

0
dσ

ds̄

dσ

√
1−

v2
⊥
c2

= T0

∫
dt

∫ σ1

0
ds̄

√
1−

v2
⊥
c2
, (3.66)

where the last expression emphasises the reparametrisation invariance along the string.
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The importance of the above way of writing the string action (in the static gauge) comes

from the fact that only the velocity perpendicular to the string denoted v⊥ appears in it.

Thus any motion of the string parallell to the string is unobservable. This implies that it

is not possible to mark a point on the string and follow its motion in time: Points on the

string are not distinguishable (but possible to put in an order along the string)!

We can now draw two more conclusions about the general motion of the ends of an open

string with free boundary conditions:

–They move with the speed of light.

–They move perpendicular to the string.

We now show explicitly that the facts follow free the boundary conditions

Pσµ (τ, σ̄) = 0 for σ̄ = 0, and/or σ̄ = σ1. (3.67)

Start by writing these bc in the static gauge. They read (see formulas for Ẋµ etc above)

In space directions (µ = i) : Pσi = −T0

c

(ṙ · r′)Ẋi + (c2 − v2))X ′i

( ds̄dσ )c
√

1− v2

c2

= 0, (3.68)

In the time directions(µ = 0) : Pσ0 = −T0

c

(ṙ · r′)

( ds̄dσ )c
√

1− v2

c2

= 0, (3.69)

where we in the last equation have used the static gauge results Ẋ0 = 1 and X ′ 0 = 0.

Thus the last equation implies

ṙ · r′ = 0, (3.70)

which means that the end of the string moves perpendicular to the string (note that r′ is

tangent to the string).

Inserting this result in the equation for the free bc in the space directions gives

In space directions (µ = i) : Pσi = −T0
(1− v2

c2
))X ′i

( ds̄dσ )
√

1− v2

c2

= −T0

√
1− v2

c2
∂s̄Xi = 0, (3.71)

which implies that v = c, i.e., the end point moves with the speed of light.
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4 Lecture 4

In this lecture we will take the two last steps of gauge fixing by using the remaining

reparametrisation invariance of the world-sheet. We then obtain the true physical content

of the string, that is, its degrees of freedom etc. The end result is, however, still not in the

best possible form which will force us to use light-cone techniques. This will be discussed

in the next lecture. The rest of this lecture will instead be devoted to symmetries and

conserved currents defined on the world-sheet.

4.1 BZ Chapter 7: String reparametrisation invariance and classical motion

In the static gauge discussion in the previous lecture we mentioned that this gauge choice

is just the first of three possible ones. So to simplify the string action and equations of

motion in the Nambu-Goto formulation as far as possible we should also make use of the

remaining reparametrisation invariance. (We will later rewrite the Nambu-Goto theory in

a much better way using the so called Polyakov formulation.)

So, in Step 1 we used the reparametrisation invariance in the τ coordinate on the world-

sheet to choose the static gauge

Step 1: The static gauge: X0(τ, σ) = cτ = ct. (4.1)

Turning to the σ coordinate on the world-sheet we can use its reparametrisation invariance

as follows: Start from the string at t0 = 0 (i.e., the snap-shop at t = 0 in a given Lorentz

system) and denote the coordinate along the string as σ0. Then consider the snap-shot

string at a small time t1 = dt later. If we on that string choose the σ coordinate such

that at each point orthogonally after the corresponding point on the t0-string is also given

the value σ0 then the τ -coordinate lines will be perpendicular to the σ-coordinate lines

everywhere on the world-sheet not just at the ends (as we saw in the previous lecture).

This is expressed as (with the 1+3 index split µ = (0, i)):

Step 2: The orthogonal gauge: ∂σX
i∂τX

i = 0 for all points on the world-sheet. (4.2)

This gauge choice has some very nice consequences for the string coordinates Xµ and

momenta Pαµ . However, first we note that after choosing these two first gauges the string

automatically moves perpendicular to itself, i.e.,

v = v⊥. (4.3)

We also see that the various Lorentz contractions now read

Ẋ ·X ′ = 0, (4.4)

Ẋ2 = −c2(1− v2

c2
), (4.5)

X ′2 = (
ds̄

dσ
)2. (4.6)
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This implies

Pτµ =
T0

c2
(
ds̄

dσ
)

Ẋµ√
1− v2

c2

, (4.7)

Pσµ = −T0

√
1− v2

c2
∂s̄X

µ. (4.8)

Thus, in this gauge setting µ = 0 gives Pσ0 = 0 for all (τ, σ).

At this point it is important to note that all reparametrisation freedom on the world-

sheet has been used except the one involving σ at t = 0. To see how to make use of this

fact we return to the Nambu-Goto equations of motion:

∂τPτµ + ∂σPσµ = 0. (4.9)

In the above gauge (after steps 1 and 2) we get, using that Pσ0 = 0,

µ = 0 : ∂tPτ0 = 0. (4.10)

From the result above we see that

Pτ0 =
T0

c
(
ds̄

dσ
)

1√
1− v2

c2

(4.11)

If we recall that the tension is related to the mass density µ0 along the string by T0 = µ0c
2

we see that T0ds̄ is the energy in the piece of the string of proper length ds̄. The equation

above then implies that the relativistic energy T0ds̄/
√

1− v2

c2
is constant in time (dσ is

time-independent by definition). One can then define the total energy of the string by the

integral

E =

∫
T0ds̄√
1− v2

c2

. (4.12)

We now turn to the space components of the Nambu-Goto equations

µ = i : ∂τPτi + ∂σPσi = 0. (4.13)

Inserting the above expressions for the currents this equation becomes

∂t

T0

c2
(
ds̄

dσ
)

∂tX
i√

1− v2

c2

 = ∂σ

(
T0

√
1− v2

c2
∂s̄X

i

)
. (4.14)

By using the fact found above that the relativistic energy in a segment ds̄ of the string is

constant in time, we can write this equation as followsT0

c2

1√
1− v2

c2

 ∂2
tX

i = ∂s̄

(
T0

√
1− v2

c2
∂s̄X

i

)
. (4.15)
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T0 drops out so this equation can be written

1

c2
∂2
tX

i =

√
1− v2

c2

ds̄
dσ

∂σ


√

1− v2

c2

ds̄
dσ

∂σX
i

 , (4.16)

where the derivatives on the right hand side are now both with respect to σ, not s̄.

This is good place to introduce the third and last reparametrisation gauge. Since all

points on the world-sheet are labelled by (τ, σ) coordinates that are given values such that

in Step 1: τ = t and in Step 2: σ for all t 6= 0 snap-shop strings have the same values as the

one at t = 0 using the orthogonality condition we are left with the possibility of choosing

how to exactly parametrise the t = 0 string. Thus we choose this σ coordinate so that the

following condition is satisfied:

Step 3: Energy condition: Choose dσ so that 1 =
ds̄
dσ√

1− v2

c2

. (4.17)

Note that ∂tPτ0 = 0 implies that the right hand side is time independent (which means

that this condition is valid for all t along the world-sheet). Note also that the relation to

energy mentioned above, i.e., the energy dE = T0ds̄/
√

1− v2

c2
, means that the condition in

Step 3 can be written

dσ =
dE

T0
, which implies σ ∈ [0, σ1] = [0,

E

T0
], (4.18)

where E is the total (constant) energy of the string.

We have now completely specified the coordinates (τ, σ) on the world-sheet so it is time to

summarise the results of Steps 1, 2 and 3:

Static gauge : X0(τ, σ) = cτ (follows from t = τ), (4.19)

Orthogonality gauge: ∂tX
i(τ, σ)∂σX

i(τ, σ) = 0, (4.20)

Energy gauge : (∂σX
i)2 +

1

c2
(∂tX

i)2 = 1, (4.21)

which imply

Wave equation: ∂2
σX

i − 1

c2
∂2
tX

i = 0, (4.22)

Canonical momenta: Pτµ =
T0

c2
Ẋµ, Pσµ = −T0X

′µ. (4.23)

Finally we see that the free boundary conditions Pσµ = 0 have become Neumann ∂σX
µ = 0.

Note also that the equations are not Lorentz covariant.

One reason for going through these steps of gauge choices is to show that they lead to

enormous simplifications of the string equations but that we still have problems. These

problems appear since we end up with conditions that are bilinear (quadratic) in the string
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coordinates, namely the orthogonality and energy conditions. In order to quantise the

string we must be able to solve it completely and find all independent degrees of free-

dom that need to be turned into operators (as in QFT). This cannot be done if there

are quadratic constraints on the string coordinates (viewing Xµ(τ, σ) as quantum fields in

a 2-dimensional Minkowski spacetime). So after having discussed some classical aspects

of this problem below we will in the following lectures use light-cone coordinates in

Minkowski space which will eliminate the problem associated with the quadratic con-

straints.

Stringy motion: We will now first discuss the motion of the open string and then look

at the closed string.

For either the open or closed string we can easily solve the equation of motion which

is just the free wave equation. As we have already discussed in the beginning of the course

the best way to do this is to use light-cone coordinates on the world-sheet. Thus define

σ± := ct±σ in terms of which the derivatives (defined to give ∂±σ
± = 1) and wave equation

read

∂± =
1

2
(
1

c
∂t ± ∂σ), ∂+∂−X

i(σ+, σ−) = 0. (4.24)

The wave equation is now solved in full generality by

Xi(τ, σ) =
1

2
(F i(σ+) +Gi(σ−)), (4.25)

where all the F i and Gi are arbitrary functions.

For the open string we can, e.g., impose Neumann bc at both ends, written as (N,N)-

bc. Then using

∂σX
i(τ, σ) =

1

2
(F ′i(σ+)−G′i(σ−)), (4.26)

we see that the N bc at

σ = 0 : ⇒ F ′i(u) = G′i(u), (4.27)

where prime indicates a derivative w.r.t. its argument u. Integrating this equation gives

Gi(u) = F i(u) + ai where ai are constants which can be absorbed into F i(u) since it is

anyway an arbitrary set of functions. We thus find that

Xi(τ, σ) =
1

2
(F i(σ+) + F i(σ−)). (4.28)

Turning to the N bc at the other end (at σ1 = E/T0) we get

∂σX
i(τ, σ)|σ=σ1 =

1

2
(F ′i(ct+ σ1)− F ′i(ct− σ1)) = 0. (4.29)

Setting u := ct− σ1 gives then the 2σ1 periodicity condition

F ′i(u+ 2σ1) = F ′i(u). (4.30)
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So we have arrived at the following important conclusion: F i(u) is a quasi-periodic set

of functions:

F i(u+ 2σ1) = F i(u) + 2σ1
vi0
c
, (4.31)

where the constant term on the RHS has been designed so that vi0 becomes the average

velocity over one period t→ t+ 2σ1
c .

We must now also solve the quadratic conditions coming from the orthogonality and energy

gauge conditions. First we combine them into the following

Reparametrisation constraint: (∂σX
i ± 1

c
∂tX

i)2 = 1. (4.32)

The presence of the ± in this equation makes it equivalent to the above form of the two

gauge conditions. Plugging in the form of the string coordinates we found above gives the

quadratic constraints on F i:

(∂±F
i(ct± σ))2 = 1, (4.33)

This equation can not be solved exactly without obtaining square roots. This will make it

impossible to quantise each degree of freedom independently (as normally done in pertur-

bation theory in QFT).

In order to see what this quadratic constraint means we can start guessing what kind

of motions are possible. One such is the rigid motion of the open string which, if

taking place in the x, y plane, can be expressed as

Xi(t, σ) =
σ1

π
cos

πσ

σ1
(cos

πct

σ1
, sin

πct

σ1
). (4.34)

That this rigid motion solves all the equations can be seen as follows. The σ = 0 end of

the string moves on a circle according to, using σ1 = E
T0

,

Xi(t, 0) =
l

2
(cosωt, sinωt), where l =

2σ1

π
=

2E

πT0
, ω =

πc

σ1
=
πcT0

E
, (4.35)

where l is the string length and ω the angular frequency. This we find that (with u = ct)

(F 1(u), F 2(u)) =
l

2
(cos

ωu

c
, sin

ωu

c
) ⇒ (F ′i(u))2 = (

lω

2c
)2 = 1. (4.36)

Thus we see that the constraints are indeed satisfied. Note also that the σ dependence

that appears in Xi above, that is cos πσσ1 , is such that it parametrises the string in a 1-1

manner. Note also that by combining the different cos and sin factors in Xi one obtains

exactly the function F i with arguments ct ± σ and that for this particular motion of the

string vi0 = 0.

For the closed string we can use the solution of the wave equation given above which

we now write as (using (u, v) instead of (σ+, σ−))

Xi(t, σ) =
1

2
(F i(u) +Gi(v)), u = ct+ σ, v = ct− σ. (4.37)
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Then
1

c
∂tX

i =
1

2
(F ′i(u) +G′i(v)), (4.38)

∂σX
i =

1

2
(F ′i(u)−G′i(v)), (4.39)

The combined constraints formula above then implies

(F ′i)2 = (G′i)2 = 1. (4.40)

Also here we have the relation σ1 = E/T0.

The new feature compared to the open string is of course the (periodic) boundary con-

dition which now reads

Xi(t, σ + σ1) = Xi(t, σ) ⇒ F i(u+ σ1) +Gi(v − σ1) = F i(u) +Gi(v). (4.41)

Taking u and v derivatives we see that this implies

F ′i(u+ σ1) = F ′i(u), G′i(v − σ1) = G′i(v), (4.42)

so we conclude that in general the two independent sets of functions F i and Gi are both

σ1 quasi-periodic (not 2σ1 as in the open case).

The conclusion we have arrived at is that (F ′i)2 = (G′i)2 = 1. So if the motion takes

place in a 3-dimensional space then the vectors F ′i(u) and G′i(v) are both unit vectors on

the sphere S2 in R3. Since they are also σ1 periodic they trace out two closed loops on S2.

No points on the closed string is forced to move with the speed of light c.

An interesting situation arises, however, if the two closed curves happen to intersect (twice).

At the point(s) of intersection we have then

F ′i(u0) = G′i(v0), for some values (u0, v0), that is some (τ0, σ0). (4.43)

At these points this implies

∂σX
i(τ0, σ0) = 0 ⇒ cusp at (τ0, σ0). (4.44)

To see that we get a cusp we expand Xi(τ, σ) in σ close to a point (τ0, σ0). This gives

Xi(τ, σ) = Xi(τ0, σ0) +
1

2
(σ − σ0)2∂2

σX
i(τ0, σ0) + ... (4.45)

This implies directly that there is a cusp since ∂σX
i(τ, σ) = (σ−σ0)∂2

σX
i(τ0, σ0)+ ... which

is zero at σ0 but close to it the tangent vectors at points σ < σ0 and σ > σ0 are anti-parallell.

It is also clear that these cusps, from 1
c∂tX

i = F ′i(u0), move with the speed of light c

since |F ′i(u0)|2 = v2

c2
= 1.
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Comment: The classical strings discussed here have no natural size and could be anything

from Planck size to the size of the universe. This issue will get an answer later for the

fundamental string, which is normally considered to be Planck size. At this point, however,

we could ask if there exist observable string-like objects in the universe, so called cosmic

strings. In fact, at a couple of occasions in the past pictures from various observatories

were believed to prove their existence. Unfortunately, after some time other interpretations

appeared which were later accepted10.

10See a very recent discussion in Cosmic String Gravitational Waves Could Solve Antimatter Mystery,

Live Science, March, 2020.
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4.2 BZ Chapter 8: World-sheet currents

This chapter contains just some comments about conserved currents and other phenomena

that can be derived from the Lagrangian formulation and Noether’s theorem applied to

the field theory on the world-sheet. This means that we should regard Xµ(τ, σ) as

fields living on a 2-dimensional space-time with coordinates (τ, σ). This 2-dimensional field

theory picture of string theory is of paramount importance and something we will make

use of many times in rest of the course.

Comment (important!) Having emphasised that string theory should be regarded as

a 2-dimensional field theory, we will see later that it must be turned into a 2-dimensional

quantum field theory. A very natural question is then: String theory is supposed to gen-

eralise Einstein’s theory of gravity and turn it into a consistent quantum gravity theory in

four spacetime, or maybe higher, dimensions? So what is going on?

Answer: The magic of string theory is that the 2-dimensional quantum field theory, where

Xµ(τ, σ) are the quantum fields, does indeed generate, in a well-defined way, an effective11

quantum field theory in 4 or higher spacetime dimensions. How this is done is unique to

string theory and it is one of the goals of this course to give a hint how this can be possible.

We will not be able to explain this in detail here since that would require at least one more

course of a more mathematical nature.

We have, in fact, already derived the key equations in this context when we obtained the

Nambu-Goto equations of motion by varying the string action S[Xµ] (using Hamilton’s

principle):

∂αPαµ = 0, where Pαµ =
∂L

∂(∂αXµ)
, (4.46)

and the various possible boundary conditions, Neumann and Dirichlet for the open string.

The Lagrangian used above is the 2-dimensional Lagrangian for the string coordinates

Xµ(τ, σ), so the action is

S[Xµ] =

∫
dτdσL, L = −T0

c

√
(ẊX ′)2 − Ẋ2X ′2. (4.47)

Note that the actual string Lagrangian does not depend on the string coordinates Xµ

themselves, only their derivatives. This fact implies that there is a number of symmetries

present that we need to identify and analyse. This analysis will be even more interesting

in the Polyakov formulation of the string.

The picture that emerges now is the following: There are two kinds of symmetries in

a string theory viewed as a 2-dimensional field theory:

11More information about the concept of effective field theory can be found in the lectures by A Hebecker,

hep-th/2008.10625. This text is, however, quite a bit more advanced than our string course.
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Local symmetries: These concern the reparametrisation invariance in τ, σ that has been

discussed in detail above.

Global symmetries: These concern properties of the target space, here a Minkowski

spacetime of some dimension D, that is Poincaré symmetry. Infinitesimally these are given

in terms of constant parameters εµν and εµ by

Lorentz: δXµ = εµνX
ν , translations: δXµ = εµ. (4.48)

Applying Noether’s theorem (recall that since the Lagrangian is invariant and not a total

derivative the conserved current has only one term)

jα :=
∂L

∂(∂αXµ)
δXµ, where the parameters should be dropped. (4.49)

The above field transformations then give two kinds of conserved currents

Translations: jαµ :=
∂L

∂(∂αXµ)
= Pαµ , (4.50)

where we have noted that we just got the quantities Pαµ defined previously. The Nambu-

Goto equations of motion are thus equivalent to the conservation of this current.

For Lorentz transformations enumerated by two antisymmetrised indices we get the current

from the definition (note the 1/2 and that we denote the current by Mα instead of jα))

1
2ε
µνMα

µν :=
∂L

∂(∂αXµ)
δXµ. (4.51)

Thus, dropping the parameters on both sides,

Lorentz: Mα
µν := 2

∂L
∂(∂αX [µ)

Xν] = PαµXν − PανXµ. (4.52)

From these currents we get the charges, i.e., the generators of the respective transforma-

tions, by a σ-integration over the τ -component:

Pµ :=

∫
Pτµdσ, Mµν :=

∫
Mτ

µνdσ. (4.53)

The Lorentz generators and their algebra will play an absolutely crucial role in develop-

ment of string theory below.

We end this chapter by one observation and one comment on parameters. The observation

concerns the space integral used when deriving the charges from the currents. Above we

used an integral over space, i.e., over the σ-direction as in Pµ :=
∫
Pτµdσ. However, this

integral can be written more generally as an integral along a general curve γ as

P (γ)
µ :=

∫
γ
(Pτµdσ − Pσµdτ), (4.54)
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where γ runs from one side to the other on the open string world-sheet or once around

the closed string. For the open string this is true since using another such curve γ̄,

and constructing a closed curve Γ by adding the world-sheet edges between the points

where γ and γ̄ reach the edges, we find that the closed curve Γ integral vanishes since∮
Γ(Pτµdσ − Pσµdτ) :=

∫
A:∂A=Γ ∂αP

α
µ dτdσ = 0 by Stokes theorem and current conservation.

The same argument works for the closed string case where Γ is constructed from two dif-

ferent closed loops around the world-sheet connected by a line between them run through

in both directions.

We end this chapter by introducing the perhaps most famous concept in string theory,

the so called Regge slope parameter: α′. This is important for many reasons one being

that it makes explicit a new, and perhaps unfamiliar, aspect possessed by the string. Let

us return to the rigid string in the static gauge, rotating in the xy-plane,:

Xi(t, σ) =
σ1

π
cos

πσ

σ1
(cos

πct

σ1
, sin

πct

σ1
). (4.55)

Using Pτi = T0
c
∂Xi

∂t , we get for the angular momentum generator in the z-direction (for

any t so we can set t = 0)

Mz := Mxy =

∫ σ1

0
(X1Pτ2 −X2Pτ1 )dσ = σ1T0

πc

∫ σ1

0
cos2 πσ

σ1
dσ =

σ2
1T0

2πc
. (4.56)

So, with σ1 = E/T0 and renaming Mxy as J we have

J =
1

2πT0c
E2. (4.57)

It is now standard to introduce the Regge slope parameter α′ and write this equation as

J

~
:= α′E2. (4.58)

The LHS is dimensionless so [α′] = (Nm)−2 = L2 in natural units. The relation between

the tension T0 and α′ is then

α′ =
1

2π T0 ~c
. (4.59)

It is also very useful to introduce the string length ls by

ls := ~c
√
α′. (4.60)

These equations are of course most often written using natural units (i.e., with ~ = c = 1).

This gives rise to a new and perhaps unfamiliar aspect of string theory: For a massive

body moving around another massive body (as, e.g., in a planetary system) the relation

between angular momentum J and energy E is E ∝ J2, the opposite to the relation for

the string. The relation with α′ above is called a Regge slope relation since this relation

was the one found to be satisfied by heavy hadrons discovered early on in the history of

elementary particle physics: When experimentalists plotted the hadron (masses)2 as a

function of angular momentum J (their spin) they fell on straight lines in the diagram12.

12A short historical account is given in BZ page 527.
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5 Lecture 5

In this lecture we return to the discussion about light-cone coordinates from the first week.

Now we will show how they can be used in a very nice way to avoid the complications

that we encountered in the previous lecture trying to solve the string equations explicitly.

Fixing the reparametrisation invariance by means of the static gauge led to quadratic

constraints (F ′i(u))2 = 1 on the space components of Xµ that we could not solve (without

taking square roots). This fact will lead to enormous problems when quantising the string

coordinates so if there is any better way to proceed it would be most welcome. The solution

is to use light-cone coordinates in spacetime.

5.1 BZ Chapter 9: Light-cone relativistic strings

The purpose of this chapter is to explain how the use of light-cone coordinates makes it

possible to explicitly obtain all the independent on-shell degrees of freedom in Xµ. The

basic reason something nice happens is easily seen as follows. In the previous analysis we

used the static gauge to set (with ~ = c = 1 from now on)

X0(τ, σ) = τ. (5.1)

After also implementing gauge fixing conditions in the σ-direction we obtained two con-

straints that we combined into

(Ẋi ±X ′i)2 = 1. (5.2)

This is a quadratic constraint involving all space components of Xµ.

Let us rewrite the above equations in one single covariant looking equation

(Ẋµ ±X ′µ)2 = 0. (5.3)

Using the static gauge condition above then gives back the σ gauge conditions.

However, if we instead use light-cone coordinates we have, splitting µ = (+,−, I),

(Xµ)2 = −2X+X− +XIXI . (5.4)

Applying this to the covariant looking constraints above it becomes

− 2(Ẋ+ ±X ′+)(Ẋ− ±X ′−) + (ẊI ±X ′I)(ẊI ±X ′I) = 0. (5.5)

Then, by imposing another version of the static gauge, namely on X+, (for details see

below)

X+(τ, σ) = βα′ p+τ, ⇒ Ẋ+ = βα′ p+, X ′+ = 0, (5.6)

the quadratic constraint reads instead

− 2βα′ p+(Ẋ− ±X ′−) + (ẊI ±X ′I)(ẊI ±X ′I) = 0. (5.7)
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The form used for X+ is chosen for the following reasons:

1. From now on we will consider (τ, σ) to be dimensionless numbers.

2. Since X+ is a component in the + direction this has to be true also for the RHS. This

requires us to put in p+ which is a component of the conserved spacetime momentum and

hence a constant. We will assume p+ > 0.

3. β = 2 for the open string and β = 1 for the closed string. This will be explained later.

4. With the above rules we need a factor α′ for dimensional reasons.

The goal now is to use the above light-cone gauge to show that all (almost) indepen-

dent degrees of freedom in string theory come from the transverse string components XI

(I = 2, 3, ..., d) where we have split µ = (+,−, I). Clearly, we can now solve the quadratic

constraint without any square roots appearing:

Ẋ− ±X ′− =
1

2βα′ p+
(ẊI ±X ′I)(ẊI ±X ′I). (5.8)

This is one of the most important equations in this course!

Comment: The equations in this discussion in BZ are often written in terms of a fixed

vector nµ, for instance X+ := n ·X where nµ ∝ (1, 1, 0, ..., 0). One can then let this vector

be time-like instead which shows that both gauge choices can be seen as just special cases

of the vector nµ. However, this does not really provide any deeper understanding so we

will skip this aspect of the discussion in these notes.

Note that we cheated a bit above since we took the constraints directly from the pre-

vious analysis based on the static gauge in the time direction, X0 = τ . The arguments in

the light-cone case leading to the quadratic constraints are slightly different so let us go

through them briefly here. To do this we return to the original form of the theory before

any gauge conditions are imposed and start over with the somewhat different steps 1, 2,

and 3 (and 4 in the closed string case).

Step 1 is, as already discussed above, the static gauge in the light-cone +-direction:

τ -gauge: X+(τ, σ) = βα′ p+τ. (5.9)

Then consider

Pτµ(τ, σ) =
∂L
∂Ẋµ

= −T0

c

(Ẋ ·X ′)X ′µ −X ′2Ẋµ√
(Ẋ ·X ′)2 − Ẋ2X ′2

. (5.10)

The theory is still σ-reparametrisation invariant on the world-sheet so, at a fixed τ , we get

for a change in σ → σ′(σ)

Pτµ(τ, σ′) =
dσ

dσ′
Pτµ(τ, σ). (5.11)

This is a consequence of how the σ derivatives appear in the expression for Pτµ(τ, σ).
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It then follows that the function σ′(σ) can be chosen such that one component of Pτµ(τ, σ)

can be made σ independent. We now choose Pτ+ to have this property which defines the

second step: Pτ+ = a(τ) where a(τ) is an arbitrary function.

But the function a(τ) is easily determined by integrating Pτ+(τ, σ) over the string:∫ σ1

0
dσPτ+(τ, σ) := p+ = σ1 a(τ), ⇒ a(τ) =

p+

σ1
. (5.12)

Note that p+ is the center of mass momentum which is constant for a free string. We now

also see that Pτ+(τ, σ) is independent of both τ and σ.

Step 2 is thus the choice of σ-coordinate that gives:

σ−gauge: Pτ+(τ, σ) =
β

2π
p+, (β = 1 for the closed string and β = 2 for the open string).

(5.13)

When writing this gauge condition in terms of the parameter β we have introduced the

standard values of σ1: for the open string σ1 = π and for the closed string σ1 = 2π. These

values are completely arbitrary but will turn out very convenient later when we start ex-

panding Xµ in Fourier modes.

It is now possible to make use of the above gauge conditions to derive a new condition.

Consider the Nambu-Goto equation for the +-component

∂τPτ+ + ∂σPσ+ = 0. (5.14)

The σ gauge condition implies that ∂τPτ+ = 0 which gives

∂σPσ+(τ, σ) = 0. (5.15)

So if Pσ+(τ, σ) = 0 anywhere (i.e., for any σ) on the closed or open string it is true for

all (τ, σ). To see that this is the case, consider first the open string. Recall that we must

impose free bc in the time-direction since a Dirichlet bc is impossible (”time cannot stop”).

In the light-cone case this fact will be applied to the +-component instead. (Note that this

condition involves two directions, µ = 0 and µ = 1, which leads to problems in some situa-

tions involving D-branes.) Now consider the equation ṗ+ :=
∫ π

0 dσ∂τPτ+ = −Pσ+|σ10 = 0.

Clearly the conservation of p+ is equivalent to the vanishing of Pσ+ at the boundaries of

the open string.

For the closed string the argument that we can find a point, which we will set to σ = 0,

where Pσ+(τ, σ) = 0 is a bit different. Consider here the expression for Pσ+(τ, σ), using

that ∂σX
+ = 0,:

Pσ+(τ, σ) = − 1

2πα′
(Ẋ ·X ′)∂τX+√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

. (5.16)
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So if we can show that Ẋ ·X ′ = 0 at some point on the world-sheet, e.g. at σ = 0, we are

home! However, this is clearly possible since we can choose two circles around the closed

string world-sheet at τ and τ + δτ and rotate the latter one so that its σ = 0 point is

orthogonally after the σ = 0 point of the first circle. Generalising this to every other circle

we find the τ line defined this way is orthogonal to the all circles at their σ = 0 points.

Hence at σ = 0 (for all τ) we have Ẋ ·X ′|σ=0 = 0.

Using these results in the definition

Pσµ :=
∂L
∂X ′µ

= −T0

c

(Ẋ ·X ′)Ẋµ − Ẋ2X ′µ√
(Ẋ ·X ′)2 − Ẋ2X ′2

, (5.17)

we see that its +-component Pσ+ vanishes at σ = 0. We have therefore shown that for

both the open and closed strings

Pσ+(τ, σ) = 0, for all values of (τ, σ). (5.18)

Note that the above expression for Pσ+ implies that Pσ+ = 0 is equivalent to the orthogo-

nality condition Ẋ ·X ′|σ=0 = 0 (since in the static gauge X ′+ = 0), both valid at all points

on the closed string as well as the open string world-sheets. Thus

Step 3:

Orthogonality condition : Pσ+(τ, σ) = Ẋ ·X ′ = 0, for all values of (τ, σ). (5.19)

Comment: We mentioned above that there is a fourth gauge condition that needs to be

discussed for the closed string. This comes from the fact that the position on the string

where σ = 0 is still not chosen and thus remains a gauge freedom. However, this freedom

cannot be eliminated by a gauge choice and will therefore be kept as a remaining freedom.

This is a rather deep issue which will reappear later in the form of a constraint on the

physical Hilbert space of states of the closed string. As such it is of course of enormous

importance for the interpretation of the theory in our ordinary spacetime.

To summarise the above discussion:

1. τ -gauge

2. σ-gauge

3. Orthogonality constraint

4. Closed string σ = 0: Constraint on Hilbert space (later!)

In the light-cone context is possible to make use of the above constraints to discover that

there is a further constraint. Using the orthogonality constraint Ẋ ·X ′ = 0 gives

Pτµ =
1

2πα′
X ′2Ẋµ√
−Ẋ2X ′2

. (5.20)

– 54 –



But the + component of this momentum is constant due to the σ gauge condition above.

We thus have

Pτ+ =
1

2πα′
X ′2Ẋ+√
−Ẋ2X ′2

=
β

2π
p+. (5.21)

Then using the τ gauge condition X+(τ, σ) = βα′ p+τ , that is Ẋ+ = βα′ p+, the above

equation becomes

βα′ p+

2πα′
X ′2√
−Ẋ2X ′2

=
βp+

2π
⇒ 1 =

X ′2√
−Ẋ2X ′2

. (5.22)

We see now why we in step 1 chose the constant β to appear in the gauge choice. The last

formula above can be nicely written as follows

Ẋ2 +X ′2 = 0. (5.23)

If combined with the orthogonality constraint we therefore have following very useful form

of the constraints

(Ẋ ±X ′)2 = 0, (5.24)

where the square is Lorentz invariant. This is the equation we started the whole light-cone

discussion from in the beginning of this lecture!

The square root expression that appears in many formulas simplifies nicely:√
(Ẋ ·X ′)2 − Ẋ2X ′2 =

√
−Ẋ2X ′2 =

√
(X ′2)2 = X ′2. (5.25)

This implies (note the position of the world-sheet indices)

Pτµ =
1

2πα′
Ẋµ, Pσµ = − 1

2πα′
X ′µ. (5.26)

We then also find that the Nambu-Goto equation ∂τPτµ + ∂σPσµ = 0 reduces to the wave

equation

Ẍµ −X ′′µ = 0. (5.27)

Note that in this derivation of the constraints and the wave equation they all look Lorentz

covariant since they involve all components of Xµ and Pτµ. This is of course not entirely

true since we also have the constraints on the + component of some Lorentz vectors:

X+(τ, σ) = βα′p+τ, Pτ+ =
β

2π
p+, Pσ+ = 0. (5.28)

Comment: The wave equation obtained in the light-cone gauge analysis above can be

derived from a simple 2-dimensional Lorentz covariant Lagrangian for Xµ(τ, σ)

Lfree = −1

2
ηαβ∂αX

µ∂βX
νηµν , (5.29)
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where we have written the two relevant flat Lorentzian metric tensors explicitly: the world-

sheet ηαβ and the target spacetime ηµν . There are several important remarks to make here:

1. We have chosen an overall minus-sign to get the space components of Xµ to have the

correct sign for the Lagrangian Lfree. But X0 then has an incorrect sign which ruins uni-

tarity. This Lagrangian does therefore not define a consistent theory by itself.

2. Recall that the constraints originate from the reparametrisation invariance which is

not present in the Lagrangian Lfree. Adding the constraints to the theory based on Lfree
changes it completely and turns it into a well defined 2-dimensional field theory, namely

string theory. One aspect of this is that after having solved the constraints (almost) only

XI remain as the physical dof and the X0 unitarity problem is eliminated.

Mode expansions: The extreme importance of the last comments above will become

clear when we now start to solve the theory in full generality. The mode expansions ob-

tained are among the most useful and important formulas in the whole course and perhaps

in the whole subject of string theory. This will be obvious later in the course when they are

used to define the world-sheet quantum field theory: Two consequences are that strings live

in a the spacetime with ten dimensions and that string theory contains Einstein’s theory of

gravity (general relativity (GR)) as a low energy approximation. The last statement should

even be understood in a much more profound way: String theory contains a generalisation

of Einstein’s theory (GR) that is completely consistent with quantum mechanics, i.e., it is

a theory of quantum gravity.

The explicit form of the mode expansions depend on the boundary conditions for the

open string and on the periodicity conditions for the closed string. We will discuss most of

the possible cases in due time but start with the open string with Neumann conditions on

both ends. However, in all cases it is convenient to start by solving the wave equation for

all components of Xµ, which is an important aspect here.

As usual we do this by introducing light-cone coordinates also on the world-sheet:

σ± = (u, v) = (τ + σ, τ − σ) ⇒ ∂± = (∂u, ∂v) :=
1

2
(∂τ ± ∂σ). (5.30)

Thus the wave equation

�2X
µ = −4∂+∂−X

µ = 0 ⇒ Xµ(τ, σ) =
1

2
(fµ(u) + gµ(v)), (5.31)

where fµ(u) and gµ(v) are arbitrary functions.

It is now fairly easy to implement any kind of boundary conditions. For Neumann bc

at the σ = 0 end of the string we see that

∂σX
µ(τ, σ)|σ=0 = 0 ⇒ f ′(τ) = g′(τ) that is f(τ) = g(τ) + c, (5.32)

where c is a constant that can be redefined away by absorbing it into the function f(τ).

Thus

∂σX
µ(τ, σ)|σ=0 = 0 ⇒ Xµ(τ, σ) =

1

2
(fµ(u) + fµ(v)). (5.33)
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Imposing Neumann bc also at the σ = π end we get

∂σX
µ(τ, σ)|σ=π = 0 ⇒ f ′µ(τ + π)− f ′µ(τ − π) = 0. (5.34)

So we find that the functions f ′µ(u) are all 2π periodic: With u := τ +σ and σ = π we get

f ′µ(u) = f ′µ(u− 2π). (5.35)

Thus the mode expansion for the functions f ′µ read, with n ∈ Z+,

f ′µ(u) = fµ1 + Σ∞n=1(aµn cosnu+ bµn sinnu). (5.36)

This integrates to the following general form

fµ(u) = fµ0 + fµ1 u+ Σ∞n=1(Aµn cosnu+Bµ
n sinnu). (5.37)

From this result we see that the mode expansion for the real functions Xµ can be written

Xµ(τ, σ) := xµ0 + 2α′pµτ − i
√

2α′Σ∞n=1(aµn
∗einτ − aµne−inτ )

1√
n

cosnσ. (5.38)

Here we made several useful choices of the coefficients that will be explained below.

So finally, defining αµ0 :=
√

2α′pµ, an := 1√
n
αn and a∗n := 1√

n
α−n for n > 0, this ex-

pansion reads

Xµ(τ, σ) = xµ0 +
√

2α′αµ0τ + i
√

2α′Σn6=0
1

n
αµne

−inτ cosnσ. (5.39)

At this point it might be worth while to develop some intuition for the this expansion. The

following aspects may be useful to keep in mind when the expansions are derived using

other boundary conditions or for the closed string:

1. There are two fundamentally different kinds of modes in Xµ: The zero modes and the

oscillator modes.

The zero modes are xµ0 +
√

2α′αµ0τ which are related to the motion of the whole string, i.e.,

to the center of mass. Integrating over the Xµ(τ, σ) from σ = 0 to σ = π eliminates all

oscillator terms and thus gives∫ π

0
dσXµ(τ, σ) = πxµ0 + 2πα′pµτ. (5.40)

The center of mass momentum is then

pµ :=

∫ π

0
dσPτµ =

∫ π

0
dσ

1

2πα′
Ẋµ = pµ, (5.41)

which explains the choice of coefficients multiplying pµ in Xµ(τ, σ).

2. The oscillator terms get their σ dependence directly from the boundary conditions. The

oscillators aµn are dimensionless which explains the α′ factor. The funny factors of 1√
n

are

introduced in order to get the quantised oscillators to commute to one: [aµn, aνm] = ηµνδn+m,0
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which is standard in any QFT. This fact will be demonstrated later. However, in string

theory it is more convenient and hence standard practise to rescale the oscillators in another

way, namely by defining

for n ≥ 1 : αµn :=
√
naµn, α

µ
−n :=

√
na∗n

µ. (5.42)

This is nice since it then becomes possible to write all terms under one summation as done

above.

The choice of expansion coefficients above become even more understandable if we compute

Ẋµ ±X ′µ =
√

2α′Σn∈Z α
µ
ne
−in(τ±σ), (5.43)

where we have also defined a αµ0
αµ0 :=

√
2α′pµ. (5.44)

It is now time to show explicitly that the above light-cone formalism makes it possible to

find all the independent degrees of freedom in the string coordinates Xµ(τ, σ) and express

everything else in terms of them. The end result of this analysis will give us the so called

transverse Virasoro generators. They will be defined below and play a key role in the

following lectures.

Comment: A somewhat problematic aspect of the light-cone formalism is that the re-

sults obtained are not automatically Lorentz covariant. There is a much more powerful

formulation of string theory, the so called Polyakov formulation, which is Lorentz co-

variant but also more technically and mathematically demanding. We will nevertheless

introduce it briefly later and try to draw some important conclusions from it. In the for-

mulation of string theory used here, which is not manifestly Lorenz covariant, we must

instead perform a calculation to prove Lorentz covariance.

Finally, we come to the whole point of the light-cone formulation. Consider again the

constraints, splitting µ = (+,−, I) where the index I runs over the transverse directions,

i.e., I = 2, 3, ..., d,

(Ẋµ ±X ′µ)2 = 0 ⇔ −2(Ẋ+ ±X ′+)(Ẋ− ±X ′−) + (ẊI ±X ′I)2 = 0. (5.45)

Then using the constraints form the gauge choices we have in general

Ẋ+ ±X ′+ = βα′ p+ > 0, (5.46)

where p+ is constant (in the free theory) and p+ > 0 (which should be regarded as generally

true). Thus we find

Ẋ− ±X ′− =
1

2βα′ p+
(ẊI ±X ′I)2. (5.47)
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Since we have now solved the wave equations and all the constraints on Xµ we can identify

the independent degrees of freedom:

XI(τ, σ), p+, x−0 , (5.48)

where all modes in XI are independent of each other and of p+, x−0 . It is very important

that we are able to group all these into canonical pairs like (q, p) and (a, a†). But this is

easily done (compare to QFT in Minkowski space):

(x−0 , p
+), (xI0, p

I), (αIn, α
I
−n), n = 1, 2, 3... (5.49)

Note that this indicates that we will regard αI−n for n ≥ 1 as creation operators and αIn for

n ≥ 1 as annihilation operators.

Since we have obtained the mode expansion for the open string with (N,N) bc above

we specialise to the open string by setting β = 2 and insert the above expansions for XI

into the expression for Ẋ− ±X ′− given above. We get

Ẋ− ±X ′− =
1

4α′ p+
(ẊI ±X ′I)2 :=

1

p+
Σn∈Z L

⊥
n e
−in(τ±σ), (5.50)

where we have defined the transverse Virasoro generators in the light-cone gauge

(indicated by the ⊥) by

L⊥n :=
1

2
Σp∈Zα

I
n−pα

I
p. (5.51)

Exercise: Show that this form of L⊥n is correct!

Using again Ẋµ ± X ′µ =
√

2α′Σn∈Z α
µ
ne−in(τ±σ), we find that all the oscillators in X−

are expressed in terms of the independent degrees of freedom through, for all n ∈ Z,

√
2α′α−n =

L⊥n
p+

. (5.52)

In particular for n = 0 we get (recall αµ0 :=
√

2α′pµ)

√
2α′α−0 =

L⊥0
p+

⇒ 2p+p− =
1

α′
L⊥0 = pIpI +

1

α′
Σ∞n=1α

∗I
nα

I
n. (5.53)

This equation tells us that the spacetime mass spectrum of the string is given by

M2 = −p2 = 2p+p− − pIpI =
1

α′
Σ∞n=1α

∗I
nα

I
n. (5.54)

We can hence conclude that at the classical level the string only contains configurations

that satisfy M2 ≥ 0, where the actual value can vary continuously.

It will be one of our main goals in this course to understand this result for M2 at the
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quantum level. This requires a full and exact QFT treatment of the 2-dimensional world-

sheet field theory based on Xµ(τ, σ) and the mode expansion given above. This discussion

will be started in the next lecture by first looking at the point particle and then we redo it

for the string. It is here that the ”famous” identity for the sum over all positive integers

appears:

Σ∞n=1n = − 1
12 . (5.55)
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5.2 BZ Chapter 10: Light-cone fields and particles

This chapter contains a lot of stuff that should be familiar to most people having some

basic training in QFT. Therefore, here we will only go through the things that might be

less known, namely the light-cone treatment of some field theories that will appear later

when discussing the field theory spectrum of string theory.

We start by considering the simplest example which is Maxwell’s theory. The Lagrangian

L = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ. (5.56)

The field strength is invariant under the gauge transformation

δAµ(x) = ∂µε(x). (5.57)

A general variation δAµ of the Lagrangian density gives

δL = −1

2
FµνδF

µν = −Fµν∂µδAν = (∂µF
µν)δAν − ∂µ(FµνδAν). (5.58)

Setting the variation of the action δS[Aµ] =
∫
d4xδL = 0 implies the field equations, i.e.,

Maxwell’s equations,

∂µF
µν = 0. (5.59)

As is well-known the photon has two degrees of freedom (dof) in four spacetime dimensions.

In D dimensions Aµ has instead D − 2 dof which we now shall prove using light-cone

techniques. To do this we write out Maxwell’s equations explicitly in terms of Aµ

�Aµ − ∂µ(∂νA
ν) = 0. (5.60)

After Fourier transformation to momentum space they read (we keep the symbol Aµ in

momentum space)

k2Aµ − kµ(kνA
ν) = 0. (5.61)

Using light-cone coordinates, with Aµ = (A+, A−, AI), these equations become

µ = + : (−2k+k− + kIkI)A+ − k+(−k+A− − k−A+ + kIAI) = 0, (5.62)

Looking at this equation we see immediately what we should do here: If we use the gauge

invariance in momentum space δAµ(x) = −ikµε(x) for µ = + to set A+ = 0 (remember

that we always assume k+ > 0 so that we can divide by it). Then the above Maxwell

equation for µ = + is easily solved giving

A− =
1

k+
(kIAI). (5.63)

Thus we are already able to conclude that all independent dof reside in XI which are D−2

in number. We have of course to check the remaining Maxwell equations so let us do that.

The µ = − and µ = I components read

µ = − : (−2k+k− + kIkI)A− − k−(−k+A− − k−A+ + kIAI) = 0, (5.64)
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µ = I : (−2k+k− + kIkI)AI − kI(−k+A− − k−A+ + kIAI) = 0. (5.65)

Thus we see that everything is OK: The second bracket in these two equation is the same

as the equation for the + component and thus vanishes when using the gauge condition

A+ = 0. Then AI satisfy the Klein-Gordon equation which implies that this is also the

case for A−.

In the context of QFT, which means QED in this case, we should quantise all these inde-

pendent degrees of freedom. This gives rise to the following state space (1-particle Hilbert

space):

|p+, pI ; I〉 = aI†
(p+,pI)

|0〉, I = 2, 3, ..., d, (5.66)

where the light-cone energy is p− = 1
2p+

pIpI (from p2AI = 0) and |0〉 is the perturbative

QFT vacuum.

This exercise can be repeated for gravity then applying the light-cone method to the lin-

earised Einstein’s equations. From any course in GR we know that these equations arise

from writing the metric as gµν = ηµν + hµν and expanding Einstein’s equations to first

order in hµν . This gives after Fourier transforming to momentum space

p2hµν − (pµpρh
ρν + pνpρh

ρµ) + pµpνh = 0, (5.67)

where h := ηµνh
µν . The gauge invariance, which comes from linearised coordinate trans-

formations, read

δhµν = ipµεν + ipνεµ. (5.68)

It is easy to check that this transformation leaves the above linearised Einstein equations

invariant.

The situation is now similar to the one for the Maxwell theory discussed above but since

there are more indices here the analysis is a bit more involved. The first step is to check

which components of hµν we can gauge to zero. Recalling that it is only p+ that we can

divide by we see from

δh++ = 2ip+ε+, δh+− = ip+ε− + ip−ε+, δh+I = ip+εI + ipIε+, (5.69)

that the parameters ε+, ε−, εI can be used to set

h++ = h+− = h+I = 0. (5.70)

This is the full set of gauge conditions since we have used up all the parameters εµ.

Inserting these gauge conditions into the µ = + field equations

µ = + ⇒ p2h+ν − (p+pρh
ρν + pνpρh

ρ+) + p+pνh = 0 (5.71)

gives the conditions

p+pρh
ρν − p+pνh = 0, where now h = ηµνh

µν = hI I . (5.72)
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Thus

ν = + ⇒ h = hI I = 0, pµh
µν = 0. (5.73)

This directly means that all components satisfy the Klein-Gordon equation

�hµν = 0. (5.74)

We must now check which of the non-zero tensor components of hµν are independent dof.

However, the only restriction left on these come from pµh
µν = 0, i.e.,

− p+h−ν − p−h+ν + pIhIν = 0 ⇒ h−ν =
1

p+
pIhIν . (5.75)

Together with the gauge choices above h+ν = 0 we therefore conclude that the independent

dof in gravity are

Gravity independent dof: hIJ , hI I = 0. (5.76)

Note that this field transforms as an irreducible representation of the rotation group

SO(D − 2) acting on the transverse indices. This group is called the little group.

The corresponding state space consists of states of the form (where tilde means trace-

lessness)

ΣI,Jξ ˜(IJ)
a

˜(IJ)†
(p+,pI)

|0〉. (5.77)

The number of such states in a D-dimensional spacetime is n = 1
2(D − 2)(D − 1) − 1 =

1
2D(D − 3). Some relevant examples are D = 4 gives n = 2, D = 10 gives n = 35 and

D = 11 gives n = 44, where the last two cases apply to string theory and M-theory, re-

spectively. One may also note the very interesting consequences that D = 3 gives n = 0

and that n is negative for D = 2.

A third example of a field theory that plays a fundamental role in both string theory

and M-theory is the Kalb-Ramond field Bµν . This field is special since it is an antisym-

metric gauge field, i.e., Bµν = −Bνµ and δBµν = ∂µεν − ∂νεµ. The light-cone analysis of

this field is the subject of a home problem and will not be done here.
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6 Lecture 6

In this and the next lecture we will take the crucial step of quantising the string theory.

We consider first the relativistic point particle and then the string. The reason for this is

that the point particle is much simpler than string theory but contains nevertheless many

of the key features of quantum string theory.

6.1 Chapter 11: The relativistic quantum point particle

The action functional for the relativistic point particle moving in a Minkowski spacetime

of dimension D is, as has been discussed above, given by the proper length

S = −m
∫ τf

τi

ds(xµ(τ)) = −m
∫ τf

τi

√
−ηµν

dxµ

dτ

dxν

dτ
dτ. (6.1)

Here the τ -dependence of xµ(τ) represents some arbitrary parametrisation of the path of

the particle. The action is independent of the choice of this parameter. (Note that τ is not

the proper length here although this use of τ is common in other books on the subject.)

The integrand of this action is the square root of the ”determinant” of the 1-dimensional

metric gττ := ẋµẋνηµν obtained as the pull-back of the target spacetime metric ηµν .

Thus we write, in a bit more compact notation,

S =

∫
Ldτ, L = −m

√
−ẋ2. (6.2)

The canonical momenta are then

pµ :=
∂L

∂ẋµ
=

mẋµ√
−ẋ2

. (6.3)

Comment: Viewed as a 1-dimensional field theory on the world-line there is no distinction

between time and space components in the target spacetime. Thus we need the canonical

momenta for all ”velocities” ẋµ. This is contrary to what we did previously when we ex-

pressed this action in terms of t, time in spacetime, and used only the ”space” velocities

vi := dxi

dt . After choosing t as the parameter on the world-line the theory is no longer

reparametrisation invariant.

Squaring the equation for the momenta above gives the condition (called ”the on-shell

condition” in field theory)

p2 +m2 = 0. (6.4)

The Lagrange equations ∂τ
∂L
∂ẋµ −

∂L
∂xµ = 0 give directly the free equation

ṗµ = 0. (6.5)

Reparametrisation invariant theories have the very strange feature that the (naive) Hamil-

tonian vanishes. In the case studied here the Hamiltonian for τ -translations

H = pµẋ
µ − L =

mẋµ√
−ẋ2

ẋµ − (−m
√
−ẋ2) = 0. (6.6)
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So what happens to time evolution if this Hamiltonian vanishes? Remember that τ can

always be related to t by some monotonous function.

Theories that contain conditions on the phase space variables (xµ, pµ), like p2 + m2 = 0

above, are called constrained systems and require a deeper analysis developed by Dirac.

This method will not be used here but we will use one consequence of it namely that one

has to introduce a new condition, a gauge condition, involving some component of xµ, and τ .

Since we have already seen that it is useful to use the light-cone coordinates in this context

we impose the static light-cone gauge condition (m2 is needed since τ is dimensionless here)

x+(τ) =
p+τ

m2
. (6.7)

This gauge condition implies

p+ =
mẋ+

√
−ẋ2

=
p+

m
√
−ẋ2

⇒ m
√
−ẋ2 = 1. (6.8)

Then this result, and the above Lagrange equation, give

pµ = m2ẋµ ⇒ ẍµ = 0, p2 +m2 = 0. (6.9)

A full Dirac analysis13 of this theory would produce the Hamiltonian H = 1
2m2 (pIpI +

m2). Fortunately, there is another argument for this result based on the gauge condition:

x+(τ) = p+

m2 τ . In terms of derivatives this can be written as (using p2 +m2 = 0)

∂τ =
p+

m2
∂+ ⇒ H =

p+

m2
p− =

1

2m2
(pIpI +m2). (6.10)

The implication follows from defining H as the τ translation generator and p− as the trans-

lation generator for x+ as we did in a previous lecture.

We have now found the independent degrees of freedom that we need to turn into quan-

tum mechanical operators, namely xI , pI and x−, p+. Exactly how we choose them must

however be compatible with the Hamiltonian H = 1
2m2 (pIpI +m2) found above. The non-

triviality of this comes from the fact that, while [xI , H] = i p
I

m2 , we have a vanishing result

[x−, H] = 0.

Consider now the operators defined by the solutions of the equation of motion ẍµ = 0,

that is xµ(τ) = xµ0 + pµ

m2 τ (where both xµ0 and pµ are constants). From these equations we

conclude that in the transverse directions the canonical coordinates should be xI(τ) but in

the minus direction it must be x−0 : The non-zero canonical commutation relations (CCR)

must therefore be (for any τ)

|xI , pJ ] = iηIJ = iδIJ , [x−0 , p
+] = iη−+ = −i. (6.11)

13This would involve constructing the so called Dirac bracket in terms of the ordinary Poisson bracket.
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These CCRs are τ -independent in the S-picture and ”equal time” in the H-picture.

Note, however, that x+(τ) and x−(τ) are special due to the static gauge condition x+(τ) =
p+

m2 τ (there is no x+
0 ) and that x−(τ) is τ independent since H does not contain p+ and

we get [x−(τ), H] = 0. So x−(τ) = x−0 . p− does not play an independent role since it is

replaced by its solution of p2 +m2 = 0 in terms of p+ and pI .

Aspects of quantisation and gauge fixing: There are some non-trivial, and quite

interesting, aspects related to quantisation of theories with gauge fixing (i.e., constrained

systems) that we will now discuss. First we recall the meaning of quantisation: Consider

the Poisson bracket in classical mechanics

{A,B}PB :=
∂A

∂xρ
∂B

∂pρ
− ∂A

∂pρ

∂B

∂xρ
⇒ {xµ, pν}PB = δµν . (6.12)

The transition to quantum mechanics (”quantisation”) is done by the replacement

{A,B}PB →
1

i~
[Â, B̂] ⇒ [x̂µ, p̂ν ] = i~δµν , (6.13)

where Â etc are operators. We will, however, not use the hat notation unless it is absolutely

necessary to avoid confusion. It is then immediately clear that this quantisation prescrip-

tion is often ambiguous: Consider the function f(x, p) = xp defined on the classical phase

space. What is its quantum analogue? This issue will be important below. One aspect

to keep in mind here is that the fundamental theory is QM not the classical one: The

connection is QM ⇒ classical and there is no implication in the other direction.

Now we return to the relativistic point particle, described by L = −m
√
ẋ2, and note

that it is not only spacetime Lorentz invariant but also invariant under the global target

spacetime symmetry (translations) δxµ = εµ where εµ are constants.

Noether’s theorem then implies that pµ := ∂L
∂ẋµ are conserved currents, i.e., ∂τp

µ = 0.

The point we want to emphasise now is that the conserved charges (here just the currents

themselves since the 1-dimensional theory on the world-line has no space direction) are

also generators of the symmetries that gave rise to them via Noether’s theorem.

We then conclude that the generator of the symmetry δxµ = εµ is given simply by the

iεµpµ since (setting ~ = 1 as usual)

δεx
µ := [iενpν , x

µ] = −iεν [xµ, pν ] = εµ. (6.14)

This is the correct covariant result, i.e., when treating all of xµ, pµ as independent canoni-

cal operators.

The question is then: What happens in the light-cone gauge where the translation op-

erator reads i(−ε+p− − ε−p+ + εIpI) with p− given in terms of p+, pI using p2 +m2 = 0?
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Clearly with εµ = (0, 0, εI) we get the correct result δxI = εI . However, both ε+ and

ε− should give a zero result on xI if the covariant result above is still to be valid. Let us

therefore check what the effect of the ε+ component is: (recall [xI , pJ ] = iηIJ = iδIJ)

δε+x
I = i[−ε+p−, xI ] = −iε+[

1

2p+
(pJpJ +m2), xI ] = −i ε

+

2p+
[pJpJ , xI ] = − ε

+

p+
pI . (6.15)

A similar computation gives

δε+x
−
0 = − ε

+

p+
p−. (6.16)

To get the latter result we used (recall [x−0 , p
+] = iη−+ = −i)

[x−0 ,
1

p+
] =

1

p+
p+x−0

1

p+
− 1

p+
x−0 p

+ 1

p+
=

1

p+
[p+, x−0 ]

1

p+
=

i

(p+)2
. (6.17)

Both of these are zero in the covariant calculation above since in that case it is only x+

that is effected by an ε+ translation: δε+x
+ = ε+. However, if we perform this computation

in the light-cone gauge we get

δε+x
+ = [−iε+p−, x+] = [−iε+p−, p

+

m2
τ ] = 0. (6.18)

This result also contradicts the covariant result above. How are we to interpret these light-

cone results?

The key property of the light-cone gauge formalism that explains what is going on is

the dual role played by the operator p− as seen from the covariant formalism:

1) p− generates the translations δε+x
+ = ε+, but

2) p− also generates τ reparametrisations via the Hamiltonian H = p+

m2 p
−.

We can express this dual role of p− by redefining the transformation as the sum of two

terms

δ+x
µ := δε+x

µ + δλx
µ = εµ + λ∂τx

µ. (6.19)

The light-cone gauge requires us to impose x+ = p+

m2 τ . Then in order to keep this gauge

condition satisfied when doing p− transformations we must also set

δ+x
+ = 0 ⇒ ε+ + λ∂τx

+ = ε+ + λ
p+

m2
= 0 ⇒ λ = −m

2ε+

p+
. (6.20)

The λ term is called a compensating reparametrisation for this reason. With this new

definition the transformations generated by iεµpµ must be complemented by a compensat-

ing reparametrisation in τ with the above parameter λ. In particular we see that the ε+

transformations we started this discussion with above now give the correct result.

Lorentz generators: The previous discussion about the role of compensating reparametri-

sation shows that gauge theories are rather complicated theories. Another aspect of this

arises when trying to define the quantum version of the generators of Lorentz transforma-

tions. This discussion is however crucial for the whole interpretation and understanding of
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both the point particle and the string so this must be done very carefully.

Recall the definition of the covariant Lorentz generators (using [xµ, pν ] = iδµν )

Mµν := xµpν − xνpµ ⇒ [Mµν , xρ] = iηµρxν − iηνρxµ. (6.21)

Note that these operators have no ordering ambiguities if quantised covariantly. This

implies that the Lorentz generators − i
2ε
µνMµν give

δLx
ρ := [− i

2ε
µνMµν , x

ρ] = ερνx
ν . (6.22)

The Lorentz algebra is easily derived using these generators and reads

[Mµν ,Mρσ] = iηµρMνσ + three terms needed for antisymmetry. (6.23)

Since the Lorentz transformations represent physical symmetries they must be true also

after choosing a gauge. Is this true in the light-cone gauge? In light-cone coordinates the

different generators are

M IJ , M+I , M−I , M+−. (6.24)

So, we must show that they really do generate, for instance,

[M+−,M+I ] = iM+I , [M−I ,M−J ] = 0. (6.25)

The last commutator is trivially zero in the covariant formalism but not so in the light-cone

formalism. There are in fact at least three issues that we need to sort out before we can

start checking that [M−I ,M−J ] = 0:

1) How are Mµν defined in the light-cone gauge?

2) What transformations on xµ do they generate in the light-cone gauge?

3) Do they generate the correct Lorentz algebra in the light-cone gauge?

The answer is that we must require that:

3) Mµν must give the whole Lorentz algebra for physical reasons, as mentioned above.

2) Lorentz transformation on xµ which, however, should include compensating τ -reparametrisations

to ”stay in the gauge”.

1) ???? (See below!)

Consider first M+− to see what the problem is. Explicitly this generator reads

M+−(τ) = x+(τ)p−(τ)− x−(τ)p+(τ) =
p+

m2
τp− − (x−0 +

p−

m2
τ)p+ = −x−0 p

+. (6.26)

This looks like a nice result but it is not hermitian (not a problem in covariant quantisation)!

But this is easily fixed: We simply define a new M+− with the same classical limit:

M+− := −1

2
(x−0 p

+ + p+x−0 ). (6.27)
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The point here is that the standard quantisation procedure, i.e., turning Poisson brackets

into quantum commutators, have ordering ambiguities (as we see here) and the hermiticity

requirement is needed to lift this ambiguity.

In a similar way we define

M−I := x−0 p
I − 1

2
(xIp− + p−xI), (6.28)

which is needed since p− := 1
2p+

(pIpI +m2) in the light-cone gauge.

The commutator between two Lorentz generators of the last kind must vanish as we saw

above. This can indeed be shown to be true after some algebra (home problem). In string

theory this calculation is an entirely different story and leads to some remarkable conse-

quences:

1) Spacetime must have dimension D = 26, called the critical dimension, and

2) the mass spectrum, i.e., M2 which is discrete after quantisation, is shifted in a way that

implies that the states with two symmetrised vector indices in the closed string become

massless. These states correspond to the graviton and prove that string theory, without

assuming it, contains the metric and hence general relativity. As will be discussed more

later (if time permits) Einstein’s theory of gravity is, however, just a low-energy approxi-

mation of the full gravity theory contained in string theory.

Both of these two results in string theory will be discussed, but not fully derived, in

the next chapter of BZ.
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7 Lectures 7

7.1 Chapter 12: The relativistic quantum open string

Having analysed the quantum point particle we now turn to the first really stringy subject,

the quantum relativistic string. The quantisation of string theory is the step that is abso-

lutely necessary to get any understanding at all of its deep physical content, as for instance

the fact that it contains general relativity in a way that is consistent with quantum gravity

in 4 spacetime dimensions.

We have in fact already done a lot of the required work when we analysed the string

in the light-cone gauge. Let us recall what the end-result of this was (we concentrate on

the open string here so we set β = 2): The light-cone gauges in the τ and σ directions

imply

X+(τ, σ) = 2α′p+τ, Pτµ =
1

2πα′
Ẋµ, Pσµ = − 1

2πα′
X ′µ. (7.1)

Using these equations we then found that the Nambu-Goto equations simplified to the

wave equations and that the constraints became

Ẍµ −X ′′µ = 0, (Ẋµ ±X ′µ)2 = 0. (7.2)

We emphasise again that all important properties of string theory come from the constraints

(Ẋµ ±X ′µ)2 = 0. In fact, dropping them gives a theory that is free but inconsistent (hav-

ing kinetic terms with the wrong sign). The profound implications of the constraints will

become clear below.

So let us recall also the next step which is to solve the constraints in the light-cone gauge.

Thus we write the constraints as follows (assuming p+ > 0)

Ẋ− ±X ′− =
1

4p+α′
(ẊI ±X ′I)2. (7.3)

Adding these two constraints we get

Ẋ− =
1

4p+α′
((ẊI)2 + (X ′I)2). (7.4)

This is better written as

Pτ− =
π

2p+

(
(PτI)2 +

(X ′I)2

(2πα′)2

)
, (7.5)

since now the canonical variables are made explicit: the canonical momenta are PτI while

X ′I are just a σ derivative of the canonical coordinates.

From the above equations we can extract the independent degrees of freedom in the string:

XI(σ), PτI(σ), x−0 , p
+. (7.6)
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This conclusion follows since X+(τ, σ) is completely determined by the light-cone gauge

and thus given by p+. The remaining X−(τ, σ) is much more complicated but from the

above equation for Ẋ− it follows that all modes except x−0 are determined by the indepen-

dent dof in XI(σ), PτI(σ) and p+. It is nice to find that all dof fit into canonical pairs

which they must.

We are now ready to quantise the theory, i.e., turning all the dof above into quantum

operators satisfying standard canonical commutation relation (CCR). Thus we have (with

no hats on operators) the equal ”time” (that is τ which is suppressed) CCR

[x−0 , p
+] = −i, [XI(σ),PτJ(σ′)] = iδIJδ(σ − σ′), (7.7)

with all other commutators vanishing.

Below we will discuss the mode expansion in detail but first we make a few observa-

tions above the theory given by the equations above. Our first observation is about the

Hamiltonian. Recall that the light-cone gauge implies

X+(τ, σ) = 2α′p+τ ⇒ ∂τ = 2α′p+∂+ ⇒ H = 2α′p+p−. (7.8)

Using the expression for p− above we find that

H = 2α′p+

∫ π

0
dσPτ− = πα′

∫ π

0

(
PτI(σ)PτI(σ) +

X ′I(σ)X ′I(σ)

(2πα′)2

)
, (7.9)

where we have suppressed the τ dependence in the integrand since H is independent of τ .

This Hamiltonian, and the canonical momenta above, follow directly from the action

S[XI ] =
1

4πα′

∫
dτ

∫ π

0
dσ(ẊIẊI −X ′IX ′I). (7.10)

If we now use the mode expansion derived previously for (N,N) bc previously

(N,N) : Xµ(τ, σ) = xµ0 + 2α′pµτ + i
√

2α′Σn 6=0
1

n
αµne

−inτ cosnσ, (7.11)

we can rather easily get a mode expansion also for H. Let us first express the mode

expansion in exponentials and τ ± σ:

Xµ(τ, σ) = xµ0 + α′pµ((τ − σ) + (τ + σ)) + i

√
α′

2
Σn6=0

1

n
αµn(e−in(τ−σ) + e−in(τ+σ)). (7.12)

Then it is immediately clear that

(∂τ ± ∂σ)Xµ(τ, σ) = 2α′pµ +
√

2α′Σn6=0α
µ
ne
−in(τ±σ). (7.13)

Thus if we define also αµ0 :=
√

2α′pµ these expansions read

(∂τ ± ∂σ)Xµ(τ, σ) =
√

2α′Σn∈Zα
µ
ne
−in(τ±σ). (7.14)
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We want to square the µ = I components of this expansion. We find

((∂τ ± ∂σ)XI)2 = 2α′Σm,p∈Zα
I
m α

I
pe
−im(τ±σ)e−ip(τ±σ). (7.15)

Define now the dummy summation variable n := m + p. Then the dubble sum above

becomes

((∂τ ± ∂σ)XI)2 = 2α′Σn,p∈Zα
I
n−p α

I
pe
−in(τ±σ) := 4α′Σn∈Z L

⊥
n e
−in(τ±σ), (7.16)

where the transverse Virasoro generators are

L⊥n :=
1

2
Σp∈Z α

I
n−p α

I
p. (7.17)

The open string (β = 2) solution to the constraints Ẋ− ± X ′− = 1
4p+α′ (Ẋ

I ± X ′I)2 then

implies (using the same expansion for the LHS as we did for the RHS):

√
2α′α−n =

1

p+
L⊥n . (7.18)

This is one of the most important equations so far.

The Hamiltonian is now nicely expressed as

H = 2α′ p+p− =
√

2α′ p+α−0 = L⊥0 . (7.19)

The oscillators αIn appearing inside L⊥0 do not all commute so, as is standard in QFT, the

Hamiltonian has ordering problems. In the particular case of string theory this problem

cannot be defined away as in QED in Minkowski but has to be dealt with in a well-defined

manner. This leads to a lot of interesting mathematics that we will soon discuss.

Using the functional CCRs above we can also prove that the Hamiltonian implies the

Klein-Gordon equation for µ = I components of Xµ. This is exactly as in ordinary QFT

and will not be shown in detail here.

What we will do in detail is, however, to derive the CCRs for the oscillators αIn from

the functional CCRs given above. This will explain some aspects of the form of the mode

expansion (e.g., the 1/n and the range of σ for the open string) but to do it efficiently

requires a trick. The trick is related to the choice of the range of σ for the open string:

σ ∈ [0, π]. This may in fact seem as an odd choice since the functions involved are 2π pe-

riodic, not π periodic. Before explaining the trick, however, we should derive the equation

where it is needed.

The non-zero functional CCR between the fields XI(τ, σ) and the canonical momenta

PτI(τ, σ) above can be written as

[XI(τ, σ), ẊJ(τ, σ′)] = 2πα′ iδIJδ(σ − σ′). (7.20)

– 72 –



Let us emphasise that this CCR cannot be written as a τ derivative on some other CCR

since it is an ”equal-time” CCR. Acting with a σ derivative gives

[X ′I(τ, σ), ẊJ(τ, σ′)] = 2πα′ iδIJ∂σδ(σ − σ′). (7.21)

Similarly from

[XI(τ, σ), XJ(τ, σ′)] = 0, (7.22)

we get using σ derivatives

[X ′I(τ, σ), XJ(τ, σ′)] = 0, [XI(τ, σ), X ′J(τ, σ′)] = 0, [X ′I(τ, σ), X ′J(τ, σ′)] = 0. (7.23)

Finally, the vanishing CCR between two canonical momenta can be written

[ẊI(τ, σ), ẊJ(τ, σ′)] = 0. (7.24)

With all these CCRs at hand we find that

[ẊI(τ, σ)±X ′I(τ, σ), ẊJ(τ, σ′)±X ′J(τ, σ′)] = ±4πα′ iδIJ∂σδ(σ − σ′). (7.25)

Here we have used the identity ∂σ′δ(σ − σ′) = −∂σδ(σ − σ′). In the last equation the sign

choices are all correlated, all up or all down. The other set of sign combinations give

[ẊI(τ, σ)±X ′I(τ, σ), ẊJ(τ, σ′)∓X ′J(τ, σ′)] = 0. (7.26)

Inserting the mode expansions the non-zero commutator above becomes

[ẊI(τ, σ)±X ′I(τ, σ), ẊJ(τ, σ′)±X ′J(τ, σ′)] = 2α′Σn,m∈Ze
−in(τ±σ)−im(τ±σ′)[αIn, α

J
m],

(7.27)

or, in other words,

Σn,m∈Ze
−in(τ±σ)−im(τ±σ′)[αIn, α

J
m] = ±2π iδIJ∂σδ(σ − σ′). (7.28)

Recall now that σ ∈ [0, π] which actually seems to create a problem since when expanding

the δ(σ − σ′) in Fourier modes one usually does it using integrals over σ with σ ∈ [0, 2π]:∫ 2π

0

dσ

2π
einσeimσ = δn+m,0, δ(σ − σ′) = Σn∈Z e

in(σ−σ′). (7.29)

We can now understand the reason for using the range σ ∈ [0, π] for the open string: The

trick mentioned above is to define new functions AI(τ, σ) which are 2π periodic as follows

AI(τ, σ) =
√

2α′Σn∈Zα
I
ne
−in(τ+σ) :=


(ẊI +X ′I)(τ, σ) for σ ∈ [0, π],

(ẊI −X ′I)(τ,−σ) for σ ∈ [−π, 0].

(7.30)
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The four different commutator equations above (for different signs between ẊI and X ′I)

are then summarised in the single equation valid for both σ and σ′ in [0, 2π]

[AI(τ, σ), AJ(τ, σ′)] = 4πα′ iδIJσσδ(σ − σ′). (7.31)

This implies

Σn,m∈Ze
−in(τ+σ)−im(τ+σ′) [αIn, α

J
m] = 2π iδIJ∂σδ(σ − σ′), (7.32)

which is the rather trivial to break up in modes. Integrating over
∫ 2π

0
dσ
2π e

inσ
∫ 2π

0
dσ′

2π e
imσ′

gives (after renaming the dummy summation variables above)

[αIn, α
J
m] = δIJn δn+m,0. (7.33)

We know see that the derivative on the δ function is the reason for the factor of n on

the RHS of these CCRs. So finally we understand why we introduced factors 1/
√
n when

expanding Xµ in terms of oscillators aµn and aµ†n for n ≥ 1. The relations

aIn :=
1√
n
αIn, a

I†
n :=

1√
n
αI−n, (7.34)

then give rise to the CCR with the standard harmonic oscillator normalisation (no n on

the RHS)

[aIn, a
J†
m ] = δIJ δn,m. (7.35)

It is, however, standard practise in string theory to use the α oscillators!

These CCRs must of course be extended to incorporate also the zero modes. The commu-

tators between zero modes and oscillators vanish which is seen by first integrating the com-

mutator equation [XI(τ, σ), ẊJ(τ, σ′)] = 2πα′ iδIJδ(σ−σ′) over σ (where both σ, σ′ ∈ [0, π]

for this equation to be valid). This gives

[xI0 +
√

2α′αI0τ, Ẋ
J(τ, σ′)] = 2α′iδIJ . (7.36)

The σ′ dependent terms imply [xI0 +
√

2α′αI0τ, α
J
n] = 0, and the σ′ independent ones imply

[xI0, p
J ] = iδIJ . (7.37)

In addition we have

[x−0 , p
+] = iη−+ = −i. (7.38)

The world-sheet propagator for the (N,N) open string: (Not in BZ!)

This is good point to make one check of the formalism based on a comparison to ordinary

QFT. In QFT a standard step in some calculations is to Wick rotate, i.e., to analytically

continue in the time variable, and end up with a theory in Euclidean signature which some-

times can simplify the analysis. In string theory this step has a much more fundamental

role since subsequent considerations are then based on complex analysis in one variable.
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So, let us take this step here and compute the two-dimensional propagator. Recall the

definition

Wick rotation: τ → −iτ ⇒ τ ± σ → −i(τ ± iσ). (7.39)

Now recall the mode expansion of the (N,N) open string derived in a previous lecture

(dropping the spacetime indices since they will play no role here)

(N,N) : X(τ, σ) = x0 + 2α′pτ + i
√

2α′Σn6=0
1

n
αn e

−inτ cosnσ. (7.40)

Writing the cos as two exponentials this can be written

X(τ, σ) = x0 + α′p((τ − σ) + (τ + σ)) + i

√
α′

2
Σn6=0

1

n
αn (e−in(τ−σ) + e−in(τ+σ)). (7.41)

Now we Wick rotate by replacing τ → −iτ and define complex variables (z, z̄):

z := eτ−iσ, z̄ := eτ+iσ ⇒ (7.42)

(N,N) : X(z, z̄) = x0 − iα′p ln zz̄ + i

√
α′

2
Σn6=0

1

n
αn (z−n + z̄−n). (7.43)

The Euclidean two-point correlation function, the propagator, is obtained as usual in QFT:

x〈0|X(z, z̄)X(w, w̄)|0〉p =

x〈0|(−iα′p ln zz̄ + i

√
α′

2
Σn≥1

1

n
αn (z−n + z̄−n))

(x0 + i

√
α′

2
Σm≤−1

1

m
αm (w−m + w̄−m))|0〉p. (7.44)

Here we have used the properties of the two QM vacuum states: p|0〉p = αn|0〉p = 0 for all

positive n and x〈0|x0 = x〈0|αn = 0 for all negative n. Note also that x〈0|0〉p = 1. Using

the CCR for the oscillators this expression is easily found to be (let m→ −m above)

x〈0|X(z, z̄)X(w, w̄)|0〉p = −iα′ [p, x0] ln zz̄+
α′

2
Σn,m≥1

1

nm
[αn, α−m](z−n+ z̄−n)(wm+ w̄m)

= −α′ ln zz̄ +
α′

2
Σn≥1

1

n
(z−n + z̄−n)(wn + w̄n). (7.45)

Then using the formula − ln(1 − x) = Σ∞n=1
1
nx

n, for x < 1, (can be obtained from the

geometric series 1
1−x = Σn≥0x

n), this can be written, for |w| < |z],

x〈0|X(z, z̄)X(w, w̄)|0〉p = −α
′

2

(
2 ln zz̄ + ln(1− w

z
) + ln(1− w̄

z̄
) + ln(1− w̄

z
) + ln(1− w

z̄
)
)
.

(7.46)

Combining the logarithms gives the final answer for the CFT propagator for the (N,N)

open string

x〈0|X(z, z̄)X(w, w̄)|0〉p = −α
′

2
(ln(z − w) + ln(z̄ − w̄) + ln(z − w̄) + ln(z̄ − w)), |w| < |z].

(7.47)
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Expressions like this are used heavily in the CFT approach to string theory. We will later

present similar expressions for the closed string, both compactified and uncompactified.

Note that the logarithms were expected since the Green’s function in two spacetime di-

mensions is obtained from the Fourier transform of 1/p2.

The Virasoro and Lorentz algebras:

Finally we have developed the machinery far enough to be able to attack the transverse

Virasoro generators and their commutation relations. To derive the resulting Lie algebra,

the infinite dimensional Virasoro algebra, is a bit of work but it will be done in detail here.

However, the crucial computation is really to use the Virasoro algebra in the derivation

and proof of the Lorentz algebra. Although this is one of the most important calculations

in the whole subject of string theory it is also one of the most complicated ones unless

one develops more advanced CFT techniques. This belongs unfortunately to an advanced

string course and will not be done here except for one small step connected to the Polyakov

formulation (CFT methods appear in some of the advanced topics for the home project).

Thus the final goal of this chapter will be to provide enough details of this proof that we

will feel confident that it works.

The transverse Virasoro algebra:

We start by recalling the formulas we will need to derive the Virasoro algebra

L⊥n =
1

2
Σp∈Z α

I
n−pα

I
p, n ∈ Z (7.48)

[αIn, α
J
m] = δIJn δn+m,0, n,m ∈ Z. (7.49)

The convention is, as already mentioned, to view αIn for n ≥ 1 as annihilation operators

and thus αI−n for n ≥ 1 as creation operators. Also, αI0 is as usual related to the momentum

pI . Clearly this implies ordering problems for L⊥0 but not for the other L⊥n s. We saw above

that the Hamiltonian on the world-sheet H = L⊥0 so this is not very surprising and is

normally dealt with using normal ordering. In string theory the normal ordering constant

is given by
1

2
Σ∞n=1 α

I
nα

I
−n =

1

2
Σ∞n=1 α

I
−nα

I
n +

(D − 2)

2
Σ∞n=1 n. (7.50)

The reason we cannot just define away the normal ordering constant is that it enters the

formula for the mass spectrum of the string as discussed already in a previous lecture. It

will also have a fundamental role to play in the proof of the Lorentz symmetry of the string.

We will therefore define L⊥0 to be normal ordered but add a constant denoted a corre-

sponding to the (perhaps) ill-defined normal ordering constant 1
2(D − 2)Σ∞n=1 n we found

above. Thus we replace L⊥0 by L⊥0 + a where from now on L⊥0 is normal ordered:

L⊥0 :=
1

2
αI0α

I
0 + Σ∞n=1 α

I
−nα

I
n = (L⊥0 )†, (7.51)
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where we have used (αIn)† = αI−n. Note that for n = 0 this means that pI is hermitian

since αI0 =
√

2α′pI . The relation between p− and L⊥0 derived above will now read

2α′ p− =
1

p+
(L⊥0 + a), where a =

(D − 2)

2
Σ∞n=1 n. (7.52)

Then the mass spectrum at the quantum level is determined by the eigenvalues of the

operator

M2 = −p2 = 2p+p− − pIpI =
1

α′
(L⊥0 + a)− pIpI =

1

α′
(Σ∞n=1 α

I
−nα

I
n + a). (7.53)

This will often be expressed in terms of the number operator N⊥n for each transverse set

of oscillator pairs, or by the sum of them N⊥, as

M2 =
1

α′
(Σ∞n=1N

⊥
n + a) :=

1

α′
(N⊥ + a). (7.54)

The importance of the normal ordering constant a is now clear. The hope is then that it

can be uniquely determined somehow!

Note that this particular form of this equation is valid for the open string with (N,N)

boundary conditions. There will appear several other versions of this formula for other

strings later.

Comment: There is a way to obtain a finite number for the infinite sum over all in-

tegers using the so called Riemann zeta-function

ζ(s) := Σ∞n=1n
−s ⇒ Σ∞n=1 n = ζ(−1) = − 1

12
. (7.55)

This result follows if one analytically continues ζ(s) in the complex variable s from a region

where it is well-defined to the rest of the complex plane. (This result is also discussed in

Problem 12.4 in BZ.) Then

a = −D − 2

24
. (7.56)

This ”strange” result will also follow from the completely different calculations below.

We will now derive the Virasoro algebra in a step by step fashion starting from some

simple commutators. The first step is

[L⊥m, α
J
n] =

1

2
Σp∈Z [αIm−pα

I
p, α

J
n] =

1

2
Σp∈Zα

I
m−p[α

I
p, α

J
n] +

1

2
Σp∈Z [αIm−p, α

J
n]αIp. (7.57)

Here we use [αIp, α
J
n] = pδIJδp+n,0 and [αIm−p, α

J
n] = (m− p)δIJδm−p+n,0. Thus

[L⊥m, α
J
n] =

1

2
(−nαJm+n − nαJm+n) = −nαJm+n, for all m,n ∈ Z. (7.58)

This result is clearly correct for n,m 6= 0 but is also true for n = 0 since pI commutes

with all L⊥m. The calculation is also correct for m = 0 if we keep track of the order of the
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operators in the calculation which is needed since L⊥0 is normal ordered.

The next commutator to do is, using [xI0, α
J
0 ] =

√
2α′iδIJ , for all m ∈ Z,

[L⊥m, x
J
0 ] = −i

√
2α′αIm. (7.59)

One feature of these two results is that the integer indices satisfy conservation of mode

number.

We can now compute the commutator

For m+n 6= 0 : [L⊥m, L
⊥
n ] =

1

2
Σp∈Z [L⊥m, α

I
n−pα

I
p] =

1

2
Σp∈Z [L⊥m, α

I
n−p]α

I
p+

1

2
Σp∈Zα

I
n−p[L

⊥
m, α

I
p].

(7.60)

Using the above results [L⊥m, α
I
n−p] = −(n−p)αIm+n−p and [L⊥m, α

I
p] = −pαIm+p, and a shift

p→ p−m in the second term so that the two terms can be added, we get

For m+n 6= 0 : [L⊥m, L
⊥
n ] =

1

2
Σp(−(n− p)− (p−m))αIm+n−pα

I
p =

1

2
(m−n)Σpα

I
m+n−pα

I
p.

(7.61)

We thus get back a Virasoro generator and the commutator becomes

For m+ n 6= 0 : [L⊥m, L
⊥
n ] = (m− n)L⊥m+n. (7.62)

It is important in the identification of the RHS that we don’t have any ordering issues

which is the reason for restricting this calcualtion to m+ n 6= 0.

We have now done the easy, and in fact classical, part of the Virasoro algebra. If we

extend this result by including m+ n = 0 we can write down classical derivative operators

that directly generate this classical algebra, which is known as the Witt algebra. These

generators are

Vn := −zn+1 ∂

∂z
⇒ [Vm, Vn] = (m− n)Vm+n for all n,m ∈ Z, z ∈ C. (7.63)

Mathematically this is the Lie algebra of the group of diffeomorphisms on the circle S1,

i.e., Lie(Diff(S1)).

The QFT version of the Witt Lie algebra is the Virasoro algebra which turns out to

have another term on the RHS. The origin of this new term is the operator property of

the αn oscillators and the fact that some special commutators [L⊥m, L
⊥
n ] will require two

α commutators which cannot happen in classical physics (since for Poisson brackets this

is impossible). This new term is called the conformal anomaly by physicists and the

central extension by mathematicians. One of its key properties is that it must commute

with all the L⊥ms (thus the name ”central”). This requirement comes from the Jacobi iden-

tity which any Lie algebra must satisfy (otherwise it cannot be exponentiated to a group).
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Taking these facts into account the Virasoro algebra must have the following structure

[L⊥m, L
⊥
n ] = (m− n)L⊥m+n +A⊥(m)δm+n,0, (7.64)

where A⊥ is the anomaly that we can consider to be a number in the discussion below.

The δm+n,0 multiplying A⊥ is put in since we know from above that when m+ n 6= 0 the

new term is not there at all.

Let us first perform the simplest possible calculation that will demonstrate all the points

made above. So consider the commutator [L2, L−2] (dropping ”perp” and I indices here so

there is only one X component). To see exactly what is going on we organise L2 as follows

L2 =
1

2
Σn∈Z α2−nαn =

1

2
α1α1 + (α0α2 + α−1α3 + ....), (7.65)

using that the terms in the bracket appear twice in the original sum. Similarly we have

L−2 =
1

2
Σn∈Z α−2−nαn =

1

2
α−1α−1 + (α−2α0 + α−3α1 + ....). (7.66)

The commutator [L2, L−2] is then quite easy to compute since each term in L2 has a

non-zero commutator with only one term in L−2. And furthermore, these term-by-term

commutators are of only two types 1) involving only terms in the brackets and 2) involving

the single term outside the brackets.

1) This computation can be done generally for

p ≥ 0, q ≥ 0 p 6= q : [α−pαq, α−qαp] = α−p[αq, α−qαp] + [α−p, α−qαp]αq. (7.67)

Inserting [αq, α−qαp] = qαp and [α−p, α−qαp] = −pα−q this becomes

p ≥ 0, q ≥ 0 p 6= q : [α−pαq, α−qαp] = qα−pαp − pα−qαq. (7.68)

This commutator, involving only a single α commutator, thus gives a normal ordered an-

swer. This is a term that belongs to L0 on the RHS of the Virasoro algebra, and hence

does not contribute to the anomaly A(2).

2) This calculation is a lot more interesting. Let us do it carefully

[
1

2
α1α1,

1

2
α−1α−1] =

1

4
α1[α1, α−1α−1] +

1

4
[α1, α−1α−1]α1 =

1

2
(α1α−1 + α−1α1). (7.69)

This result is NOT normal ordered so for it to give a term in (the now normal ordered) L0

we must do a second commutation which gives

[
1

2
α1α1,

1

2
α−1α−1] = α−1α1 +

1

2
, (7.70)
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where the first term belongs to L0 and the second gives the anomaly A(2) = 1
2 . Thus,

reinstating the transverse indices on the α oscillators,

[L⊥2 , L
⊥
−2] = 4L⊥0 +

1

2
(D − 2). (7.71)

Note that to get 4L⊥0 we also need the contributions from 1) above.

Repeating this calculation for other similar cases we get A(1) = 0 and A(3) = 2. The

general case will contain more than one term from ”outside the brackets” and leads to

A(m) =
1

2
Σm−1
n=1 n(m− n) =

1

2
mΣm

n=1 n−
1

2
Σm
n=1 n

2, (7.72)

where we have added the term n = m (which is 0) to simplify the two sums. These are

quite easy to do:

Σm
n=1 n =

1

2
m(m+ 1), Σm

n=1 n
2 =

1

6
(2m3 + 3m2 +m). (7.73)

Thus we get finally A(m) = 1
12m(m2 − 1). The transverse Virasoro algebra for all XI

components then reads

[L⊥m, L
⊥
n ] = (m− n)L⊥m+n + (D − 2)

m(m2 − 1)

12
δm+n,0. (7.74)

Note the structure of the conformal anomaly14: It is zero for m = 0,±1 which means that

the subalgebra generated by L⊥0 , L
⊥
±1 is an ordinary Lie algebra, namely sl(2,R), with no

anomaly15. The conformal anomaly is a pure quantum effect since it originates in the need

to perform double commutators which cannot happen in classical physics using Poisson

brackets.

Comments: The Virasoro algebra is of enormous importance in many areas of physics

and mathematics. It determines most of the basic features of string theory. It also gives

the values of all critical exponents in second order phase transitions of systems in two

dimensions and hence explains universality in two dimensions. The Ising model and many

other systems in two dimensions are completely understood by studying the representation

theory of the Virasoro algebra.

Before we turn to the proof of the Lorentz algebra we should check how the Virasoro

generators act on the string coordinates

(N,N) : Xµ(τ, σ) = xµ0 + 2α′pµτ + i
√

2α′Σn 6=0
1

n
αµne

−inτ cosnσ. (7.75)

14Quantum generated anomalies also appear in QFT. In the standard model they must be cancelled to

keep gauge invariance and hence unitarity. This can be done by choosing the particle spectrum carefully

which nature of course has done.
15 From the Witt algebra we know that this sl(2,R) algebra is generated by V−1 = −∂z, V0 = −z∂z, V1 =

−z2∂z which can be interpreted as translations, dilatations (scalings) and (special) conformal transforma-

tions, respectively, on S1.
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This action is given by the commutator (the pµ commutes with L⊥m)

[L⊥m, X
I(τ, σ)] = [L⊥m, x

I
0] + i

√
2α′Σn 6=0

1

n
e−inτ cosnσ[L⊥m, α

I
n]. (7.76)

Using the results obtained above for these commutators we get

[L⊥m, X
I(τ, σ)] = −i

√
α′

2
Σn∈Z(e−in(τ+σ) + e−in(τ−σ))αIm+n. (7.77)

To be able to view this as an action on XI we must express the RHS in terms of XI .

Thus we would like the oscillators on the RHS to be αIn, not αIm+n. This is easily done by

shifting the dummy summation variable n→ n−m which gives

[L⊥m, X
I(τ, σ)] = − i

2

√
2α′
(
eim(τ+σ)Σn∈Ze

−in(τ+σ) αIn + eim(τ−σ)Σn∈Ze
−in(τ−σ) αIn

)
.

(7.78)

Comparing the sums to the mode expansions of ẊI ±X ′I we can write this as

[L⊥m, X
I(τ, σ)] = − i

2

(
eim(τ+σ)(ẊI +X ′I) + eim(τ−σ)(ẊI −X ′I)

)
. (7.79)

If we separate the τ and σ exponentials this equation reads

[L⊥m, X
I(τ, σ)] = −ieimτ cosmσẊI(τ, σ) + eimτ sinmσX ′I(τ, σ). (7.80)

Although one can interpret this result for any m as coordinate transformations in τ and σ

we are primarily interested in what effect L⊥0 has. Setting m = 0 gives, with L⊥0 = H as

we have established previously,

[H,XI(τ, σ)] = −i∂τXI(τ, σ). (7.81)

This result will have a generalisation in the closed string where it becomes a deep and

important new feature of the string as a gauge theory (related to not being able to fix the

σ = 0 point on the string).

Proof of the Lorentz algebra:

Recall the form of the angular momentum two-dimensional currents

Mα
µν := XµPαν −XνPαµ . (7.82)

The corresponding open string charges are

Mµν =

∫ π

0
(XµPτν −XνPτµ)dσ =

1

2πα′

∫ π

0
(XµẊν −XνẊµ). (7.83)

These charges are conserved (due to Noether’s theorem) and hence τ -independent even

though the Xµ depend on τ . So, from the two mode expansions only terms with τ -

dependence e−inτe−imτ where m = −n will survive. Doing the σ-integral therefore gives

the τ -independent result

Mµν = xµ0p
ν − xν0pµ − iΣ∞n=1

1

n
(αµ−nα

ν
n − αν−nαµn). (7.84)

– 81 –



If all the Xµ are quantised independently of each other these Lorentz generators trivially

satisfy the Lorentz algebra. This must, however, also be the case in the light-cone gauge

(or any other gauge). The problem is that the light-cone calculation of the algebra is not

only very lengthy but it is also not automatically satisfied. Instead, as we will explain,

it puts constraints on the dimension D of spacetime and the normal ordering constant a

introduced above (in connection with L⊥0 ).

The M IJ will trivially satisfy the algebra of SO(D − 2) since XI are all independently

quantised. The problematic parts of the calculation involve generators containing X−

since these are quadratic in XI . We will concentrate on the most important commutator

[M−I ,M−J ] which must vanish.

Before starting this calculation we must check that M−I is correctly defined in the quan-

tum theory: it must be hermitian and normal ordered! (It must have real eigenvalues and

give zero acting on the vacuum.) From the expression for Mµν above we get

M−I = x−0 p
I − xI0p− − iΣ∞n=1

1

n
(α−−nα

I
n − αI−nα−n ), (7.85)

which is normal ordered relative |0〉p (check this!) but not hermitian. Then using also

2α′p− = 1
p+

(L⊥0 + a) and
√

2α′α−n = 1
p+
L⊥n ( for n 6= 0) and making it hermitian by hand,

we get

M−I = x−0 p
I − 1

4α′p+
(xI0L

⊥
0 + L⊥0 x

I
0 + 2axI0)− i√

2α′p+
Σ∞n=1

1

n
(L⊥−nα

I
n − αI−nL⊥n ). (7.86)

Note that this expression has now become cubic in the oscillators αIn (in the last term)

which makes the computation of the commutator very complicated16. So it will not be

done here but the extreme importance of the result forces us to give it and see what the

implications are. The result is

[M−I ,M−J ] = − 1

α′(p+)2
Σ∞n=1(αI−nα

J
n − αJ−nαIn)

(
n(1− D − 2

24
) +

1

n
(
D − 2

24
+ a)

)
.

(7.87)

Then the requirement that [M−I ,M−J ] = 0 implies that the last bracket must vanish for

each value of the integer n. This is turn implies the following two conditions

1− D − 2

24
= 0,

D − 2

24
+ a = 0. (7.88)

The quite amazing conclusion is then that the quantum relativistic string, i.e., string theory,

can only be defined in spacetime dimension D = 26 and with the unique value of the normal

ordering constant a = −1:

The bosonic string: D = 26, a = −1. (7.89)

16This calculation can be found in the classic text books ”Superstring theory”, Vol 1 and 2, by Green,

Schwarz and Witten (Cambridge 1988), or using modern CFT techniques in, e.g., ”Lecture notes on the

bosonic string” by Bengt EW Nilsson (Chalmers).
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Note that this result is the same as we obtained from the Riemann zeta-function above:

a := 1
2(D − 2)Σ∞n=1n = 1

2 · 24 · (− 1
12) = −1. Note also that this result implies the D = 26

spacetime mass spectrum

M2 =
1

α′
(N⊥ − 1). (7.90)

Recall that

N⊥ = Σ∞n=1N
⊥
n = Σ∞n=1α

I
−nα

I
n = Σ∞n=1na

I
−na

I
n. (7.91)

This implies that

[N⊥, αI−n] = nαI−n, for all n ∈ Z. (7.92)

The state space:

We are now in a position to start discussing the spectrum of spacetime fields that is con-

tained in the bosonic string. This will be done in terms of the light-cone one-particle

states that we discussed before when analysing ordinary field theories in the light-cone

gauge. Thus a scalar particle is here represented by a string state |p+, pI〉 which is an

eigenstate of the momentum operators p+ and pI . This state is also defined to satisfy

αIn|p+, pI〉 = 0 for all n ≥ 1. So the state |p+, pI〉 is more correctly defined as the tensor

product |p+〉⊗|pI〉⊗Πn≥1|0〉n where the ground states |0〉n satisfy aIn|0〉n = 0 for all n ≥ 1.

Other states are then obtained by acting with the creation operators αI−n for n ≥ 1 on the

scalar state |p+, pI〉.

Comment: In the field theory obtained as the low-energy approximation of the string

(where the string shrinks and becomes point-like) these states are instead obtained by the

creation operators from the mode expansion of the fields in Minkowski space, a†
(p+,pI)

, act-

ing on the perturbative QFT vacuum state |0〉. At the level of the free field theory this is

not hard to buy but the challenge is to understand how to generate, e.g., the infinite set

of interaction terms in hµν contained in Einstein’s theory of gravity given by the Einstein-

Hilbert term in GR (after writing gµν = ηµν + hµν). We will below very briefly return to

this crucial issue and describe two different ways to get these interaction terms (none of

which can be found in BZ).

To analyse the spectrum we consider the first few states which are

|p+, pI〉, αI−1|p+, pI〉, αI−1α
J
−1|p+, pI〉, αI−2|p+, pI〉, ... (7.93)

with masses

M2 =
1

α′
(N⊥ − 1) =

1

α′
×−1, 0, 1, 1, ......... (7.94)

This rather strange spectrum calls for some comments:

1) The lowest state is a scalar with negative mass-square, i.e., a tachyon. In Minkowski

such a field is associated with a number of problems like instabilities (compare the Higgs

field) etc and it would be nice to be able to eliminate it somehow. This will be discussed

later.
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2) The second set of states corresponds to a massless vector field in D = 26 which must

come together with a gauge invariance as we have seen in the light-cone analysis of the

Maxwell theory. This gauge invariance will be identified later.

3) The third and fourth sets of states are massive (usually of Planck mass size) and give

therefore 1
224 × 25 + 24 = 324 states with the same mass. Note that these independent

fields are in irreps ˜(IJ), 1, I (where tilde means traceless)17.

4) After these states there is an infinite set of states with higher and higher masses.

Comment:

The string (and its spectrum) discussed so far is sometimes called oriented since it has a

sense of direction from the σ = 0 end to the σ = π end. It may, however, be of interest to

start from the oriented string and construct another string, the unoriented one, whose

spectrum is a subsector of the oriented one. This new string can be constructed as the sum

of two oriented strings which have opposite orientation. This is usually done by introducing

an operator Ω that takes σ into −σ.

Comment on field theory limit: How can it be relevant to discuss string theory in

terms of states and fields related to ordinary QFT?

1) At low energies the tension of the string will make it shrink and become more and more

point-like when the energy approaches zero.

2) A field theory (effective) action at low energy can be derived (including field theory

interactions) in different ways in string theory:

a) using CFT and vertex operators,

b) using conformal invariance and renormalisation group equations for the world-sheet per-

turbation theory: For the closed string the β = 0 equations are equivalent to Einstein’s

and all the other field equations.

More later if time permits!

Comment on the tachyon field theory:

We end this chapter by a discussion of the meaning of the fact that the bosonic string con-

tains a tachyon in the spectrum. This is a quite complicated story so we will be very brief.

The tachyon is a scalar quantum field, exactly as a real φ(x) in QFT, and has creation

operators a†
p+,pI

in the mode expansion that create 1-particle momentum eigenstates when

acting on the QFT perturbative vacuum |0〉. Being tachyonic it satisfies

|p+, pI〉 := a†
p+,pI
|0〉, M2|p+, pI〉 = − 1

α′
|p+, pI〉. (7.95)

17These 324 d.o.f. must have a Lorentz covariant description in field theory in 26 dimensions. It turns

out that to find such a formulation one has to introduce so called Stueckelberg fields, see e.g. Appendix A

in Park and Lee, hep-th/1908.03704, which leads to a rather complicated set of equations. However, the

equations are Stueckelberg symmetric only in D = 26 which is consistent with string thyeory.
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However, neglecting all other fields (which may be inconsistent to do) the tachyon field

T (x) should be described by a Lagrangian of the kind

L(T (x)) = −1

2
ηµν∂µT∂νT − V (T ) =

1

2
Ṫ 2 − 1

2
(∇T )2 − V (T ), (7.96)

where

V (T ) =
1

2
M2T 2 +O(T 3). (7.97)

So, if the M2 term is negative the field is a tachyon, at least for fluctuations around T = 0.

One of the problematic features of tachyons can be seen clearly by looking at a T (x)

field which depends only on time. Then its field equation close to T = 0 becomes

T̈ (t) +M2T (t) = 0 ⇒


T (t) = A cosMt+B sinMt, for M2 > 0,

T (t) = A coshβt+B sinhβt, for M2 := −β2 < 0.

(7.98)

Thus we find, as expected, that in a potential bounded from below (like a bowl) the fluctu-

ations are oscillatory while in an unbounded potential (like a bowl turned upside down) the

fluctuations will ”slide off” the top of the potential which leads to an exponential instability.

The bosonic string must be unstable in a similar sense but the questions are of two kinds:

1) What exactly is the shape of the unbounded potential for the tachyon?

2) If there is a local or global minimum for some expectation value 〈T 〉, what is the theory

there?

Although the calculations are rather complicated one has established that the potential

is basically of cubic form with a local maximum at T = 0 with V (T = 0) > 0 and a local

minimum at a positive value T = T ∗ with V (T = T ∗) = 0. Of course, being basically cubic

the potential V (T ) runs off to ±∞ as T → ±∞.

The picture, based on the potential described above, that has been adopted by most string

theorists is the following:

1) The string theory at the T ∗ local vacuum is semi-stable.

2) The D25 branes have condencated (formed bound states) , and hence disappeared along

with all other branes.

3) The last point indicates that the new theory is a closed string but this has not yet been

proved18.

18One problem with this interpretation is the closed string tachyon (see the paper from 1999 by Sen and

Zwiebach, hep-th/9912249). Note that for superstrings the tachyon can be removed as we will see later.
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8 Lectures 8

The purpose of this lecture is to develop the closed string following the steps we took in

the previous lectures for the open string. Many of the relevant formulas have already been

obtained when solving the wave equation and the constraints in the light-cone gauge. Some

of these formulas contain a parameter β which is equal to 2 for the open string but which

is now set equal to 1 for the closed string.

8.1 BZ Chapter 13: The relativistic closed string

We start by recalling the formulas relevant for the closed string (using β = 1): The gauge

conditions

X+(τ, σ) = α′p+τ, Pτµ =
1

2πα′
Ẋµ, Pσµ = − 1

2πα′
X ′µ, (8.1)

and the solution to the wave equation, and the 2π periodicity,

(∂2
τ − ∂2

σ)Xµ(τ, σ) = 0 ⇒ Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ) = Xµ(τ, σ + 2π). (8.2)

Note that the range of σ is different form the open case: The closed string has σ ∈ [0, 2π].

Since there are no further conditions on Xµ(τ, σ) we see that it contains two independent

functions of one variable, now denoted Xµ
L(u) and Xµ

R(v) for the left and right movers, re-

spectively. Here u := τ + σ and v := τ − σ.

The 2π periodicity can be expressed using u and v as

Xµ
L(u+ 2π)−Xµ

L(u) = Xµ
R(v)−Xµ

R(v − 2π). (8.3)

This equation implies that their derivatives X ′µL and X ′µR are both strictly 2π periodic

functions and can thus be expanded as

X ′µL (τ + σ) =

√
α′

2
Σn∈Z ᾱ

µ
ne
−in(τ+σ), (8.4)

X ′µR (τ − σ) =

√
α′

2
Σn∈Z α

µ
ne
−in(τ−σ), (8.5)

where the independent oscillators have been distinguished by a bar in the mode expansion

for X ′µL .

The independence of the unbarred and barred oscillators is certainly true for n 6= 0 but

what happens for n = 0, i.e., the pµ terms and the corresponding coordinates xµ0 ? To

answer this question we start by integrating the above equations. This gives

Xµ
L(τ + σ) =

1

2
xµ0,L +

√
α′

2
ᾱµ0 (τ + σ) + i

√
α′

2
Σn6=0

1

n
ᾱµne

−in(τ+σ), (8.6)

Xµ
R(τ − σ) =

1

2
xµ0,R +

√
α′

2
αµ0 (τ − σ) + i

√
α′

2
Σn6=0

1

n
αµne

−in(τ−σ). (8.7)
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Inserting these expansions into the periodicity condition XL(u+ 2π)−XL(u) = XR(v)−
XR(v − 2π) implies (only terms linear in u and v survive)√

α′

2
ᾱµ0 2π =

√
α′

2
αµ0 2π ⇒ αµ0 = ᾱµ0 . (8.8)

This identification of the zero modes is of course necessary since they correspond to the

center of mass momenta. The exact relation is

pµ :=

∫ 2π

0
Pτµdσ =

1

2πα′

∫ 2π

0
Ẋµdσ =

√
2

α′
αµ0 =

√
2

α′
ᾱµ0 . (8.9)

The interesting implication of this trivial fact is that there can be only one canonical set

of zero mode coordinates which means that we should set

xµ0 = xµ0,L = xµ0,R. (8.10)

The final form of the (uncompactified) closed string mode expansion is therefore

Xµ(τ, σ) = xµ0 + α′ pµ τ + i

√
α′

2
Σn6=0

1

n
(αµne

−in(τ−σ) + ᾱµne
−in(τ+σ)). (8.11)

Note that the coefficient of momentum term in this closed string expansion is different

from the one in the open string case. This fact is important in the following comment.

Comment: Repeating the steps that led to the open string world-sheet propagator gives

for the (uncompactified) closed string

x〈0|X(z, z̄)X(w, w̄)|0〉p = −α
′

2
(ln(z − w) + ln(z̄ − w̄)), |w| < |z]. (8.12)

As for the open case calculation in the light cone gauge, this is valid only for the transverse

directions.

For the closed string we have

H = α′p+p−, (8.13)

and the non-zero CCRs

[x−0 , p
+] = −i, [xI0, p

J ] = iδIJ , [αIm, α
J
n] = iδIJδm+n,0, [ᾱIm, ᾱ

J
n] = iδIJδm+n,0. (8.14)

We will now return to the solution of the constraints and how to introduce transverse

Virasoro generators in the closed string case. The solution to the constraints are (with

β = 1)

Ẋ− ±X ′− =
1

α′
1

2p+
(ẊI ±X ′I)2. (8.15)
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Since we have different oscillators in the left-moving sector (with mode functions e−in(τ+σ))

compared to the right-moving one (with mode functions e−in(τ−σ)) we should introduce two

different sets of transverse Virasoro generators:

(ẊI +X ′I)2 = 4α′Σn∈Z

(
1

2
Σp∈Z ᾱ

I
n−pᾱ

I
p

)
e−in(τ+σ), (8.16)

(ẊI −X ′I)2 = 4α′Σn∈Z

(
1

2
Σp∈Zα

I
n−pα

I
p

)
e−in(τ−σ), (8.17)

Defining as usual the sums in the brackets as transverse Virasoro generators we get

Ẋ− +X ′− =
2

p+
Σn∈Z L̄

⊥
n e
−in(τ+σ), (8.18)

Ẋ− −X ′− =
2

p+
Σn∈Z L

⊥
n e
−in(τ−σ). (8.19)

This means of course that the closed string is associated with two Virasoro algebras which

commute with each other.

Expanding also the X− fields we get

√
2α′ᾱ−n =

2

p+
L̄⊥n ,

√
2α′α−n =

2

p+
L⊥n . (8.20)

These are similar to the open string relation but there is an entirely new feature in the

closed string case: Recall that we found above that the momentum modes satisfy ᾱ−0 = α−0
which implies the so called level matching condition

L⊥0 = L̄⊥0 , or N⊥ = N̄⊥. (8.21)

The second form of the condition follows from L⊥0 = α′

4 p
IpI +N⊥ and L̄⊥0 = α′

4 p
IpI + N̄⊥

(note that the momenta pI are the same).

The level matching condition has fundamental implications for the whole closed string

theory: But how do we interpret it? And how do we use it?

It is in fact a new kind of condition since it is an equality between two otherwise inde-

pendent operators. It should therefore be used as a condition on state space as we now

explain. Recall the mass square operator

M2 = −p2 = 2p+p− − pIpI =
2

α′
(L⊥0 + L̄⊥0 − 2)− pIpI =

2

α′
(N⊥ + N̄⊥ − 2). (8.22)

This operator gives the closed string mass spectrum in terms of the level numbers (eigen-

values of the number operators N⊥, N̄⊥) which are now demanded to also satisfy the level

matching condition N⊥ = N̄⊥. Note that the −2 arises from the normal ordering of the

two L0 operators, each giving −1 as in the open string case.

One can also check that (recall the open string result)

[L⊥0 + L̄⊥0 , X
I(τ, σ)] = −i∂τXI(τ, σ), (8.23)
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i.e., the closed string Hamiltonian is H = L⊥0 + L̄⊥0 − 2, and

[L⊥0 − L̄⊥0 , XI(τ, σ)] = i∂σX
I(τ, σ). (8.24)

The second one is particularly interesting since it means that the σ translation operator

P := L⊥0 − L̄⊥0 is zero by the level matching condition. Since there is only one mode in-

volved here these σ translations are with a constant parameter. That P = 0 can be viewed

as a consequence of the fact that we left one small part of the reparametrisation invariance

in σ unfixed when choosing the σ gauge, namely the location of the σ = 0 point on the

closed string. We have seen this phenomenon before when computing the Hamiltonian

before fixing the τ gauge: We found then that H = 0. The reason we make some fuzz

about this point here is that there is a more powerful way to handle the quantisation of

the string that we will discuss later: The Lorentz covariant Polyakov formulation. There

all τ, σ symmetries are left unfixed and then all the Virasoro generators become operator

conditions on the space of states just as the level matching did in this light-cone treatment.

The closed string spectrum:

We have now reached one of the central results in this course: The closed string spectrum

contains a graviton. Let us discuss some of the lowest levels of the closed string spectrum.

As for the open string also the closed string contains a tachyon as the lowest state

|p+, pI〉, M2 = − 4

α′
: T (x) (tachyon). (8.25)

The next lowest set of states must satisfy the level matching condition so they are

αI−1ᾱ
J
−1|p+, pI〉, M2 = 0 : gIJ (graviton), BIJ (Kalb-Ramond), φ (dilaton). (8.26)

Note that to satisfy the level matching both αI−1 and ᾱJ−1 must enter the construction of

the state which then has N⊥+ N̄⊥ = 2 so that M2 = 0, i.e., we have a number of massless

states at this level!. These states have two transversal indices IJ with no symmetries, i.e.,

the states are 24× 24 = 576 in number. However, as independent fields in QFT they must

be split up into irreps of SO(24): ˜(IJ), [IJ ] and a singlet. They represent, respectively,

the graviton 299 dof, 276 dof and one dof.

In a Lorentz covariant field theory description of these fields they will be given by gµν ,

Bµν and φ, together with all the interactions between them which are needed to produce a

generally covariant theory in D = 26 spacetime dimensions. Also Bµν turns out to be a field

with gauge transformation δBµν = ∂µεν − ∂νεµ. The field theory therefore will be formu-

lated in terms of a field strength with three antisymmetric indices, a direct generalisation

of the Maxwell theory:

Hµνρ := 3∂[µBνρ]. (8.27)

Such a field has interesting physical use as axions in D = 4 spacetime dimensions and is,

e.g., considered as a dark matter candidate.
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String interactions: The dilaton φ has a key role to play: It is related to the cou-

pling constant in string theory.

Consider first the metric field gµν and how it enters the theory of general relativity. In the

discussion of gravitational waves we are used to expand gµν in terms of small fluctuations

hµν around some background geometry 〈gµν〉, i.e. we have

gµν(x) = 〈gµν〉(x) + κhµν(x). (8.28)

Here we have introduced a parameter κ as 8πGN = κ2 so that the Einstein-Hilbert ac-

tion at the lowest bilinear level gives just a kinetic term for hµν normalised with a factor
1
2 as is standard for real fields. Note that the dimension of κ is [κ] = L which forces

hµν to have dimension L−1. This is a very general situation where 〈gµν〉 can be any maxi-

mally symmetric background geometry, Minkowski, de Sitter (dS) or anti de Sitter (AdS).

Expanding the Einstein-Hilbert action beyond the first bilinear term shows that κ plays

the role of coupling constant in a gravity theory. Terms with all higher powers of hµν will

appear and they will all have two derivatives. Schematically (not writing out the indices)

the interaction terms are of the form

L(hµν) =
1

2
∂h∂h+ κh(∂h)2 + (κh)2(∂h)2 + ... (8.29)

One can check that this means that a standard Feynman graph loop expansion a g-loop

diagram comes with a factor (κ)2g. If we want to understand this result in string theory

we should at least identify the gravitational coupling constant and see if it behaves in the

same way as κ.

Note: This discussion is very dimension dependent. In D spacetime dimensions the di-

mension of κ is [κ2
D] = LD−2.

The important question is: How is κ obtained in string theory? The only parameter

we have encountered in string theory so far is α′ which has dimension L2. Thus we ex-

pect a relation like κ2
D ∼ (α′)

D−2
2 but α′ is not related to how strings interact with each

other or to the string loop expansion. Where do we find the relation to the loop expansion?

The answer is quite surprising: The closed string coupling constant, which is also

the loop counting parameter, comes from the dilaton. The background expansion for the

metric above can be carried over to only one other kind of field, namely scalars. We are

familiar with this from the Higgs field. Thus we can write the dilaton as a fluctuation

relative a constant background value

φ(x) := 〈φ〉+ ϕ(x). (8.30)

We now claim that the background value (VEV) of the dilaton, 〈φ〉, defines the closed

string coupling constant gs by

gs := e〈φ〉. (8.31)
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Comment: This fact can be understood by looking at how the string path integral be-

haves at higher string loops. We will provide a very brief discussion of the path integral

after having introduced the covariant Polyakov action.

From this string path integral discussion we will also find the gs dependence of the Newton

constant which in bosonic string theory reads

G
(26)
N ∼ g2

s(α
′)12. (8.32)

The appearance of g2
s in this formula is in fact very general as will be clear from the path

integral later.

Since the superstring lives in D = 10 spacetime dimensions the corresponding equation

is

G
(10)
N ∼ g2

s(α
′)4. (8.33)

In terms of the Planck length lP and the string length ls =
√
α′, this becomes

l
(10)
P ∼ lsg

1
4
s . (8.34)

Using now the results discussed previously in connection with compactifications from D =

10 to D = 4 dimensions we find that Newton’s constant in D = 4 is given by

GN =
G

(10)
N

V (6)
∼ g2

s(α
′)4

V (6)
=

g2
sα
′

V (6)/(α′)3
. (8.35)

So if the dimensionless ratio V (6)/(α′)3 is fixed and close to 1, then the Newton’s constant

in D = 4 spacetime dimensions is

GN ∼ g2
sα
′. (8.36)

There is another amazing relation between coupling constants in string theory: If one

introduces also an open string coupling constant, go, (needed since two open strings can

join at the ends) then one can argue that

g2
o ∼ gs. (8.37)

Comment: As for the previous comment also the following one explaining this relation

between coupling constants is best carried out after the introduction of the Polyakov action

and its conformal world-sheet symmetry. The crucial property here is the conformal sym-

metry in two dimensions which means that one can deform any string world-sheet any way

one wants. So, consider two open string strings approaching each other and then joining at

the ends to form a single open string. This 3-point interaction should be associated with

a coupling constant go. If this third string propagates a short distance and then splits up

into two (a new factor of go) which then join again (another factor of go), and finally the

last open string splits in two (a new factor go) we have produced a one-loop correction to
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the open string 2 to 2 scattering. This diagram has a factor g4
o . But, using the conformal

invariance we can pull the circle in the middle out of the surface of the open string diagram

which then becomes a closed string. The whole diagram must in this new interpretation

be a tree diagram scattering of a closed string and two open strings with coupling constant

g2
ogs. We should also note that since the open string contains vector gauge fields go will

correspond to the Yang-Mills coupling constant gYM in the low energy field theory limit

of the open string. Thus

gs ∼ g2
YM . (8.38)

We now leave this very important discussion of the connection between parameters in field

theory GN , gYM and the ones in string theory α′, gs, go. We will return to these relations

again in the context of AdS/CFT. Here we will instead continue with a discussion of orb-

ifolds in string theory.

Orbifold string mode expansions:

In field theory one should not use background geometries with singular points (or surfaces)

like the tip of a cone. The reason is that this leads to infinities like the one at the center

of a black hole or the position of a point charge. As we will see below string theory can

handle this situation in a natural way.

For this purpose we consider a target spacetime using light-cone coordinates (x+, x−, xI)

and impose a Z2 identification acting in the 25th direction:

xµ = (x+, x−, xI) =: (x+, x−, xi, x25) (8.39)

with Z2 action : xµ = (x+, x−, xi, x25)→ x̃µ := (x+, x−, xi,−x25). (8.40)

The result of a Z2 identification xµ ∼ x̃µ is a fundamental region given by the half-

space x25 ≥ 0 where the ”fix-point” (x+, x−, xi, x25 = 0) is singular. The first important

observation is that there are now two kinds of closed string configurations:

Xµ(τ, σ + 2π) = Xµ(τ, σ) and Xµ(τ, σ + 2π) = X̃µ(τ, σ), (8.41)

where the second case gives a closed string due the identification. We will see that this

means that the closed string on an orbifold will have two sectors, one untwisted (case 1

above) and one twisted (case 2 above).

The untwisted sector consists of all closed strings that are invariant under the Z2

identification. In this sector all components Xµ(τ, σ) have the same closed string mode

expansion as discussed previously. To check what the invariance under Z2 means it is useful

to introduce a unitary operator U that generates the Z2 transformation:

µ 6= 25 : UXµU−1 = Xµ, µ = 25 : UX25U−1 = −X25. (8.42)

Then since U |p+, pi, p25〉 = |p+, pi,−p25〉 the invariant ground state is

|p+, pi, p25〉+ |p+, pi,−p25〉. (8.43)
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At level 1 (i.e., N⊥ = N̄⊥ = 1) the invariant states are of four kinds:

αi−1ᾱ
j
−1(|p+, pi, p25〉+ |p+, pi,−p25〉), (8.44)

αi−1ᾱ
25
−1(|p+, pi, p25〉 − |p+, pi,−p25〉), (8.45)

α25
−1ᾱ

j
−1(|p+, pi, p25〉 − |p+, pi,−p25〉), (8.46)

α25
−1ᾱ

25
−1(|p+, pi, p25〉+ |p+, pi,−p25〉). (8.47)

Note that the Hamiltonian is also invariant (since quadratic in Xµ): UHU−1 = H. This

implies that it is consistent to restrict the theory to the untwisted sector. However, for rea-

sons related to properties of strings at 1-loop the twisted sector (below) must be included

to make the theory consistent.

The twisted sector consists of all string configurations that need the identification for

the string to become closed. Thus the mode expansion of Xµ6=25 is the standard one but

the one for X25 is different. It is anti-periodic:

X25(τ, σ + 2π) = −X25(τ, σ). (8.48)

Using the split into left-movers and right-movers we have

X ′25
L (u+ 2π) = −X ′25

L (u), X ′25
R (v − 2π) = −X ′25

R (v). (8.49)

This anti-periodicity changes the mode expansion completely. Instead of the usual one we

now get one in terms of half-integers r ∈ Z + 1
2 (suppressing 25):

XL(u) = x0,L + i

√
α′

2
Σr∈Z+ 1

2

1

r
ᾱre
−iru, (8.50)

XR(v) = x0,R + i

√
α′

2
Σr∈Z+ 1

2

1

r
αre
−irv, (8.51)

Implementing the anti-periodicity gives x0 = x0,L + x0,R = 0 which also means that the

center of mass momentum vanishes. This is, however, a trivial statement since there is no

momentum mode when using sums over half-integers (all modes multiply exponentials so

there are no zero modes):

X(τ, σ) = i

√
α′

2
Σr∈Z+ 1

2

1

r

(
ᾱre
−ir(τ+σ) + αre

−ir(τ−σ)
)
. (8.52)

Note: A crucial consequence of this mode expansion (without any zero modes) is that

these strings are tied to the fix-point x25 = 0!

To obtain the effect of this half-integer expansion on the mass spectrum we need to recom-

pute the Virasoro generator L⊥0 . From the definition

L⊥0 =
1

2
Σp∈Zα

i
−pα

i
p +

1

2
Σr∈Z+ 1

2
α25
−rα

25
r , (8.53)
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we get a new normal ordering constant

a =
1

2
(D − 3)Σ∞p=1p+

1

2
Σ∞
r=

1
2

r. (8.54)

As before the sum over the integers in the first term gives − 1
12 while the second sum is

computed as follows

Σ∞
r=

1
2

r = 1
2 +

3

2
+

5

2
+ ... =

1

2
Σp=1,3,5,..p =

1

2
Σ∞p=1p−

1

2
Σp=2,4,6,...p = (8.55)

1

2
Σ∞p=1p− Σ∞p=1p =

1

2
(− 1

12
)− (− 1

12
) =

1

24
. (8.56)

Then since for the bosonic string we still have D = 26 we find for each left and right moving

sector

a =
1

2
(D − 3)

(
− 1

12

)
+

1

2

(
1

24

)
= −15

16
. (8.57)

Inserting this into the formula for M2 it becomes

Twisted sector: M2 =
2

α′

(
N⊥ + N̄⊥ − 15

8

)
, N⊥ = N̄⊥. (8.58)

Thus there are tachyons but no massless fields in this sector.

– 94 –



9 Lecture 9

At this point in the development of string theory it would be very useful to leave the light-

cone formulation and express the bosonic string in a Lorentz covariant and more powerful

way. This will also help us to take the rather huge step over to the superstring. In

addition we can follow up on the role of the dilaton and the closed string coupling constant

mentioned previously. We will follow BZ Chap. 24 with some minor excursions. Doing this

will also provide some insight into how modern string theory is handled mathematically.

Unfortunately, some of the material is rather tricky so some comments are made only as

hints towards the more advanced and modern treatment of string theory.

9.1 Chapter 24: The covariant quantisation of the bosonic string.

Recall the starting point, i.e., the Nambu-Goto action

S[X] = − 1

2πα′

∫
dτdσ

√
−γ, γ := det γαβ, (9.1)

where γαβ is the pull-back metric from the target spacetime, here Minkowski,

γαβ := ∂αX
µ∂βX

νηµν . (9.2)

To quantise the Nambu-Goto action in a covariant manner is tricky and should be avoided

if possible. Fortunately, there is a way to express string theory in terms of an action based

on free Xµ fields. Then all components of Xµ can be expanded in modes which are

quantised independently of each other. This rather amazing step leads to the Polyakov

action

S[Xµ, hαβ] = − 1

4πα′

∫
dτdσ

√
−hhαβ∂αXµ∂βX

νηµν . (9.3)

The huge differences compared to the Nambu-Goto action are the absence of the square root

involving the string coordinates Xµ and the presence of a new world-sheet field hαβ(τ, σ).

This field plays the role of a metric on the world-sheet and is independent of the pull-back

metric on the world-sheet γαβ(τ, σ). The Polyakov action above is thus (”trivially” as in

GR) reparametrisation invariant on the world-sheet just as the Nambu-Goto action is but

for a different reason. Note that h := dethαβ(τ, σ). The new action is also trivially invari-

ant under global Poincaré transformations.

There is, however, one more crucial difference between the two actions since the Polyakov

has one more local symmetry, (manifest) local scale invariance, also known as Weyl in-

variance:

Weyl transformations: hαβ(τ, σ)→ e2Ω(τ,σ)hαβ(τ, σ), Xµ → Xµ. (9.4)

The reason for claiming that the string can be described by the Polyakov action instead of
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the Nambu-Goto is that they give rise to the same dynamics, i.e., that they are classically

equivalent on-shell. This fact is rather easy to prove: We must just show that the field

equations are the same. So, if we can show that the two Lagrangians are equal on-shell

we are home.

Let us start from the Polyakov action. It contains two independent fields on the world-sheet,

hαβ(τ, σ) and Xµ(τ, σ), and hence gives rise to two field equations: the two-dimensional

covariant Klein-Gordon equation

δXµ(τ, σ)⇒ �2X
µ = 0, (9.5)

where �2 := ∇α(h)∇α(h), and the two-dimensional Einstein equations

δhαβ ⇒ 0 = Tαβ, Tαβ = ∂αX
µ∂βX

νηµν −
1

2
hαβ(hγδ∂γX

µ∂δX
νηµν). (9.6)

Note that the left hand side is zero since the action has no Einstein-Hilbert term in it. In

fact, even if one adds a two-dimensional Einstein-Hilbert term to the Polyakov action it

would not change the Einstein equations since
∫
dτdσ

√
−hR2(h) is a total derivative and

contributes only to the boundary terms (recall that the field equations come from the bulk

term in δS = 0). We will come back to the Einstein-Hilbert term shortly when returning

to the discussion of the string coupling gs.

The Einstein equations above can be written

γαβ =
1

2
hαβ(hγδγγδ). (9.7)

Taking the determinant of this equations gives (det γαβ) = 1
4(dethαβ)(hγδγγδ)

2 that is

√
−γ =

1

2

√
−h(hγδγγδ). (9.8)

This equation proves that on-shell the two Lagrangians are equal (the LHS is the Nambu-

Goto Lagrangian and the RHS the Polyakov one).

Having established that the two actions give the same physics, we will now study the

string using the Polyakov action and applying a covariant quantisation formalism. Some of

the steps discussed below will be rather sketchy for lack of space in this course. To define

the starting point we have the two field equations

∂α(
√
−hhαβ∂βXµ) = 0, (9.9)

∂αX
µ∂βX

νηµν −
1

2
hαβ(hγδ∂γX

µ∂δX
νηµν) = 0. (9.10)

The first thing to do is to choose the so called conformal gauge

hαβ = ρ2(τ, σ)ηαβ. (9.11)
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This is possible because we can just use the two reparametrisation invariances on the world-

sheet to impose this gauge condition. Recall the harmonic gauge in ordinary GR which is

used there in a similar way. In the present case the conformal gauge has some very nice

consequences. Inserting it into the field equations gives

ηαβ∂α∂βX
µ = 0, (9.12)

∂αX
µ∂βX

νηµν −
1

2
ηαβ(ηγδ∂γX

µ∂δX
νηµν) = 0. (9.13)

This nice simplification is an effect of the Weyl invariance mentioned above (the scale fac-

tor ρ2 cancels in both equations even though it is a function of the world-sheet coordinates).

The first equation is just the wave equation again, but what is the second set of (three)

equations? Choose first α = β = τ . Then it reads

(Ẋµ)2 +
1

2
(−(Ẋµ)2 + (X ′µ)2) = 0⇒ Ẋ2 +X ′2 = 0. (9.14)

The same result is obtained by choosing α = β = σ while choosing one index as τ and

one as σ we get ẊµX ′µ = 0. As we did in the light-cone situation these constraints can be

summarised as

(Ẋµ ±X ′µ)2 = 0. (9.15)

So, the Polyakov action has done a very good job so far (by obtaining the constraints from

the world-sheet Einstein’s equations).

The question now is how to quantise the theory with the above constraints while keep-

ing the Lorentz invariance and the independence of all the components of Xµ? Note that,

contrary to the light-cone gauge, we have not yet imposed any gauge conditions on any

components of Xµ!

This is where the new situation must be made clear. With all components of Xµ quantised

independently the Lorentz algebra is trivially satisfied. The conditions on the dimension

D of spacetime and on the normal ordering constant a can therefore not be obtained by

demanding that the Lorentz generators satisfy the Lorentz algebra after quantisation as

we did in the case of the light cone gauge.

A second problem is that, since all the oscillators in the time components remain, the cre-

ation operators in X0 will give rise to states with negative norm (which will ruin unitarity).

In order to resolve these problems we start by trying to impose (Ẋµ ± X ′µ)2 = 0 as

an operator condition on the space of states generated by the creation operators αµ−n.

This may be viewed as a generalisation of the level matching condition L⊥0 = L̄⊥0 . To do

this we expand the covariant constraint in a new set of covariant Virasoro generators now

containing all Xµ components (open string):

(Ẋµ ±X ′µ)2 := 4α′Σn∈Z Lne
−in(τ±σ), (9.16)
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where

Ln :=
1

2
Σp∈Z : αµn−p α

ν
p : ηµν . (9.17)

This means that there is a normal ordering constant a coming from the covariant L0

whose value must be determined by some new covariant methods. Formally, of course, this

covariant constant is given by

a :=
D

2
Σ∞n=1 n. (9.18)

Thus, at this point it is far from clear how to find the result a = −1 in the covariant

formulation.

Before sketching the answer to this question, we should make sure that the present situation

makes sense. The first thing to check is if there are symmetries left unfixed corresponding

to all the Ln generators (similar to the constants shifts in τ and σ generated by L⊥0 as we

have seen above in the light-cone case)?

To see that the answer is Yes to this question we note that having fixed the world-sheet

metric to hαβ(τ, σ) = ρ2(τ, σ)ηαβ we can use the Weyl invariance to fix it to be exactly flat:

hαβ(τ, σ) = ηαβ. Then we should ask what symmetries remain by solving δhαβ(τ, σ) = 0.

This equation becomes, due to the local reparametrisation and Weyl invariances,

∂αξβ + ∂βξα + f ηαβ = 0, (9.19)

where the parameters of the local reparametrisation and Weyl invariances are, respectively,

ξα(τ, σ) and f(τ, σ). Writing these equations in light-cone variables σ± := τ ± σ gives

∂+ξ+ = 0, (9.20)

∂−ξ− = 0, (9.21)

∂+ξ− + ∂−ξ+ = f. (9.22)

The last equation just determines f(τ, σ) and is therefore not a condition on ξα(τ, σ). The

other two equations, ∂+ξ+ = 0 and ∂+ξ+ = 0, imply (not the position of the indices ±)

ξ+(τ, σ) = ξ+(σ+), ξ−(τ, σ) = ξ−(σ−). (9.23)

The symmetries that remain after the conformal gauge is imposed is therefore given by the

two arbitrary functions (ξ+(σ+), ξ−(σ−)). After a Wick rotation to Euclidean signature

on the world-sheet this symmetry corresponds to holomorphic transformations, or in other

words, conformal transformations. This means that in principle we could still remove the

time component of Xµ (also satisfying �2X
µ = 0) by a further gauge condition on the co-

ordinates (σ+, σ−). Since we want to stay Lorentz covariant this will, however, not be done.

The second issue concerns the use of the (now covariant) Virasoro generators Ln. The

strategy is to implement Ln = 0, for all n ∈ Z, by imposing it on the space of states.

– 98 –



Denote an arbitrary state as |Φ〉 and assume for now that a = −1. Then the condition for

n = 0 becomes

0 = (L0 − 1)|Φ〉 = (
1

2
αµ0α0µ + Σ∞p=1 α

µ
−pαpµ − 1)|Φ〉. (9.24)

Since αµ0α0µ = 2
α′ p

2 this condition can be reformulated as

M2 = −p2 =
1

α′
(N − 1) acting on |Φ〉. (9.25)

Consider now the generators Ln for n 6= 0. The Virasoro algebra is derived in precisely the

same way as for the transverse L⊥n . Then

[Lm, Ln] = (m− n)Lm+n +
D

12
m(m2 − 1) δm+n,0. (9.26)

Note that since Ln contains all components of Xµ the central term contains a factor D

(instead of D − 2 in the light-cone).

Imposing all Ln = 0 for n 6= 0 implies, however, for instance for n = 2

[L2, L−2]|Φ〉 = 0⇒ 0 = 4 +D
2 · 3
12

, (9.27)

which obviously is not a sensible result since D comes out negative. So, imposing all Ln = 0

for all n 6= 0 does not work!

Fortunately, the operator condition Ln = 0 for all n 6= 0 can be implemented in a less

constraining way by recalling that operator conditions should in general be interpreted as

conditions on matrix elements: Impose Ln|Φ〉 = 0 only for n > 0! But this then means

that the conjugated equations 〈Φ|Ln = 0 for n < 0 are also imposed. Thus, between two

such states we have

〈Φ|Ln|Φ′〉 = 0, for all non-zero n ∈ Z. (9.28)

Now we know how to handle the Virasoro generators and how to use them to constrain the

space of states generated by the creation operators αµ−n for n > 0. We will come back to

the structure of this state space below but first we should provide arguments for D = 26

and a = −1. Classically the Polyakov string is conformal (Weyl) invariant. We will now

demand this to be true also at the quantum level which means that the conformal anomaly

must vanish.

This is possible to achieve due to the following fact: Since in the covariant treatment

of Xµ also the time component appears in all loop calculations on the world-sheet. So its

bad consequences (ruining unitarity) must be eliminated somehow. This is done by the

so called Faddeev-Popov procedure: The remaining gauge symmetries imply that so called
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anti-commuting ghost fields, here denoted (b, c), must introduced. Since they are anti-

commuting they can be designed to exactly cancel out all effects of X0. (Compare this to

why supersymmetry is interesting.)

For the covariant string this means that we must add ghost terms to the Polyakov ac-

tion which then give contributions to the stress tensor and hence to Ln. They now become

Ln := L(X)
n + L(b,c)

n ⇒ c = c(X) + c(b,c) = D − 26 = 0⇒ D = 26. (9.29)

To find a = −1 in the covariant theory is more tricky. Let us very briefly mention three

ways to argue for the value a = −1:

1) Conformal invariance implies that one must be able to integrate vertex operators over

the world-sheet.

2) Interactions demand that the scattering of two physical states produce a third physical

state.

3) Gauge invariance in the low energy field theory only works if D = 26 and a = −1.

Let us be a bit more explicit about the last issue. To do that we need to introduce

some more structure in connection with the Virasoro algebra above. The general form of

the Virasoro algebra is

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1) δm+n,0, (9.30)

where c is a number, the conformal anomaly (or central extension), that defines this version

of the algebra. Representations of this algebra are defined from a lowest weight state

|c, h〉 by

L0|c, h〉 = h|c, h〉, (9.31)

Ln|c, h〉 = 0, n ≥ 1. (9.32)

The representation (called a Verma module) is infinite dimensional since any combinations

of L−n for n ≥ 1 acting on the ground state |c, h〉 is a new state in the representation

denoted (c, h). Then the state |c, h〉 is called primary and states obtained from L{−n}
acting on it are called descendent states. Here {−n} denotes any selection of a set of neg-

ative mode numbers. In string theory the states |c, h〉 are called physical and sometimes

denoted |Φ〉 or just |phys〉.

With these definitions there may appear states |χ〉 that are special in the sense that they

are primary and descendent at the same time. Such states satisfy

Ln|χ〉 = 0, for all n > 0, AND |χ〉 = L{−n}|χ̃〉 for some |χ̃〉 and {−n}. (9.33)

States |χ〉 of this kind are orthogonal to all states including themselves, i.e., for any such

state |Φ〉,
〈Φ|χ〉 = 0, 〈χ|χ〉 = 0. (9.34)
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Thus |χ〉 is often called a null state and can be used to make a shift of a state |Φ〉 that

has no physical consequences (much like a gauge transformation in field theory):

|Φ〉 ∼ |Φ′〉 = |Φ〉+ |χ〉. (9.35)

Let us consider a relevant example involving null states. Consider a physical state in the

open string

|Φ〉 := ξµα
µ
−1|p

µ〉. (9.36)

This state can be identified with a one-particle state in QED obtained by applying a

creation operator aµ†p from the mode expansion of the Maxwell field Aµ(x). ξµ is then the

corresponding polarisation tensor. However, for this interpretation to be OK this state

must satisfy p2 = 0 and pµξµ = 0. In the string construction of this state these conditions

come from the physical state requirements. Consider first L0 = 1:

L0(ξµα
µ
−1|p

µ〉) = ξµα
µ
−1|p

µ〉 ⇒ p2ξµα
µ
−1|p

µ〉 = 0, (9.37)

where we have used that L0 = α′p2 +N . As a second condition we have L1 = 0:

L1(ξµα
µ
−1|p

µ〉) = 0⇒ ξµα
µ
0 |p

µ〉 = 0⇒ ξµp
µ|pµ〉 = 0. (9.38)

where we have used L1 = Σp≥1α
µ
1−pαpµ = αµ0α1µ + αµ−1α2µ + .... Thus we see that this

physical string state is defined in exactly the same way as a one-photon state in QED.

What is still lacking is the effect of gauge invariance on the polarisation tensor ξµ →
ξµ + ipµε, where ε is the Fourier transform of the gauge parameter in the Maxwell the-

ory. The string theory origin of this gauge transformation is the existence of a null state.

Consider the descendent state

|d〉 := L−1
1√
2α′

iε|pµ〉 = iεpµα
µ
−1|p

µ〉. (9.39)

This state is also primary (see above) and thus a null state (for p2 = 0). Thus the equiva-

lence relation involving null states given above becomes in this case just gauge invariance

ξµ ∼ ξµ + iεpµ. (9.40)

So, the string implies that these states correspond to D− 2 degrees of freedom in D space-

time dimensions exactly as we have seen is the case for a vector gauge field in field theory

(e.g., in the light-cone gauge).

In the closed string the corresponding situation is realised for the states with two vec-

tor indices, i.e., the metric and the Kalb-Ramond fields.

Note that a = −1 is required for this analysis of the degrees of freedom to work!
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The string loop expansion and the string coupling constant:

The following discussion requires some more advanced methods that we will not have time

to go through in this course. So the purpose of including this brief account based on a

Feynman path integral is to give a hint of what kind of mathematics is needed and how

modern string theory is often formulated.

Consider the Feynman path integral on the world-sheet

Z =

∫
D(h,X)e

i
~S[h,X]. (9.41)

This object does in principle include all information about the theory. The functional inte-

gral is over all possible field configurations on any world-sheet manifold. It may be viewed

as an infinite dimensional integral over the coefficients in a general mode expansion of the

functions involved.

This path integral Z can be turned into something that is a bit easier to deal with by

a Wick rotation to Euclidean signature on the world-sheet

ZE =

∫
D(h,X)e−

1
~SE [h,X]. (9.42)

We can then use the theory of Riemann surfaces to say that the functional integral over

hαβ and Xµ split into separate terms for each topologically different Riemann surface. It is

known that in two dimensions these surfaces are classified by one number only, the so called

genus, denoted g. It simply corresponds to the number of holes in any two-dimensional

surface without boundaries. These surfaces can be considered as multi-hole generalisations

of an ordinary torus (having one hole). Thus we have

ZE = Σ∞g=0

∫
D(g)(h,X)e−

1
~SE [h,X]. (9.43)

At this point we need to define the action SE [h,X]. If the target spacetime the string is

moving in is curved the metric ηµν must be replaced by the corresponding curved metric

gµν . The closed string has, however, two other massless fields, the Kalb-Ramond field Bµν
and the dilaton φ. If these fields are non-zero they should be included as background fields

in the Polyakov type action SE [h,X]. Without going into details here, we just quote the

answer

SE [h,X] = − 1

4πα′

∫
dτdσ

(√
−hhαβ∂αXµ∂βX

νgµν(X) + 2πα′εαβ∂αX
µ∂βX

νBµν(X)
)

− 1

4π

∫
dτdσ

√
−hR2(h)φ(X). (9.44)

This has become an extremely complicated action functional since the background fields

depend on Xµ. However, one can draw one very important conclusion by setting φ(X) =

〈φ〉+ϕ(X) where the background value 〈φ〉 is constant. Then the above path integral can

be written (with ~ = 1)

ZE = Σ∞g=0 g
−χ
s

∫
D(g)(h,X)e−SE [h,X]. (9.45)
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Here we have introduced a topological quantity19, the Euler number χ := 2 − 2g, and as

before defined the string coupling constant by gs := e〈φ〉. The reason the Euler number

appears here can be seen from the Gauss-Bonnet theorem which, when used in two

dimensions, says that

χ :=
1

4π

∫
d2σ
√
−hR2(h). (9.46)

The reason behind this formula is the fact that the integrand
√
−hR(h) is a total deriva-

tive in two (and only two) dimensions. This resembles what happens if we integrate the

Maxwell field strength over a two-dimensional manifold which also leads to a topological

result. Thus we see that e〈φ〉 plays the role of a loop counting parameter which also explains

the definition of the string coupling constant gs := e〈φ〉.

A last comment in this context concerns the relation to Newton’s constant. From the

definition gs := e〈φ〉 and the fact that the low energy effective action in string theory

contains an Einstein-Hilbert term of the form (as indicated by the gs factor in ZE above)

S[gµν , φ] =
1

(α′)
D−2
2

∫
dDx
√
−ge−2φR(g), (9.47)

we see that Newton’s constant normally defined as the parameter multiplying
∫
dDx
√
−gR(g)

is, as mentioned before, given by

G
(D)
N ∼ g2

s(α
′)
D−2
2 ∼ g2

s l
D−2
s . (9.48)

Comment: We have now obtained some understanding of α′ and the string coupling

constant gs and their role as parameters of the low energy effective action in spacetime.

However, there is one more important aspect related to α′. To discuss this we return to

the Polyakov action for an unspecified curved spacetime metric gµν(X)

S[Xµ, hαβ] = − 1

4πα′

∫
dτdσ

√
−hhαβ∂αXµ∂βX

ν gµν(X). (9.49)

This action functional is extremely complicated and cannot be analysed exactly by any

known method. Thus we have to resort to other methods like two-dimensional perturba-

tion theory on the world-sheet. It does not require too much work to see that α′ is the

loop expansion parameter in the world-sheet perturbation theory and that gµν(X) plays

the role of an infinite set of coupling constants (from its Taylor expansion).

One can then start computing one-loop diagrams on the world-sheet. By requiring that

the conformal invariance survives at the one-loop level20 one discovers that the metric

19The Euler number for any two-dimensional compact manifold can also be computed as χ = b0− b1 + b2
by counting the corners (b0), the edges (b1) and sides (b2). The cube gives then directly χ = 8− 12 + 6 = 2.

20This condition is equivalent to demanding the vanishing of all beta-functions, which are functionals

of the metric and the other massless fields. This procedure is similar to the Ricci flow methods (here

renormalisation group flow) used by Hamilton and Perelman to prove the Poincaré conjecture, see, e.g.,

Frenkel et al, hep-th/2011.11914.
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(and the other massless fields) satisfy non-linear generally covariant field equations, that

is, Einstein’s equations etc. This way we can derive the supergravity theories that we have

mentioned above should come out as low-energy approximations of string theory.

Finally, one might wonder if the Polyakov action has a role to play for higher-dimensional

objects in string theory and M-theory. For instance, in M-theory we are interested in the

M2-brane and it turns out to be very interesting to compare this case to the fundamental

string. By a slightly more complicated calculation than for the string one can show that

a three-dimensional Nambu-Goto type action for the M2-brane there is a Polyakov form

reading (α, β, .. = 0, 1, 2)

S(M2) = −T2

2

∫
d3σ
√
−hhαβ∂αXµ∂βX

νηµν + Λ2

∫
d3σ
√
−h, Λ2 =

T2

2
. (9.50)

We note that this action has a ”cosmological term” which in fact appears for all other

world-sheets of dimensions p + 1 except the p + 1 = 2, i.e., the string. (This requires

in general a cosmological term with Λp = p−1
2 Tp.) We also see that it is only the string

that is locally scale invariant (or conformal). Furthermore, there is no simple analogue of

the conformal gauge which makes the world-sheet look flat since there is not enough local

symmetries to set the metric hαβ equal to ηαβ.

It is an interesting fact in the context of the M2-brane that gravity in both two and

three spacetime dimensions have no propagating degrees of freedom. However, while the

Einstein-Hilbert term in two dimensions is a total derivative (and thus topological) the one

in three dimensions is not a total derivative. Instead, in three dimensions there are Chern-

Simons versions of both Yang-Mills theory and gravity which enter modern formulations

on M2-branes in a crucial way. The Yang-Mills Chern-Simons theory is also topological21.

This is a very active area of research.

21The abelian version of Chern-Simons theory in three spacetime dimensions is important in condensed

matter systems where boundary degrees of freedom are studied, e.g., the fractional quantum Hall effect.
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10 Lectures 10 - 12

The focus of this lecture and the next two will be on the supersymmetric string, both

open and closed. We will follow closely Chapter 14 in BZ but we will add some material

on supersymmetry and supergravity in a two-dimensional spacetime (the world-sheet) as

a direct generalisation of the bosonic Polyakov action. We will also give examples of

supergravity theories in higher-dimensional spacetimes, and some of their properties.

10.1 Chapter 14: Basic superstring theory

The reason for not being too pleased about the bosonic string is twofold:

1) Bosonic string theory has a tachyon and is therefore unstable.

2) The spectrum of the bosonic string does not contain any spacetime fermions.

To solve the second problem the natural assumption is that one has to introduce fermionic

fields already on the world-sheet. This turns out to be true (almost due to bosonisation22)

but the surprise is that it also solves the first problem as we will see later.

Another very important point (maybe not emphasised enough in textbooks) is that if

we introduce fermions on the world-sheet we must do it in a supersymmetric way. So,

although nature is not supersymmetric (we have not seen any experimental evidence for

broken spacetime supersymmetry yet) we cannot avoid it when constructing a string in-

corporating spacetime fermions. This will be clear below.

Question: What kind of fermionic fields should we use together with Xµ to construct

a supersymmetric Polyakov type field theory on the world-sheet?

Answer: There are in fact (at least) three rather different ways to do this23:

1) ψµa (τ, σ), where a is a world-sheet spinor index (taking two values). This leads to the so

called NSR formalism24 and supersymmetry on the world-sheet (discussed in detail below).

2) ΘA(τ, σ) is a scalar on the world-sheet. The index A is a spinor index in the target space-

time (with D = 10) taking 16 values. This is called the GS formalism (for Green-Schwarz)

and leads naturally to supersymmetry in spacetime instead of on the world-sheet25. Not

discussed further here.

22See the vertex operator discussion in a later lecture.
23It is difficult but possible to show that the NSR and the GS formulations below are equivalent.
24NSR refers to the names Neveu-Schwarz-Ramond.
25The pair Xµ,ΘA is closely related to the superspace approach of D = 10 supergravity.
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3) Pure spinors (developed by Berkovits): Complicated but is perhaps more fundamen-

tal than the other two formulations. Not discussed further here.

NSR: Superstring theory based on (Xµ(τ, σ), ψµa (τ, σ)) will necessarily be a supergrav-

ity theory on the world-sheet, i.e., it must possess local supersymmetry. The reason for

this is the same as for the reparametrisation invariance of the bosonic Polyakov theory,

namely that it must be possible to use some gauge invariance to eliminate the time compo-

nent of Xµ. For the superstring also the time component of ψµa must be removable which,

however, requires a local symmetry with anti-commuting parameters, i.e., world-sheet

supergravity. To describe how supersymmetry arises in target space is more complicated

but will be carefully explained below. If you are unfamiliar with the concept of supersym-

metry you will get an introduction as we go along.

To simplify this rather complicated story a bit we will here develop the theory in two

steps: (only the first step appears in BZ, but for transverse directions only):

1) Using a Polyakov type action for Xµ(τ, σ), ψµa (τ, σ) on a flat world-sheet global

supersymmetry can be demonstrated. We can also find the field equations and bound-

ary conditions without too much work (this lecture).

2) To get the super-generalisation of the bosonic stress tensor and constraints we need

to discuss the supergravity version of the Polyakov action. Without giving all the

details we will sketch how the supergravity action gives rise the superconstraints and thus

to the super-Virasoro algebra (the coming two lectures).

Global supersymmetry:

The Polyakov action for the string coordinates Xµ(τ, σ), ψµa (τ, σ) on a flat world-sheet is

given by

S[Xµ, ψµa ] = − 1

2πα′

∫
dτdσ

(
1

2
ηαβ∂αX

µ∂βX
νηµν +

i

2
ψ̄µρα∂αψ

νηµν

)
, (10.1)

where ψ̄µ is the Dirac conjugate and the two-dimensional Dirac matrices used here are (in

terms of Pauli matrices)

ρα = (ρ0, ρ1) = (ε,−σ1), where ε = iσ2. (10.2)

They satisfy {ρα, ρβ} = 2ηαβ. We will also need ρ3 := ρ0ρ1 = −σ3.

As for the bosonic part of the action there is a factor of 1
2 in the Dirac term due to

the fact that the spinor field ψµa is Majorana and hence real (as are Xµ): Recall the Majo-

rana condition ψ̄ = ψTC. Here the charge conjugation matrix on the world-sheet satisfies

the standard relations CραC−1 = −(ρα)T . Thus we can set C = ρ0 which implies ψ† = ψT .

So ψ is a real two-component spinor for each value of µ. Note that also the Dirac matrices

are real.
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To show global supersymmetry and to find the field equations and the possible bound-

ary conditions we first perform a general variation of the fields in the action. We get

δS[Xµ, ψµa ] = − 1

2πα′

∫
dτdσ

(
ηαβ∂αX

µ∂βδX
νηµν +

i

2
ψ̄µρα∂αδψ

νηµν +
i

2
δψ̄µρα∂αψ

νηµν

)
.

(10.3)

Integrating the first and second terms by part (to isolate the variations) this becomes

δS[Xµ, ψµa ] = − 1

2πα′

∫
dτdσ

(
−(�2X

µ)δXνηµν −
i

2
(∂αψ̄

µρα)δψνηµν +
i

2
δψ̄µ(ρα∂αψ

ν)ηµν

)
− 1

2πα′

∫
dτdσ

(
∂β(ηαβ∂αX

µδXνηµν) +
i

2
∂α(ψ̄µραδψνηµν)

)
. (10.4)

Our first task is to check global supersymmetry. Dropping the boundary terms and using

the supersymmetry transformations

δεX
µ = iε̄ψµ, δεψ

µ = ραε∂αX
µ, δεψ̄

µ = −ε̄ρα∂αXµ, (10.5)

where ε is a constant world-sheet anti-commuting Majorana spinor, we find

δεS[Xµ, ψµa ] = − 1

2πα′

∫
dτdσ

(
−�2X

µiε̄ψνηµν −
i

2
(∂αψ̄

µρα)ρβε∂βX
νηµν −

i

2
ε̄ρα∂αX

µ(ρβ∂βψ
ν)ηµν

)
.

(10.6)

To see that these terms cancel we integrate by parts again (dropping boundary terms) to

get all terms to contain �2X
µ. Thus, using ραρβ∂α∂β = �2,

δεS[Xµ, ψµa ] = − 1

2πα′

∫
dτdσ (−i(�2X

µ)ηµν) (ε̄ψν − 1

2
ε̄ψν − 1

2
ψ̄νε) = 0. (10.7)

To see that δεS = 0, we note that since the spinors are Majorana we have ψ̄ε = ψTCε =

−εTCTψ = ε̄ψ and the last two terms cancel the first term.

We now derive the field equations and possible boundary conditions, which are very im-

portant in the fermionic sector. Returning to the general variation of the action above,

Hamilton’s principle says that we should set δS = 0 and consider the bulk and boundary

terms separately. The vanishing of the bulk terms gives immediately the field equations

�2X
µ = 0, ρα∂αψ

µ = 0. (10.8)

The boundary terms need some rewriting before becoming useful. The bosonic sector is

rather simple: We have, respectively for the open and closed string,

X ′µδXνηµν |σ=π
σ=0 = 0, X ′µδXνηµν |σ=0 = X ′µδXνηµν |σ=2π. (10.9)

As already discussed, these open string boundary conditions can be satisfied by either

imposing Dirichlet, δXµ = 0, or Neumann, X ′µ = 0, boundary conditions independently
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at the two ends and for each µ-component. The closed string conditions are satisfied by

imposing periodic boundary conditions Xµ(τ, σ+ 2π) = Xµ(τ, σ). Note that the boundary

terms in the τ direction vanish by definition.

Turning to the fermionic boundary conditions the situation changes completely. Here we

should first check what the field equations tell us. They become, if written in components,

and with the above ρα matrices, σ± := τ ± σ and ∂± := 1
2(∂τ ± ∂σ),

ρα∂α

(
ψµ−
ψµ+

)
=

(
0 ∂0 − ∂1

−(∂0 + ∂1) 0

)(
ψµ−
ψµ+

)
= 0⇒ ∂+ψ

µ
− = 0, ∂−ψ

µ
+ = 0. (10.10)

This implies that ψµ+(τ, σ) = ψµ+(σ+) and ψµ−(τ, σ) = ψµ−(σ−). Note that the solution to the

Klein-Gordon equation contains two similar functions since Xµ(τ, σ) = fµ(σ+) + gµ(σ−).

The boundary conditions (in the σ direction) obtained above read

ηµν(ψ̄µρ1δψν)| = 0. (10.11)

Written out in components they become, using ψ̄ρ1ψ = ψTCρ1ψ = ψTρ0ρ1ψ = ψTρ3ψ,

ηµν(ψµ−δψ
ν
− − ψ

µ
+δψ

ν
+)| = 0. (10.12)

For the open string this condition must be satisfied independently for the two end points.

The relative minus sign now provides a new possibility, namely to relate the two components

of ψµ. So the boundary conditions are satisfied at both ends if we set

ψ+(τ, 0) = ψ−(τ, 0), ψ+(τ, π) = ±ψ−(τ, π) where


plus sign: Ramond (R) sector

minus sign: Neveu-Schwarz (NS) sector.

(10.13)

Choosing a minus sign in the σ = 0 relation turns out to give nothing new so this case will

not be used in the following. In a manner similar to the bosonic string we can combine

the two ψ± components into one fermionic (anticommuting) function with 2π boundary

conditions as follows

Ψµ(τ, σ) :=

{
ψ−(τ, σ) = ψ−(σ−), for σ ∈ [0, π],

ψ+(τ,−σ) = ψ+(σ−), for σ ∈ [−π, 0].
(10.14)

Then the R (NS) boundary condition become 2π (anti)periodic ones on Ψµ:

Ψµ(τ, π) = ψµ−(τ, π) = ±ψµ+(τ, π) = ±Ψµ(τ,−π). (10.15)

Thus we see that the R sector is the one with periodic boundary conditions and the NS

sector the one with anti-periodic boundary conditions. This fact has a tremendous impact

on the mode expansions:

R sector: Ψµ(τ, σ) = Σn∈Z d
µ
n e
−in(τ−σ), (10.16)
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NS sector: Ψµ(τ, σ) = Σr∈Z+ 1
2
bµr e

−ir(τ−σ), (10.17)

Note the half-integer sum in the NS case. Notation: we will always let m,n, p, q represent

integers and r, s, .. half-integers.

Without going through the canonical quantisation in detail for the anti-commuting fermionic

fields, we just quote the result:

R sector: {dµm, dνn} = ηµνδm+n,0, (10.18)

NS sector: {bµr , bνs} = ηµνδr+s,0. (10.19)

We will now analyse the spectrum of the superstring. There are several tricky points in-

volved so we will do this in the light-cone formalism to avoid some of them. After this is

done we return to the covariant formalism and the world-sheet supergravity theory to get

a feeling for the super-constraints and the super-Virasoro algebra.

The superstring spectrum in the light-cone formalism:

The condition that the spacetime Lorentz commutator [M−I ,M−J ] = 0 in the superstring

will tell us that D = 10 is the critical dimension where the superstring lives. This will not

be shown here so we will just assume it to be true. We first consider the NS sector since

this is the easier one.

The NS spectrum:

The modes in this sector are bIr for all r ∈ Z + 1
2 . We define the ones with a negative r to

be creation operators, i.e., for r > 0 we have bI−r := bI†r (since ψI are Majorana). Thus, we

can introduce a ground state |p+, pI〉(NS), which has a factor |0〉r for each positive value of

r in it, satisfying

bIr |p+, pI〉(NS) = 0, r = 1
2 ,

3
2 ,

5
2 , ... (10.20)

The space of states is then generated by acting with all possible combinations of bI−r for

r > 0 (remembering that they anticommute) and αI−n. Thus the space of states in the NS

sector is given by

|λ〉(NS) = ΠI=9
I=2 Π∞n=1(αI−n)λ

NS
I,nΠJ=9

J=2 Π∞
r=

1
2

(bJ−r)
λ̃NSJ,r |p+, pI〉(NS), (10.21)

where λNSI,n can be any non-negative integer and λ̃NSJ,r zero or one. This expression is some-

times written in a bit more compact way as α
{I}
{−n}b

{J}
{−r}|p

+, pI〉(NS).

Note 1: There are no zero modes in ψµ in the NS sector!

Note 2: At the three lowest levels the states are |p+, pI〉(NS), b
I

−1
2

|p+, pI〉(NS), α
I
−1|p+, pI〉(NS)

and bI
−1

2

bJ
−1

2

|p+, pI〉(NS). This fact will create a problem with spin-statistic that we must,

and will, resolve later.
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As will also become clear later the mass operator in the superstring case contains number

operators from both the bosonic (αn) sector and either the NS or R fermionic sector. In

the open string NS sector we hence have

M2 =
1

α′
(
1

2
Σn>0 α

I
−nα

I
n +

1

2
Σr>0 r b

I
−rb

I
r −

1

2
). (10.22)

Here we should note that a factor of r appears in the second sum. This is related to the

fact that {br, b†−s} = δrs (for each r) and not = rδrs.

The −1
2 in M2 is the normal ordering constant (in D = 10) now having contributions

from both the αn and the br terms: aNS := aα + ab with

aα =
D − 2

2
Σ∞n=1 n = −D − 2

24
= −1

3
, (10.23)

ab = −D − 2

2
Σ∞
r=

1
2

r = −D − 2

48
= −1

6
, (10.24)

where we have used D = 10 and that the b operators anticommute. The sum over half-

integers was derived in a previous lecture.

To summarise, for the open superstring the mass spectrum in the NS sector is given

by

M2 =
1

α′
(N⊥α +N⊥b −

1

2
). (10.25)

This gives the following low level states and mass values (defining |NS〉 := |p+, pI〉(NS))

|NS〉 : α′M2 = −1

2
(tachyon) (10.26)

bI
−1

2

|NS〉 : α′M2 = 0 (massless vector field) (10.27)

αI−1|NS〉, bI−1
2

bJ
−1

2

|NS〉 : α′M2 = 1
2 (massive vector field). (10.28)

We see that the tachyon problem is back and that we clearly have a problem with spin-

statistics! If we choose the ground-state to be anti-commuting then all states (continue the

above list to higher level) with integer M2 are commuting (bosonic) and those with half-

integer M2 are all anti-commuting (fermionic). Since also these latter states are tensors

(not spinors) they do not respect the spin-statistics theorem. Before dealing with these

problems we must understand the R sector which has some interesting new features. An-

other problem is that we still have not seen any sign of spinors representations in spacetime.

The R spectrum:

The modes in this sector are dIn (for all n ∈ Z) satisfying the CCR

{dIm, dJn} = δIJδm+n,0. (10.29)
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We define the ones with a negative n to be creation operators, i.e., for n > 0 we define

dI−n := dI†n . Thus, we can introduce a ground state |p+, pI〉(R), which has a factor |0〉n for

each n > 0, satisfying

dIn|p+, pI〉(R) = 0, n = 1, 2, .... (10.30)

The space of states is then generated by acting with all possible combinations of dI−n :=

(dIn)† for n > 0 (remembering that they anticommute). Thus the space of states in the R

sector is given by

|λ〉R = ΠI=9
I=2 Π∞n=1(αI−n)λ

R
I,nΠJ=9

J=2 Π∞m=1(dJ−m)λ̃
R
J,m |p+, pI〉(R), (10.31)

where λRI,n can be any non-negative integer but λ̃RJ,m only zero or one. This expression is

sometimes written more compactly as α
{I}
{−n}d

{J}
{−m}|p

+, pI〉(R).

However, in the R sector this is not the full story since there is also a set of zero modes dI0.

These have to be treated with care since they do not seem to follow the general rule that

there should be a natural pair of annihilation and creation operators. How do we handle

this situation?

The key observation is that the CCR for the zero modes is

{dI0, dJ0 } = δIJ , (10.32)

which therefore can be represented by SO(8) gamma matrices by dI0 := 1√
2
γI . Since ΨI is

a real field dI0 are also real, or hermitian after quantisation. So the question is then: How

do we construct the space of states generated by dI0?

If one is familiar with Dirac matrices (e.g., from QFT) the answer is immediately clear:

The space of states transform as spinor representations of SO(8). To see this explicitly one

can construct the space of states and then check the statement that these states together

define a spinor. This is done as follows: Construct four pairs of creation and annihilation

operators from the eight hermitian operators dI0 by

ξi :=
1√
2

(d2i−1
0 + id2i

0 ), ξ†i :=
1√
2

(d2i−1
0 − id2i

0 ), i = 1, 2, 3, 4. (10.33)

These satisfy

{ξi, ξ†j} = δij . (10.34)

Define now a ground state as usual by ξi|0〉 = 0. This means that the space of states in

the zero mode sector of the R sector contains the states

|0〉, ξ†i |0〉 := |i〉, ξ†i ξ
†
j |0〉 := |[ij]〉, ξ†i ξ

†
jξ
†
k|0〉 := |[ijk]〉, ξ†i ξ

†
jξ
†
kξ
†
l |0〉 := |[ijkl]〉. (10.35)

These 24 = 16 = 1 + 4 + 6 + 4 + 1 states transform into each other under the 28 operators

dI0d
J
0 (since these are just a sum of terms bilinear in the ξis and ξ†i s). In fact, one can

check (or just compare to the matrices γIJ) that these 28 operators generate the SO(8)
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Lie algebra. From this we conclude that the 16 states is a spinor under SO(8).

Now that we have understood the state space in the R zero mode sector, there is one

more very important point that we will need later. Looking at the zero mode space of

states above we note that half of them have an even number of creation operators in them

and half of them an odd number. But the operators dI0d
J
0 are bilinear in these ξ operators

so they do not mix these two sets of states. As representations of the Lie algebra of SO(8)

these states therefore make up two chiral, left and right, spinorial irreps (=irreducible

representations). The possibility to split the 16 states into these two sets of chiral spinor

irreps will be of paramount importance below. We will denote these two 8-component

chiral spinors as, with |0〉(R) (adding the (R) for clarity) being a component of |Ra〉,

left : |Ra〉, right: |Rā〉. (10.36)

Again there is clearly a spin-statistics problem: If |0〉(R) is chosen to be odd, (that is,

anticommuting26 since it is a state in a spinor which is an anti-commuting object) then

the states of the two spinors |Ra〉, |Rā〉 will have opposite statistics properties even though

they are both spinors in spacetime. Thus one of them (here |Rā〉) will necessarily violate

the spin-statistics theorem.

As we will now explain, however, the spin-statistics problems in both the NS and R

sectors, together with the tachyon problem in the NS sector, will be solved in one blow

by the so called GSO projection. To understand how this is done we need to study the R

sector a bit more.

The mass spectrum in the R sector is determined by

M2 =
1

α′
Σn≥1

(
αI−nα

I
n + ndI−nd

I
n

)
. (10.37)

Here we note that the presence of the factor n in the second term implies that the zero

modes dI0 do not contribute to the mass operator. In other words, all the spinorial states

constructed from only dI0 operators, or rather the ξ†i , are degenerate in mass, i.e., they have

all zero mass. This is of course a key property if we want all spinor states to correspond to

Dirac fields with a given mass in spacetime. Remember also that in the Standard Model

all fermions are massless before the Higgs effect sets in.

Note also the curious fact that the normal ordering constant is zero in the R sector. This

is a direct consequence of the fact that the infinite sums are the same for the α and the d

terms in M2 and that the d operators anti-commute.

26”Odd” means ”odd Grassmann”. ”Even” and ”odd” are often used when referring to objects that are

either commuting, i.e., even Grassmann, or anti-commuting, i.e., odd Grassmann.
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By assuming that the state |0〉(R) is fermionic (anti-commutiing), the low level part of

the R sector spectrum may be listed as:

Fermionic states: |Ra〉, αI−1|Ra〉, dI−1|Rā〉, ... (10.38)

Bosonic states: |Rā〉, αI−1|Rā〉, dI−1|Ra〉, ... (10.39)

Recall that the state |0〉(R) belongs to the left-chiral spinor denoted |Ra〉 and note that

the chirality of the tensor-spinor irreps shifts from state to state in each list if they differ

by a odd number of dI−n operators. This follows by checking the chirality by applying the

operators PL/R = 1
2(1 ± γ9) to the state and observe that |Ra〉 and γI |Ra〉 have opposite

chirality properties since γ9γI = −γIγ9. As usual γ9 := γ1...γ8.

State counting and the GSO projection to the physical theory:

It is a nice mathematical feature of string theory that it is possible to ”count” all the

states in the infinite spectrum and describe the result in terms of ”spectrum generating

functions” of one variable f(x)27.

As a concrete and simple example consider one pair of creation-annihilation operators

(a, a†) satisfying [a, a†] = 1. The state space generated by powers of a† acting on the

ground state |0〉 is

|0〉, a†|0〉, (a†)2|0〉, (a†)3|0〉, ...... (10.40)

The number of states at each level n, the eigenvalue of the number operator N = a†a, is

denoted An and is here just

A0 = 1, A1 = 1, A2 = 1, .... (10.41)

This spectrum can thus be represented by a ”spectrum generating function” constructed

from the values of An by

f1(x) := Σ∞n=0Anx
n = 1 + x+ x2 + x3 + ... =

1

1− x
. (10.42)

Now consider two pairs of such operators ai, a
†
i , i = 1, 2 with [ai, a

†
j ] = δij . Then the state

space is

|0〉, a†i |0〉, a
†
ia
†
j |0〉, a

†
ia
†
ja
†
k|0〉, ...... (10.43)

The degeneracy now becomes

Ã0 = 1, Ã1 = 2, Ã2 = 3, Ã3 = 4, Ã4 = 5.... (10.44)

generated by

f̃1(x) := Σ∞n=0 Ãnx
n = 1 + 2x+ 3x2 + 4x3 + ... = (

1

1− x
)2 = (f1(x))2. (10.45)

27This technique is of enormous importance in string theory in the one-loop context, where these functions

become modular forms.
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The generalisation to several such pairs of operators will be used below.

Another kind of generalisation that appears in string theory is to a2, a
†
2 also satisfying

[a2, a
†
2] = 1 but now with a number operator N2 := 2a†2a2. Then the state space is the

same as above for one pair but the eigenvalues of N2 are 0, 2, 4, ... which leads to the

generating function

f2(x) = 1 + x2 + x4 + ... =
1

1− x2
. (10.46)

Having two such pairs leads to a function that is the square of f2(x) just as in the above

example.

The bosonic string ”mass level generating function” is then

fbose(x) =
1

x
Π∞n=1

(
1

1− xn

)24

, (10.47)

obtained using (aIn, a
I†
n ), N = Σ∞n=1na

I†
n aIn, and α′M2 = N − 1. The normal ordering

constant −1 is the reason for the extra factor 1/x in fbose(x).

The reason for constructing these functions from the mass spectrum is that in a space-

time supersymmetric theory the number of bosonic dof in the spacetime low energy field

theory equals the number of fermionic dof (not proven in this course). So, by constructing

the generating functions in the NS and R sectors and compare them we may get a hint

how to get consistent supergravity theories in spacetime from the superstring (i.e., without

a tachyon and satisfying the spin-statistics theorem).

To obtain these functions for the superstring we note that for anti-commuting canoni-

cal operators like (bIr , b
I†
r ) and (dIn, d

I†
n ) each creation operator can only occur once in the

state. For (bIr , b
I†
r ) this means simply that fNSr = (1 + xr)8. The whole NS sector then

gives the generating function

fNS(x) =
1√
x

Π∞
r=

1
2

(1 + xr)8Π∞n=1

(
1

1− xn

)8

=
1√
x

Π∞n=1

1 + xn−
1
2

1− xn

8

. (10.48)

Similarly in the R sector we get, noting the factor 16 from the mass degenerate zero modes

d0 ,

fR(x) = 16 Π∞n=1

(
1 + xn

1− xn

)8

. (10.49)

Obviously these two functions are not equal, i.e., fNS(x) 6= fR(x) (just check the first term)

which they need to be for the spacetime spectrum to be supersymmetry as mentioned above.

However, there exists a truly amazing formula proved in 1829 by Jacobi:

1

2

1√
x

Π∞n=1(
1 + xn−

1
2

1− xn
)8 −Π∞n=1(

1− xn−
1
2

1− xn
)8

 = 8 Π∞n=1

(
1 + xn

1− xn

)8

. (10.50)
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Of course, using a computer one can expand this equation to any power in x and verify

its validity. In string theory, this identity tells us that we should cut both the NS sector

and the R sector in half to have a chance of constructing a spacetime supergravity theory.

Such supergravities can be, and have been, constructed independently of string theory

(by imposing supersymmetry on the Einstein-Hilbert action), and turn out to provide the

correct interpretation of Jacobi’s identity above. The key is the so called GSO projection

introduced by Gliozzi, Olive and Scherk in a famous paper from 1977.

This GSO-projection can be shown to work also in the interacting string theory not just on

the spectrum as we do here. The R sector is cut in half by the GSO projection by keeping

only the chiral ground state |Ra〉, defined to be fermionic, and all the states above it which

are also fermionic (see the list above). This leads to the RHS of Jacobi’s identity. In the

NS sector something similar is done which must include the elimination of the tachyon.

Thus in the NS sector we keep all states with integer M2. Note that all the R sector states

have integer M2 which must therefore be true in both sectors due to supersymmetry in the

target spacetime. This leads to the LHS of the identity. In fact, the combination of the

two terms on the LHS counts only terms, at each mass level, that have integer M2 and are

bosonic given that the ground state |0〉(NS) is anti-commuting.

Thus the GSO projection also solves the spin-statistics problem we mentioned above. So,

the NS sector gives rise to all the bosonic integer spin fields in the low-energy action of

the superstring and the R sector all the fermionic half-integer fields.

We have been a bit sloppy above referring to supergravity although the discussion was

carried out for the open string which only contains Maxwell type gauge fields in the mass-

less sector. We must therefore take these results over to the closed superstring which has a

left-moving and a right-moving sector. The corresponding results for the open superstring

is the supersymmetric Maxwell or Yang-Mills theory which we will have reason to discuss

more later in the context of D-branes.

To summarise the open superstring spectrum in D = 10 we give the first two levels,

the massless one and the lowest massive one based on anti-commuting ground states

|p+, pI〉(NS) and |0; p+, pI〉(R): (the + and − notation below is the conventional one)

Massless open superstring states:

NS+: bI− 1
2

|p+, pI〉(NS), R-: |Ra; p+, pI〉(R). (10.51)

These states make up a target space covariant supersymmetric vector multiplet consisting

of a Maxwell vector field Aµ(x) (the NS states) and an 16-component chiral Majorana

spinor field ψ(x) (the R states)28.

28Note that in D = 10 Minkowski space it is possible to impose the Majorana and a chirality constraint

at the same time, contrary to the case in 3+1 dimensions. Note also that although the number of covariant

spinor components is 16 the number of d.o.f. is only 8.
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Lowest level massive open superstring states:

NS+: bI− 1
2

bJ− 1
2

bK− 1
2

|p+, pI〉(NS) and bI
−3

2

|p+, pI〉(NS) and αI−1b
J
− 1

2

|p+, pI〉(NS), (10.52)

R-: αI−1|Ra; p+, pI〉(R) and dI−1|Rā; p+, pI〉(R). (10.53)

The bosonic NS states are 8·7·6
3! + 8 + 8 · 8 = 128 in number which is also the case for the

8 · 8 + 8 · 8 = 128 states in the R− sector. Note that we could equally well have chosen the

R+ sector above since this is just a matter of picking the left or right chirality of the spinors

(but it would mean using a commuting ground state |0〉(R) instead). This possibility to

choose chirality in the R sector will be very important in the case of the closed superstring

below.
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10.2 BZ Chapter 14 cont.: More on superstrings plus extra material on su-

pergravity and the M-theory amoeba diagram

The closed superstring:

The implications for the closed superstring of the open string discussion above are profound.

In the open string case we ended up with two sectors, R and NS, and discovered the need

for the GSO projection to get a spacetime supersymmetric theory. The closed superstring

has a left-moving and a right-moving sector with independent sets of mode expansions and

the possibility to choose their boundary conditions independently as either NS or R. This

gives rise to four combinations of sectors:

(left, right) : (NS+, NS+), (NS+, R−), (R±, NS+), (R±, R−). (10.54)

Several comments are needed here. The first important point is that the four spectra above

are added together when defining the corresponding closed string. Also

1) NS+ refers to the GSO-half of the NS spectrum that does not contain the tachyon.

Hence (NS+, NS+) contains only bosonic fields including the massless ones gµν , Bµν and

φ. These fields are part of all ordinary closed strings. Their respective number of d.o.f.

is obtained in the light-cone as 1
2(D − 2)(D − 1) − 1 = 35, 1

2(D − 2)(D − 3) = 28 and 1,

together 64 bosonic d.o.f. These bosonic states are

|IJ ; p+, pI〉(NS) := bI
−1

2

b̄J
−1

2

|p+, pI〉(NS), (10.55)

which thus means that the ground state |p+, pI〉(NS) is defined to be commuting. Recall

from the bosonic string discussion that a closed string ground state is a (tensor)product of

the ground states in the left and right sectors (except for the zero modes which are common

to the left and right movers).

2) R± refers to the two GSO projected halves of the full R spectrum that contain ei-

ther |Ra〉 or |Rā〉, for − and +, respectively. Using R+ instead of R− in the second sector

(and the fourth sector) in the above list of (left, right) sectors does not produce a funda-

mentally different theory so this case is normally not discussed.

3) The spectra of the second and third sectors in the list above contain fields with one index

from each of the left and right movers so they are vector-spinors in the massless part of the

spectrum. These are called Rarita-Schwinger fields and are spin 3/2 anti-commuting gauge

fields for the local supersymmetry that is needed to construct these supergravity theories.

We will see an example of this on the world-sheet when writing down the super-Polyakov

action for the below. These two Rarita-Schwinger fields correspond to two supersymme-

tries, usually referred to as N = 2 theories. Each of the two fields has 64 d.o.f., and thus

together 128 d.o.f..

4) There are then two physically different theories that can be defined: Either the two
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Rarita-Schwinger fields have the same chirality or they have opposite chirality: The former

case is called type IIB and the latter case type IIA.

5) The two theories type IIA and type IIB are physically very different: IIA is non-

chiral and is directly related to M-theory in eleven dimensions, while IIB is chiral and has

only an indirect relation to M-theory (via a T-duality transformation discussed in a later

lecture).

6) The difference between IIA and IIB has important implications for the last term in

the list above: (R±, R−) as we will see below. This issue will be analysed in the light-cone

gauge. We are seeking another 64 bosonic dof to make the theory complete (i.e., super-

symmetric in spacetime).

The RR sectors:

Type IIA: In this case the spectrum is (R+, R−) and hence has one SO(8) Weyl spinor

of each chirality. Supersymmetry is then referred to as being (1, 1). The spin 3/2 sectors

form together a non-chiral Majorana spinor with 16 components a fact that can be used

for the Rarita-Schwinger fields. In the spectrum of the (left, right) sector (R+, R−) we

instead have massless bosonic fields with two spinor indices, one chiral and one anti-chiral:

Denote these as Aaḃ.

Recall that for the gamma matrices related to SO(1, 3) (the ordinary Lorentz group) there

is a basis of 16 matrices γ[n], n = 0, 1, 2, 3, 4. Similarly for SO(8) the basis of 16×16 matri-

ces is Γ[n], n = 0, 1, ..., 8. However, we need matrices with chiral indices so we must consider

the four 8× 8 blocks separately. This is very similar to how we can express SO(1, 3) Dirac

matrices in block form using Pauli matrices. Without providing a proof we just claim that

the chiral expansion is

Type IIA: Aaḃ = (ΓI)aḃAI +
1

3!
(ΓIJK)aḃAIJK . (10.56)

We conclude that this spectrum contains the massless bosonic tensor fields Aµ and Aµνρ.

The count of degrees of freedom follows directly from the light-cone since both fields are

gauge fields : Aµ has D − 2 = 8 d.o.f. and Aµνρ has 1
3!(D − 2)D − 3)D − 4) = 56. So

these two tensor fields have together 64 d.o.f. which together with the (NS+, NS+) gives

in total 128 bosonic d.o.f. which is exactly the same as in the fermionic spectrum.

Type IIB: The analysis is similar to the one for type IIA above. Supersymmetry is

now referred to as being (2, 0). The main difference is due to the chiral nature of the

spinor indices: Having now two chiral indices of the same type the matrix expansion reads

instead

Type IIB: Aab = δabA+
1

2!
(ΓIJ)abAIJ +

1

4!
(ΓIJKL)abAIJKL. (10.57)

The d.o.f. count in D = 10 is then 1, 1
2(D − 2)(D − 3) = 28, and 1

4!(D − 2)(D − 3)(D −
4)(D − 5) = 70. Since the sum must be the same as for type IIA there seems to be a
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problem here. However, the field AIJKL is not an irreducible tensor since it can be split

into a self-dual and an anti-self-dual piece using the 8-dimensional epsilon tensor

A±IJKL :=
1

2
(δMNPQ
IJKL ± 1

4!
εIJKL

MNPQ)AMNPQ. (10.58)

Clearly we want only one of these two, having 35 d.o.f. each, to appear in the expan-

sion above for Aab. Fortunately, this is automatic since the two chiral spinor indices on

(ΓIJKL)ab implies that this gamma matrix satisfies the above projection to the self-dual

part. That is, only A+
IJKL appears in the gamma-matrix expansion for Aab above.

Let us summarise the massless part of the spectra of these two superstring theories with

two supersymmetries

Type IIA: gIJ , BIJ , φ,AI , AIJK , ψaI , ψȧI , λa, λȧ, (10.59)

Type IIB: gIJ , BIJ , φ,A,AIJ , A
+
IJKL, ψ

i
aI , λ

i
ȧ, i = 1, 2. (10.60)

The Lorentz covariant version of these fields is (the spinors are denoted by (a, ȧ) also here

although they have twice as many components as in the light-cone)

Type IIA: gµν , Bµν , φ,Aµ, Aµνρ, ψaµ, ψȧµ, λa, λȧ, (10.61)

Type IIB: gµν , Bµν , φ,A,Aµν , A
+
µνρσ, ψ

i
aµ, λ

i
ȧ, i = 1, 2. (10.62)

The Lagrangians for all these fields can in principle be derived from the corresponding

string theory. However, these so called low energy field theory Lagrangians are extremely

complicated and involve, for instance, terms with arbitrary high powers of gauge invariant

field strengths, like the Riemann tensor, and only a few of the low-derivative terms are

known.

In particular, the terms with no more than two derivatives are rather simple to write

down which leads to the well-studied supergravity theories. This two-derivative part of the

full low-energy field theory Lagrangian has relatively few terms which in the bosonic sector

can only (with one exception) involve the field strengths

Rµνρσ, Hµνρ, Cµ1...µn+1 . (10.63)

These are constructed as usual from the metric, the Kalb-Ramond field Bµν and the anti-

symmetric tensor fields Aµ1...µn . There are in the Lagrangian some additional interesting

features, e.g., 1) the dilaton enters via eφ, raised to various powers, multiplying the terms

in the Lagrangian. 2) There are also terms of a more topological nature where a gauge

field appears without derivatives (e.g., the term C4C4B2 in type IIA).

Comment: Although the Lagrangians of all the supergravity theories discussed above con-

tain a number of different terms they are of a rather conventional type. The 11-dimensional

M-theory field theory Lagrangian is presented below as an example. Two particularly im-

portant and less conventional features appear, however, in the type IIB Lagrangian:
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1) This theory contains two scalar fields, the scalar φ(x) and the pseudo-scalar A(x). They

appear in the Lagrangian together as a non-linear sigma-model, i.e., these two fields

can be viewed as coordinates on the coset space SU(1, 1)/U(1) (which is an unbounded

Euclidean hyperbolic space familiar from the course in GR).

2) A unique feature of IIB is that it contains the anti-symmetric four-indexed field

A+
µνρσ. This field is nicely defined in the light-cone as self-dual in the four indices (in-

dicated by the +). However, in the covariant formulation the Lagrangian must be writ-

ten in terms of its field strength G+
µ1...µ5 also anti-symmetric in all its indices. Then

one can see from the field equations that the self-duality must be imposed on this field

strength. Strangely enough, this field equation can not be derived from a Lagrangian since∫
d10x
√
−gG+

µ1...µ5G
+µ1...µ5 =

∫
d10x
√
−gεµ1....µ10G+

µ1...µ5G
+
µ6...µ10 = 0. This problem is still

not completely resolved!

The tensor fields are rather simple generalisations of the Maxwell theory and it will be

very important to understand the meaning of charge, both electric and magnetic, in rela-

tion to these new anti-symmetric tensor field theories. Developing a good understanding

of these charges will give us a path into the theory of branes in string theory.

Other string theories:

In many popular accounts of string/M-theory one organises all the different superstring

and M-theories, or rather their low energy supergravities, by associating them with the

cusps of what we may call the amoeba diagram: see E. Witten, in Physics Today, May

1997. (A more updated popular account of string theory and quantum gravity can be

found in E. Witten, Physics Today, November 2015.)

Of the six low energy theories at the cusps we have studied only two so far: type IIA

and type IIB. These two are related by a so called T-duality which will be studied in

detail later in this course. The type IIA supergravity theory in 10 spacetime dimensions

can be more efficiently described in 11 dimensions by relating the string dilaton (and hence

the string coupling constant) to the size of a compact (S1) extra tenth space direction.

Turning this argument around, we can start by constructing 11-dimensional supergravity

(the perhaps simplest of all such theories) and then compactify its tenth space direction

on a circle with radius R11 given by R11 = g10,10. In ten dimensions, the field R11 defined

this way in 11 dimensions turns out to be related to the dilaton in string theory: The

compactification gives the relation, first found by Ed Witten in the 1990s,

2πR11 = g2/3
s lp, (10.64)

where lp is the Planck length and gs := e〈φ〉 the usual string coupling constant.

There is a very peculiar implication of the relation 2πR11 = g
2/3
s lp. From the point of

view of type IIA in ten dimensions, turning the coupling constant gs up so that the theory
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becomes very strongly coupled also means that the new direction looks more and more like

an infinite direction on equal footing with the uncompactified directions: The theory turns

into an 11-dimensional theory. This is what duality is all about: For small gs the type

IIA theory can be studied using perturbation theory in ten spacetime dimensions while

for big gs the strongly coupled IIA theory has no well-defined perturbation theory in 10

dimensions but after the duality transformation to 11 dimensions it can again be studied

perturbatively (now in G
(11)
N ).

Comment: 11-dimensional supergravity (see below) is related to M -theory (as a the-

ory of M-branes) as D = 10 supergravity is related to string theory, that is as a low energy

approximation. However, since M-theory has no scalar field in the massless spectrum there

does not seem to exist a coupling constant similar to gs in string theory. This fact means,

according to many people in the field, that the full M-theory derived from M2 and M5

branes (discussed later in the course if time permits) is non-perturbative (i.e., there does

not exist any perturbative definition of it similar to the string loop-expansion). This makes

this theory extremely interesting but also extremely hard to study.

11-dimensional supergravity has only three fields

M-theory: gµν , Aµνρ, ψµ. (10.65)

The action is

S[gµν , Aµνρ, ψµ] =
1

2κ2
11

∫
d11x
√
−g(R− 1

2 · 4!
FµνρσF

µνρσ − i

2
ψ̄µΓµνρDνψρ) (10.66)

− 1

(12)4

1

2κ2
11

∫
d11x εµ1....µ11Fµ1...µ4Fµ5...µ8Aµ9µ10µ11) + .... (10.67)

1) The first line contains the standard kinetic terms for the three M-theory fields: The

Einstein-Hilbert term for gravity, the Kalb-Ramond field strength squared and spin 3/2

generalisation of the usual Dirac term for spin 1/2 fermions.

2) The second line is a kind of topological term since it involves an epsilon tensor density

and is actually independent of the metric (and hence of the spacetime geometry29).

There are several other terms but they are all interaction terms involving ψ̄µ1Γµ1.....µ6ψµ2
and other similar spinor combinations, one example being

∝ 1

2κ2
11

∫
d11x
√
−g(ψ̄µ1Γµ1.....µ6ψµ2 + 12ψ̄µ3γµ4µ5ψµ6)(Fµ3...µ6 + F̃µ3...µ6). (10.68)

This expression is an interaction term between three fields (and of course the metric) and is

a rather simple expression. There are, however, some implicit definitions that complicates

the theory a bit. These aspects will not be explained here30.

29In differential geometry we would express it is an 11-form
∫
F4 ∧ F4 ∧A3.

30 For more details, see Duff, Nilsson and Pope, ”Kaluza-Klein supergravity”, Physics Reports, Vol. 130

(1986), p. 1 - 142 or Becker, Becker and Schwarz, ”String theory and M-theory” (CUP 2007).
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The local supersymmetry is given by (here α is a flat vector index in D = 11)

δeµ
α = ε̄Γαψµ, δAµνρ = −3ε̄Γ[µνψρ],

δψµ = ∇µε+
1

24
(Γµ

νρστ − 8δ[ν
µ Γρστ ])εFνρστ . (10.69)

Kaluza-Klein compactification of 11D supergravity to type IIA in 10D

It is rather easy to understand the close Kaluza-Klein connection between 11-dimensional

supergravity and type IIA supergravity in 10 dimensions. Let us denote indices in 11D by

capital M,N, .. and in 10D as usual by µ, ν, ... Then compactification on a circle implies

gMN → (gµν , Aµ, φ), AMNP → (Aµνρ, Bµν). (10.70)

Spinorial indices behave in a different way under Kaluza-Klein compactification. Let ā be a

32-component spinor index in 11D. Then the spin 3/2 Rarita-Schwinger field in 11D splits

into 10-dimensional fields as follows

ψā,M → (ψaµ, ψȧµ, λa, λȧ), (10.71)

where a and ȧ are the two chiral, left and right, spinors in 10D. Thus we see that 11D

supergravity reducers exactly to the non-chiral type IIA theory in 10D.

Type IIA to type IIB: This is achieved by T-duality which is a phenomenon we will

study later.

From type IIB to type I supergravity

There is also another kind of string theory in 10 dimensions which has only one Rarita-

Schwinger field and hence is N = 1 supersymmetric. This theory is obtained from the type

IIB theory by imposing invariance under orientation reversal on the closed string. This

restricts the spectrum to symmetric tensors in the (NS+, NS+) sector and to antisymmet-

ric ones (in spinor indices) in the (R−, R−) sector. The invariant part of the IIB spectrum

defines the type I, or (1, 0), superstring theory which then has the spectrum gµν , φ,Aµν , ψµ.

This theory turns out to be ill-defined (it has anomalies) which is fixed by adding a

set of open strings to the closed string theory. In the low energy field theory this open

string sector generates a super-Yang-Mills theory with gauge group SO(32). Thus we have

(i = 1, ...., 496, the dimension of SO(32))

Type I: gµν , φ,Aµν , ψµ, A
i
µ, λ

i. (10.72)

Heterotic strings:

Returning to M-theory Witten discovered, together with Horava, in 1996 that it is possi-

ble to compactify the 11th direction on a segment. This means that the 10-dimensional

– 122 –



spacetime has two branches, or planes, which must each contain not only the compactified

fields from 11D but also (to cancel anomalies) a super-Yang-Mills theory with gauge group

E8. This is called the E8 × E8 heterotic string theory31. It is an N = 1 closed string

theory which has a very intricate way of giving rise to the Yang-Mills gauge theory (see the

discussion of vertex operators below). The spectrum of the heterotic E8 × E8 low energy

field theory is:

The E8 × E8 heterotic string: gµν , Bµν , φ, ψµ, A
i
µ, λ

i with gauge group E8 × E8. (10.73)

Performing a T-duality (defined below) on the this theory produces a different theory of a

similar kind, namely one with an SO(32) gauge group,

The SO(32)/Z2 heterotic string: gµν , Bµν , φ, ψµ, A
i
µ, λ

i with gauge group SO(32)/Z2.

(10.74)

Comment: The string (Kac-Moody) construction of the two heterotic theories is heavily

based on the theory of Euclidean even self-dual lattices which exist only in 8n dimensions32

The single such lattice that exists in 8 dimensions is related to the exceptional Lie group

E8 (it is the root lattice) and in 16 dimensions the two existing lattices are related to the

gauge groups of the two heterotic string theories above. The connection to these self-dual

lattices arises at the string 1-loop level.

Dualities: This completes the description of the low energy supergravity theories at the

six nodes (or cusps) of the amoeba diagram. The edges between the cusps represent the dif-

ferent duality transformations that can be used to transform the adjacent theories into each

other, basically T-duality (inversion of a radius) and S-duality (inversion of a coupling

constant)33. It is therefore possible to start from the 11-dimensional supergravity given

above and derive all the string theory related supergravities around the amoeba diagram

using dualities of various kinds. This clearly gives the M-supergravity theory a very

special status among all these theories. Note that we did not get all around the amoeba

diagram above: The connection between the type I and the heterotic SO(32) theories was

not provided. However, this is done using S-duality. A last quite interesting duality is the

S-duality in the type IIB case: It takes the theory to itself!

M-theory

The key question is however: What is the theory in the middle of the amoeba diagram?

In that area we have moved away from the cusps and the well-behaved perturbative super-

gravity/string theories into a region of parameter space where the master M-theory (now

based on M-branes instead of strings) is probably strongly coupled. In this region very

little is known about the theory. M-branes are of two kinds, M2 and M5, which appear as

generalised multi-dimensional black hole solutions of the field equations coming from the

31This closed string theory is built from a compactified bosonic string for the left movers and a superstring

for the right movers.
32”Even” means that all vectors in the lattice has length-square equal to an even integer.
33By combining T and S duality a more complicated duality structure may appear called U-duality.
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11-dimensional field theory Lagrangian given above. The D-branes to be analysed later are

string analogues of these M-branes.

The M2 and M5 branes:

We end this discussion by explaining the nature of these M -branes. Recall first the

Schwarzschild black hole solution (BH) of the vacuum Einstein equations Rµν = 0

in 3+1 dimensions. This solution was derived very carefully in the gravity course:

ds2(BH) = −(1− r0

r
)dt2 + (1− r0

r
)−1dr2 + r2dΩ2

2, r0 = 2GM. (10.75)

We see here that the solution approaches Minkowski as r →∞ and that there is a horizon

at r = r0 = 2GM . It is sometimes useful to change to a radial coordinate ρ for which ρ = 0

is the horizon: r = r0 + ρ. Then 1 − r0
r = ρ

r0+ρ = 1/(1 + r0
ρ ) so the Schwarzschild metric

becomes

ds2(BH) = −(1 +
r0

ρ
)−1dt2 + (1 +

r0

ρ
)dr2 + (r0 + ρ)2dΩ2

2, r0 = 2GM. (10.76)

There is a completely analogous solution if the we instead consider a charged black hole

(QBH) by solving the coupled Einstein-Maxwell equations in 3+1 dimensions:

ds2(QBH) = −(1− r0

r
+
Q2G

r2
)dt2 + (1− r0

r
+
Q2G

r2
)−1dr2 + r2dΩ2

2, r0 = 2GM. (10.77)

and, with the only non-zero Fµν component,

Ftr = Er =
Q

r2
. (10.78)

This so called Reissner-Nordström solution will be the prototype for all the supergravity

solutions that we will later claim (without proof in this course) correspond to the various

D-branes discussed in Part 2 of the course. An interesting fact about this solution is that

it has two horizons given by

r = r± = MG±
√

(MG)2 −Q2G. (10.79)

Obviously (MG)2 ≥ Q2G which implies that this black hole can loose energy by Hawking

radiation until (MG)2 = Q2G after which it becomes stable34. This stable solution is called

the extremal solution35.

Turning now to supergravity in D = 11 spacetime dimensions we can try to find simi-

lar solutions of the coupled Einstein-Kalb-Ramond field equations. The two solutions that

exist have two and five space dimensions, respectively, for the M2 and the M5 branes. The

extremal versions of these solutions are

M2 : ds2 = H−
2
3dx2 +H

1
3dy2, H(r) = 1 +

r6
2

r6
, r6

2 = 32π2N2l
6
p, (10.80)

34This is connected to the fact that this background is compatible with supersymmetry.
35It is also known as a BPS solution.
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F012r ∝ ∂r
1

H(r)
, (10.81)

and

M5 : ds2 = H−
1
3dx2 +H

2
3dy2, H(r) = 1 +

r3
5

r3
, r3

5 = π2N5l
3
p, (10.82)

F012345r ∝ ∂r
1

H(r)
, FM1..M4 =

1

7!
εM1..M4

M5.....M11FM5.....M11 . (10.83)

Here xµ are the coordinates on the flat Lorentzian branes and ym are the remaining co-

ordinates in 11D. The radius r is the distance away from the brane in these off-brane

dimensions. The number N2 and N5 are the brane charges corresponding to stacks with

these number of branes (the branes are normally given a unit charge). This interpretation

comes out when comparing these solutions to the construction of branes from open strings.

We will have reason to return to this relation between solutions and branes in the context

of AdS/CFT later.
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The Polyakov supergravity theory

As promised above, we will now return to the Lorentz covariant formulation of the su-

perstring. The relevant theory is then the locally supersymmetric version of the Polyakov

action discussed before in the bosonic case. The local supersymmetry is quite similar to

the global one discussed in detail above, but a bit more complicated since new terms arise

in the super-Polyakov Lagrangian for basically two different reasons:

1) From the supersymmetry parameters which are now functions on the world-sheet and

2) from the two-dimensional supergravity fields, metric hαβ and the Rarita-Schwinger field

χα (which has a world-sheet spinor index that is not written out).

The action is36

S = − 1

2πα′

∫
dτdσ

√
−h

(
1

2
hαβ∂αX

µ∂βX
νηµν +

i

2
ψ̄µρα∂αψ

νηµν −
i

2
χ̄αρ

βραψµ(∂βX
ν − i

4
χ̄βψ

ν)ηµν

)
.

(10.84)

This action is invariant under local supersymmetry transformations with spinor parameter

ε(τ, σ) given on the string super-coordinates (Xµ, ψµ) by

δεX
µ = iε̄ψµ, (10.85)

δεψ
µ = ραε (∂βX

ν − i

2
χ̄βψ

ν). (10.86)

Requiring this theory to be invariant under both local coordinate and local supersymmetry

transformations implies that the world-sheet supergravity fields must transform as follows:

δε eα
a = iε̄ραχα, (10.87)

δεχα = 2Dαε := 2(∂αε−
1

2
ωαρ

3ε). (10.88)

Without going into the details we just note that since we are dealing with spinors on a

curved world-sheet one has to introduce a zweibein field eα
a(τ, σ) which relates the coor-

dinate basis and an arbitrary orthogonal basis on the world-sheet tangent space (so the

index a is here a 2-dimensional Lorentzian vector index). Its relation to the metric is given

by hαβ = eα
aeβ

bηab. Having introduced this orthogonal basis the Lorentz symmetry must

be gauged which is done by introducing the spin-connection field denoted ωα in the δεχα
transformation above. This means that Dα is a Lorentz covariant derivative.

This covariant action is of course globally Poincaré invariant but it has a number of impor-

tant local symmetries generalising the ones in the bosonic case. These local symmetries are

world-sheet reparametrisations, local supersymmetry, local Lorentz transformations plus

the local scale and local super-scale invariances

Weyl: δ eα
a = Λeα

a, δχα = 1
2Λχα, δψ

µ = −1
2Λψµ, (Xµ are inert), (10.89)

36For details and the original work, see Brink, Di Vecchia and Howe, Physics Letters 65B (1976) p.

471-474.
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super-Weyl: δχα = ραη, (all other fields are inert). (10.90)

As in the bosonic case we can use these local symmetries to choose the superconformal

gauge defined by

hαβ = ρ2(τ, σ)ηαβ, (10.91)

where ρ2(τ, σ) is a local scale factor (i.e., not gamma matrices), and

χα = ραλ(τ, σ), (10.92)

where ρα are gamma matrices and λ(τ, σ) a local spinor (similar to the scale factor above).

Using these gauge conditions the Polyakov supergravity action above simplifies directly

to the super-Polyakov action on a flat world-sheet which we proved earlier to be invariant

under global supersymmetry transformations.

However, before implementing the gauge conditions we should compute the field equations

for the supergravity fields. So let us vary the action with respect to δhαβ and δχα which

will give us the Einstein equations (without the Einstein tensor term as in the bosonic case)

and the Rarita-Schwinger equation (without the Rarita-Schwinger kinetic term). Then we

implement the superconformal gauge on these equations. This gives the following nice

results

δhαβ ⇒ Tαβ = 0 where

Tαβ = ∂αX
µ∂βX

νηµν +
i

2
ψ̄µρ(α∂β)ψ

νηµν −
1

2
ηαβη

γδ(∂γX
µ∂δX

νηµν +
i

2
ψ̄µρ(γ∂δ)ψ

νηµν),

(10.93)

which we now see contains two new terms from the fermionic part of the Lagrangian.

We also find an entirely new spinorial current, the supercurrent Jα,

δχα ⇒ Jα = 0 where Jα =
1

2
ρβραψµ∂βX

νηµν . (10.94)

These two objects are both Noether currents and are thus on-shell conserved

∂αT
αβ = 0, ∂αJ

α = 0, (10.95)

which follow from reparametrisation invariance and supersymmetry. However, the Weyl

and super-Weyl symmetries imply that these currents also satisfy

Tαα = 0, ραJ
α = 0. (10.96)

This can be verified from the expressions above for these currents. When computing the

currents from the action above these conditions should be checked to avoid mistakes.
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The above forms of the stress tensor Tαβ and the supercurrent Jα explain what is hap-

pening in the transition from the bosonic string to the superstring. Using the light-cone

coordinates (σ+, σ−) on the world-sheet the superstring stress tensor components read

T++ = ∂+X
µ∂+Xµ +

i

2
ψµ+∂+ψ+, (10.97)

T−− = ∂−X
µ∂−Xµ +

i

2
ψµ−∂−ψ−. (10.98)

Without going into details we can see that an expansion of the stress tensor into Virasoro

generators Ln implies that they now contain contributions from both the bosonic modes,

αµn, and the fermionic ones, dµn or bµr . This is in accord with our expressions for the mass

operator M2 presented previously.

The new anti-commuting current, the supercurrent Jα, has light-cone components

J+ = ψµ+∂+Xµ, (10.99)

J− = ψµ−∂−Xµ. (10.100)

The constraints that must be imposed on the state space for the superstring are

T++ = T−− = J+ = J− = 0. (10.101)

Also the supercurrents must be expanded in modes. These modes are called Gr in the

NS sector and Fn in the R sector. Together with the superstring Virasoro generators, all

these generators give rise to the super-Virasoro algebra containing both commutators and

anti-commutators. As an example how the new supergenerators can be used, consider

F0 = αµ0d0µ + αµ−1d1µ + αµ1d−1µ + .... (10.102)

Just as we impose the primary state condition (L0− 1)|phys〉 = 0 in the bosonic string we

must in the superstring impose also F0|phys〉 = 0 in the R sector. If we consider the R

ground states |Ra〉(R) only the first term in F0 above is non-zero (since for n > 0 we have

αµn|Ra〉(R) = dµn|Ra〉(R) = 0) and the condition becomes if written in matrix form

Γµpµ|Ra; p〉 = 0. (10.103)

This is the Fourier transform of the spacetime Dirac equation Γµ∂µψ(x) = 0.

With this overview of superstring theory we end Part 1, the introductory Basic part,

of the course and turn to Part 2, Developments.
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11 Lecture 13

In this lecture we will study the antisymmetric tensor fields that are part of the spectrum

of the various string theories discussed in previous lectures. Since some of these fields

have more than one antisymmetric vector index they can be viewed as generalisations of

the Maxwell vector potential, and their electric and magnetic charges can be discussed in

similar terms. Thus it is important to study the objects that carry these charges, i.e., the

D-branes. As we will see later, stacks of such branes are instrumental in deriving Standard

Model like physics from strings.

11.1 Chapter 15: D-branes

In the following discussions we will always consider strings and branes that come from a

superstring and hence live in D = 10 spacetime dimensions. However, most of the consid-

erations involve only the bosonic sector of these theories.

Recall first how we used a table to describe open string boundary conditions in a pre-

vious lecture. Here we will use a similar table that is useful for D-branes living in 9 space

dimensions. As an example consider the following table for the space components Xi:

i=

End

1 2 3 4 5 6 7 8 9

σ = 0 D D D N N N N N N

σ = π D D D N N N N N N

This table represents open strings with both ends on a D-brane spanned by the space

directions 4 to 9 (the N bc directions) and they are hence unable to move perpendicularly

to these directions (i.e., in the directions 1,2 and 3). This is a Dp-brane with p = 6.

So to understand the spectra arising from strings involved in this example we need mode

expansions for both (N,N) and (D,D) b.c.s. The former case was obtained in a previous

lecture (now with the spacetime direction suppressed)

(N,N) : X(τ, σ) = x0 + 2α′pτ + i
√

2α′Σ∞n6=0

1

n
αne

−inτ cosnσ. (11.1)

The (D,D) situation has not been analysed before so this needs to be done now. However,

it is rather trivial to see that the answer is, if the fixed direction is located at x0 = x̄,

(D,D) : X(τ, σ) = x̄+
√

2α′Σ∞n6=0

1

n
αne

−inτ sinnσ. (11.2)

There are some properties that require an explanation:

1. The operator zero modes (x0, p) in the (N,N) are replaced in the (D,D) case by x̄

which is a fixed number and not an operator. This fact is related to the non-appearance

of a momentum term in the expansion. This is natural since the string ends cannot move

in this direction (i.e., the direction of X).
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2. The oscillator terms must vanish at both ends which is guaranteed by the sinnσ func-

tion. The sinnσ also implies reality of X without an i in front of the oscillator terms.

If there are two parallell D-branes involved in the setup, one at x̄1 and the other at x̄2,

then the expansion for strings with one end on each brane, becomes

(D,D) : X(τ, σ) = x̄1 + (x̄2 − x̄1)
σ

π
+
√

2α′Σ∞n6=0

1

n
αne

−inτ sinnσ. (11.3)

Note that the second term is not a momentum term since it contains σ, not τ .

It is important to realise that the mass spectrum is effected by these Dirichlet bound-

ary conditions:

M2 =

(
x̄2 − x̄1

2πα′

)2

+
1

α′
(N⊥ − 1). (11.4)

Let us now discuss some of the physical implications of this formula, including one partic-

ularly important one which is hidden in the notation used. First, the first term depends

on the distance between the D-branes. This term comes from the σ dependence of the

corresponding term in the mode expansion. It will survive the construction of the Virasoro

generators (from X ′ in Ẋ ± X ′) and since it is not a momentum term it is not part of

M2 = 2p+p− − pIpI and therefore ends up on the RHS.

Secondly, what is part of M2 = −pµpµ = 2p+p− − pIpI are all the momenta which,

however, are only non-zero in the D-brane directions. Therefore, the most important as-

pect of the open string formula above is that the mass spectrum concerns only fields that

”live on the D-brane”, i.e., they don’t depend on any coordinates spanning directions that

are not along the D-brane.

In order to be very clear about what is being said above, we summarise it as follows:

D-brane physics: The low-energy field theory generated by open strings with their end-

points on some (parallell) Dp-branes live on these D-branes. These field theories are typ-

ically supersymmetric Yang-Mills theories (see below) and do NOT contain gravity. Obvi-

ously, since closed strings have nothing to do with D-branes their low-energy field theories

(including gravity) live in all D = 10 dimensions of spacetime. Note that the open string

oscillations can take place in all nine space directions even if the two end-points are tied

to the one or two Dp-branes.

Question: If the two D-branes are separated along some axis, which of the two D-branes

does the field theory live on? (Tricky issue!)

Stacks of D-branes: Piling up a stack of D-branes (all parallell then) gives rise to new

properties of the low-energy field theory, namely interactions. To see this consider three

D-branes, called 1, 2 and 3. The open strings that can be associated with these branes
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must either have their two ends on the same D-brane, denoted [ii]-strings, or have the

end-points tied to different D-branes, then denoted [ij]-strings (with i 6= j). Now consider

two strings of this latter type, [12] and [23] say. The former clearly has its σ = π end on

brane 2 and the latter string has its σ = 0 end also on brane 2. If these two ends on brane

2 meet they can form a new longer open string which we denote as [12] ? [23]. Since the

end-points on brane 2 have now been cancelled nothing forces any point on this long string

to stick to brane 2 and it can hence just disconnect from it. Therefore we have shown that

one can realise an open ”2-strings → 1-string interaction” as follows:

[12] ? [23]→ [13]. (11.5)

This transition will be represented in the field theory by two vector fields interacting to

form just one vector field. This is precisely what the 3-point interaction in Yang-Mills

theory is doing. In this field theory this interaction has a momentum dependence but it

is easily checked that also string theory produces this momentum dependence (we need

unfortunately some methods not developed in this course to prove this fact).

Let us now try to pinpoint exactly what kind of Yang-Mills theory is produced by open

strings and D-branes. We start by considering an N-stack, that is N parallell D-branes on

top of each other. This stack will produce N different open strings having both ends on the

same brane and N(N − 1) strings with their ends on different branes. Note that there is

no factor of 1/2 since the open strings are oriented. Together this makes N2 different open

string configurations, each one generating a massless vector gauge field. This suggests that

we are dealing with an U(N) Yang-Mills theory (which can be proven in full detail with

other methods). However, from group theory we know that U(N) = SU(N)×U(1) which

is the final answer.

One nice aspect of this result about the gauge theory on a stack of D-branes is that if

one (or several) of them is moved away from the other branes some of the massless vector

fields become massive and the gauge groups breaks down to a smaller group. It can in fact

be shown that there are scalar fields involved in this process that are ”eaten” and the whole

process actually corresponds to the usual Higgs effect. For instance, for N = 2 the gauge

group is U(2) = SU(2)× U(1) and the Higgsing obtained by separating the two D-branes

generates two massless abelian gauge fields and two massive vector fields (corresponding

to W± in the Standard Model).

Orthogonal/intersectiong D-branes: A final example that will be analysed here con-

cerns D-branes at an angle, in fact orthogonal ones. Other cases of this kind will be very

important later. An example is given by the following table, with both branes containing

the origin x1 = .... = x9 = 0,
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i=

End

1 2 3 4 5 6 7 8 9

σ = 0 N N N N D D D D D

σ = π D D D N N N N N N

This configuration of D-branes consists of one D4-brane in the direction 1 - 4 and one

D6-brane in the directions 4 - 9. They have one direction, direction 4, in common so they

are orthogonal in this multi-dimensional sense. This case contains a new kind of open

strings, namely strings with one end having D bc and one end having N bc. The mode

expansion for such an open string reads, if the σ = 0 end has N bc,

(N,D) : X(τ, σ) = x̄2 + i
√

2α′Σ
r∈Z+

1
2
αr

1

r
e−irτ cos(rσ). (11.6)

and for the other case

(D,N) : X(τ, σ) = x̄1 +
√

2α′Σ
r∈Z+

1
2
αr

1

r
e−irτ sin(rσ). (11.7)

These expansions are also needed for parallell D-branes where the branes have different

dimensionality.

A note on notation: When mode expanding Xµ in cases where all three different kinds

of b.c.s occur, e.g., (N,N), (D,D) and (N,D), one sometimes need to indicate this by

giving the indices different names. We may e.g. use q, r, a (as in BZ)

Xµ : (N,N)→ Xq, (N,D)→ Xr, (D,D)→ Xa. (11.8)
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11.2 Chapter 16: String charge and electric and magnetic D-brane charges

Recall the action for a charged particle coupled to a dynamical EM vector field

S[Aµ, X
µ] = −m

∫
P
ds+ q

∫
P
A− 1

4κ2
0

∫
dDxFµνF

µν , (11.9)

where P is the path, or world-line, of the particle in Minkowski space given by Xµ(τ) (for

some arbitrary parameter τ), ds =
√
−ηµνdXµdXν =

√
−ẊµẊνdτ and we have intro-

duced the parameter κ0 with some dimension to make the action dimensionless (in natural

units) for any spacetime dimension D while using fields Aµ with dimension 1/L as in D = 4.

Finally, Fµν is gauge invariant under δAµ = ∂µΛ as usual.

Consider now the coupling term (recall that a 1-form A := dxµAµ(x))

q

∫
P
A := q

∫
P
dXµAµ(X) = q

∫
P
Ẋµ(τ)Aµ(X(τ))dτ = q

∫
P
dτẊµ(τ)

∫
dDx δD(x−X(τ))Aµ(x).

(11.10)

From the definition q
∫
P A :=

∫
dDx jµ(x)Aµ(x) of the charged current for a point particle

we get

jµ(x) = q

∫
P
dτẊµ(τ) δD(x−X(τ)). (11.11)

Performing a δAµ(x) variation we see that the coupling term q
∫
P A contributes to Maxwell’s

equations and that it is gauge invariant under δAµ = ∂µΛ in the current is conserved

∂µj
µ = 0 (modulo boundary terms). This result follows also from the Maxwell equations.

The million dollar question is now: How do we generalise this to the string?

Consider the analogy between a charged point particle in an EM field and the string:

particle q Aµ world-line q

∫
P
A (11.12)

string ?? ?? world-sheet ?? (11.13)

To fill in the question marks above we may recall the Polyakov action in a general back-

ground of the massless fields gµν(x) and Bµν(x) (leaving φ(x) aside for the moment) in the

closed string spectrum:

S[h,X] = − 1

4πα′

∫
dτdσ

(√
−hhαβ∂αXµ∂βX

νgµν(X) + 2πα′εαβ∂αX
µ∂βX

νBµν(X)
)
,

(11.14)

where εαβ = −εβα is defined by ε01 = +1. Concentrating on the second term we see that

it is very similar in spirit to q
∫
P A: Define (note that here the definition of the 2-form

contains the factor 1
2 which differs from BZ)

SB[X] := −
∫

Σ2

B = −1

2

∫
Σ2

dXµdXνBµν(X) = −
∫

Σ2

dτdσẊµX ′νBµν(X). (11.15)
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The normalisation of the Bµν-field is now such that the 2-form B is dimensionless which

means that the string has charge +1 in relation to the Bµν-field.

The field Bµν has a gauge transformation δBµν = ∂µΛν − ∂νΛµ which implies that the

term in the Lagrangian corresponding to the Maxwell term F 2
µν is the square of the field

strength of Bµν :

H3 = dB2 ⇒ Hµνρ = 3∂[µBνρ]. (11.16)

There is of course also a Bianchi identity:

dH3 = 0⇒ ∂[µHνρσ] = 0. (11.17)

The coupled string-B-field action is then

S[X,B,H] = − 1

6κ2
1

∫
dDxHµνρH

µνρ + S[X,B], (11.18)

where

S[X,B] = − 1

4πα′

∫
Σ2

dτdσ
(√
−hhαβ∂αXµ∂βX

νηµν(X) + 2πα′εαβ∂αX
µ∂βX

νBµν(X)
)
.

(11.19)

We have then answered all the question marks above!

The string current have, however, some very unusual features. Similarly to the charged

particle in an EM field we find now

∂µH
µνρ = κ2

2j
νρ, (11.20)

jµν(x) =

∫
Σ2

dτdσδD(x−X(τ, σ))Ẋ [µX ′ν]. (11.21)

Thus, obviously, this current is antisymmetric

jµν(x) = −jνµ(x), (11.22)

and satisfies a conservation equation (follows directly from the field equation and is similar

to the one for the stress tensor)

∂µj
µν = 0. (11.23)

It is at this point that the differences between EM and the string start to appear:

EM : jµ = (j0, ji) = (charge density, charge density current), (11.24)

String : jµν = (j0ν , jiν) = (j0i, jij) = (vector charge density, vector charge current density),

(11.25)

since for jiν the component ji0 = −j0i. So the string charge is itself a vector (in space)

and is defined to point from the σ = 0 end to the σ = π end of the open string, or around

the closed string in a specified direction. The unoriented string mentioned previously can

hence not couple to the Bµν field which therefore does not appear in the spectrum at all
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(a fact we know from before).

The conservation equations ∂µj
µν = 0 for this string charge current reads in components

∂ij
i0 = 0, ∂tj

0i + ∂jj
ji = 0. (11.26)

The string vector charge itself is conserved

Qistring :=

∫
ddx j0i ⇒ Q̇istring =

∫
ddx ∂tj

0i = −
∫
ddx ∂jj

ji = 0. (11.27)

We now express the conclusions in words:

The charge associated with a string is a conserved vector Qistring, similar to a current that

never stops. This is true for a closed string as well as for an open string in which case the

current must continue onto the D-branes.

Let us now study what happens when open strings end on D-branes. First we recall the

gauge invariance in EM. The interaction term for a charged particle in an electromagnetic

field is

Sint = q

∫
P
A = q

∫
P
XµAµτ =

∫
dDxjµ(x)Aµ(x). (11.28)

Since the other terms in the action are gauge invariant by themselves we must have

δgaugeSint = 0. Thus

δgaugeSint =

∫
dDxjµ(x)δAµ(x) =

∫
dDxjµ(x)∂µΛ(x) = −

∫
dDx∂µj

µ(x)Λ(x) = 0,

(11.29)

and we find that the current is conserved as a consequence of the gauge invariance of the

charge particle interaction with EM. This follows by neglecting the boundary terms.

Repeating this for the string is a very different story. Consider

SB = −
∫
dτdσ

∂Xµ

∂τ

∂Xν

∂σ
Bµν(X). (11.30)

Performing a gauge transformation δBµν = ∂µΛν − ∂νΛµ we get

δΛµSB = −
∫
dτdσ

∂Xµ

∂τ

∂Xν

∂σ
(∂µΛν − ∂νΛµ). (11.31)

Using ∂τ = Ẋµ∂µ this can written

δΛµSB = −
∫
dτdσ((∂τΛµ)∂σX

µ − (∂τX
µ)∂σΛµ). (11.32)

Integrating by parts to remove the derivatives from the parameters Λµ gives

δΛµSB = −
∫
dτdσ(∂τ (Λµ∂σX

µ)− Λµ∂τ∂σX
µ

− ∂σ(Λµ∂τX
µ) + Λµ∂τ∂σX

µ). (11.33)
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Thus we see that the bulk terms cancel. Dropping the boundary terms at τ = ±∞ gives

then the simple, but non-zero, result

δΛµSB =

∫
dτ(ΛµẊ

µ)|σ=π
σ=0 . (11.34)

However, it is only non-zero for directions Xi with Neumann boundary conditions since

for D bc we have X = const for all τ . Let us denote these N bc direction as Xm. Then

δΛµSB =

∫
dτ(ΛmẊ

m|σ=π − ΛmẊ
m|σ=0). (11.35)

How can these terms be made to vanish, or canceled?

The crucial insight that comes to the rescue here is that there is a Maxwell field on every

D-brane, which is part of a U(N) Yang-Mills field if the D-brane is a brane in a stack. The

previous argument for Yang-Mills fields on stacks of D-branes corresponds to the fact that

open strings can be considered to have Maxwell-like charges at its ends: q = +1 at the

σ = π end and q = −1 at the σ = 0 end. This fact means that we must add to SB the

ordinary EM interaction term (discussed above) at both open string ends:

S = SB +

∫
dτAmẊ

m|σ=π −
∫
dτAmẊ

m|σ=0. (11.36)

Clearly, if we introduce a new Λµ gauge transformation for the Maxwell field the interaction

term becomes gauge invariant:

δΛmAm = −Λm ⇒ δΛµS = 0. (11.37)

But then Fmn on the D-brane is no longer gauge invariant but the following combination

is

Fmn := Fmn +Bmn ⇒ δΛmFmn = 0. (11.38)

On the D-branes the Maxwell theory is now given by the Lagrangian −1
4FmnF

mn which

gives

FmnFmn = FmnF
mn +BmnB

mn + 2FmnB
mn, (11.39)

where the last term indicates that Fmn should be interpreted as a string current on the

D-brane, i.e., that the Maxwell field lines (flux) carry string charge that enters the brane

from the open string at the point where the string ends.

D-brane charges:

A final issue in this context is to understand charges associated to the D-branes themselves.

This is an interesting question since D-branes, as defined here in terms of open strings, can

be argued to appear in the low energy supergravity theories as multi-dimensional gener-

alisations of charged black holes in four-dimensional Einsteinian general relativity. These

Reissner-Nordström solutions are point-like solutions of the coupled Einstein-Maxwell equa-

tions with both mass and charge.
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Thus one might expect stable charged D-branes to exist whenever there is a gauge field they

can couple to generalising the two examples we have discussed this far: Maxwell S0 =
∫
P A

and S1 = −
∫

Σ2
B (here p on Sp refers to the number of space dimensions of the D-brane).

Note that charges that couple to gauge fields this way are regarded as electric. Magnetic

charges also occur but these are associated with other D-branes as we will explain below.

First we recall the gauge fields we encountered previously in the context of the RR sector

of the type IIA and IIB superstrings, and which Dp-branes they can have an electric

coupling to (in the brackets):

Type IIA: Aµ(D0), Aµνρ(D2), (11.40)

Type IIB: A(D(−1)), Aµν(D1), A+
µνρσ(D3). (11.41)

These electric coupling terms are (with Xµ = Xµ(τ, σ1, ..., σp) and the (p+1)-form Ap+1)

Sp = −
∫

Σp+1

Ap+1 = −
∫

Σp+1

dτdσ1...dσp ∂τX
µ1∂σ1X

µ2 ....∂σpX
µp+1Aµ1.....µp+1(X)

(11.42)

Comments:

1) Although the D-branes are new compared to the string discussion above, the two cases

Aµ(D0) and Aµν(D1) are mathematically the same as the charged particle and the string,

respectively. Note that the D1-brane is not the fundamental string although this latter

one is also a solution of the supergravity equations.

2) Aµνρ(D2) is a direct generalisation with one more space dimension than the string.

3) A+
µνρσ(D3) is still one dimension up but the self-duality (the + on the field) makes the

D-brane very special. Note that it has four space-time dimensions like our own universe.

4) A(D(−1)) is very different from the other cases: Here the D-brane is a point in space-

time, i.e. what is called an instanton.

Before we turn to magnetic charges we need to make clear how the various electric D-

brane charges are measured physically. Recall the usual situation in 3+1 Maxwell theory:

The electric charge qe of a point particle is computed using Gauss’ law

qe =
1

4π

∫
S2

E · da =
1

4π

∫
S2

F 0idai =
1

4π

∫
S2

1

2
(?F )ijdaij =

1

V ol(S2)

∫
S2

?F. (11.43)

Here we have used the general definition of a 2-form

F2 =
1

2
dxµ ∧ dxνFµν , (11.44)

and of the Hodge dual ?F2, which in D = 4 dimensions is also a 2-form,

? F2 =
1

2
dxµ ∧ dxν(?F2)µν =

1

2
dxµ ∧ dxν(

1

2
εµν

ρσFρσ). (11.45)

Note that the anti-symmetric ”wedge” product dxµ ∧ dxν is a direct generalisation of the

area element dai = εijkdxjdxk, or dA = da1 × da2, in three space dimensions.
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In the case of a magnetic charge qm it is computed in a similar way using the magnetic

field B:

qm =
1

4π

∫
S2

B · da =
1

4π

∫
S2

1

2
(F )ijdaij =

1

V ol(S2)

∫
S2

F. (11.46)

Thus we see that in D = 4 both the electric and magnetic charges are point-like and the

surfaces surrounding them is S2 in both cases.

How are these formulas generalised to the superstring living in 10 spacetime dimensions?

The answer is rather clear for the electric charge: S2 → S8 which gives

q(D0)
e =

1

V ol(S8)

∫
S8

E · da =
1

V ol(S8)

∫
S8

?F2. (11.47)

The surprise is now that the corresponding magnetic charge is not, as in 3+1 dimensions,

point-like (i.e., a D0 brane) but instead given by (since F2 is a 2-form)

q(D6)
m =

1

V ol(S2)

∫
S2

1

2
F ijdaij =

1

V ol(S2)

∫
S2

F2. (11.48)

But this implies that the D-brane having this kind of magnetic charge in D = 10 spacetime

dimensions must be a D6-brane. This is the object that can be enclosed by a two-sphere

S2 in nine space dimensions. However, we have not yet mentioned Dp-branes with this

high value of p but they are known to exist as solutions to the relevant supergravity theory

in D = 10. In fact, each of the electric branes mentioned above has a dual brane with a

magnetic charge measured by the same gauge field strength: If Dp has electric charge then

the dual brane having a magnetic charge is the D(6− p)-brane. Now it is clear what makes

the D3-brane so special: It is self-dual in the sense that it can itself have both electric and

magnetic charges (like points in three space dimensions).

Comment: In M -theory the low-energy supergravity theory in D = 11 has two solu-

tions of space dimensions 2 and 5, the so called M2-brane and its dual the M5-brane.

They couple both (as above) to the M-theory field Aµνρ, M2 electrically and M5 magnet-

ically.

Comment: One can carry out the above discussion about charges in terms of the dual

field strength F̃ := ?F instead. In that case the only thing that happens is that the electric

and magnetic nature of the charges flips.

Note: The only two formulas used in the above discussion of integrations over spheres

are the p-form

Fp :=
1

p!
dxµ1 ∧ dxµ2 ∧ .... ∧ dxµpFµ1....µp , (11.49)

where dxµ1 ∧ dxµ2 ∧ ....∧ dxµp is the p-dimensional volume element, and the dual p-form

which is D − p-form:

(?F )µ1....µD−p :=
1

p!
εµ1....µD−p

µD−p+1....µDFµD−p+1....µD , (11.50)
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The relation of a D-form to the volume element dDx
√
| det g| in a generally curved d-

dimensional manifold is given in terms of the Levi-Civita symbol ε (with ε01....D = +1)

by

dxµ1 ∧ dxµ2 ∧ .... ∧ dxµD = dDx εµ1....µD = dDx
√
|det g| ε̃µ1....µD . (11.51)

Note: The LHS is an antisymmetric tensor, not a tensor density, as is also the case for ε̃.

Examples: In d = 3 the magnetic field Bi = 1
2ε
ijkF jk and in D = 4 the duality

(?F )µν = 1
2εµν

ρσFρσ. Note that there ?2 can give a minus sign (depending on signa-

ture and dimensionality D). For examples in 3+1 dimensions ?2 = −1. This implies that

splitting Fµν into self-dual and anti-self-dual parts makes these objects complex. In D = 6

we instead have ?2 = +1. This last fact is important for the theories living on some 5-

branes, the M5 in M-theory and the magnetic dual of the fundamental string, the so called

NS5-brane.
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12 Lecture 14

In this lecture we will discuss how the string depends on the radius of a compactified

dimension. The result, which is rather surprising, is known as T-duality. Since it is easier

to derive these effects for closed strings than for the open ones we start with closed strings.

Before this, however, we make a few comments on duality in field theory.

12.1 Chapter 17: T-duality for closed strings

Duality: This is a very deep and important concept and refers to the possibility to de-

scribe the same physics in terms two different theories37. Often the field theories are of

the same kind but with interesting relations between the parameters of the theories. In

particular, this is true when the coupling constant is inverted, called S-duality or when

the radius of a compact dimension is inverted, called T-duality. Apart from these pa-

rameter based duality transformations between the two descriptions there are some very

special cases where the field theories themselves are totally different and may even live in

different dimensions. Some examples are:

1) The duality between 11-dimensional supergravity and type IIA supergravity in 10 di-

mensions (S-duality) and between type IIA and IIB (T-duality).

2) The duality between supergravity in D-dimensional AdS and a non-gravitational con-

formal field theory (CFT) on the boundary of AdSD. If the CFT is strongly coupled, and

hence very hard to deal with computationally, the dual gravity theory in AdS is weakly

coupled and easy to deal with. This phenomenon is known as the AdS/CFT correspon-

dence. It has found an enormous number of applications in non-gravitational physics,

ranging from QCD to superconductivity.

3) Duality is also related to some celebrated areas in mathematics, e.g., the theory of au-

tomorphic forms and the so called Langlands program.

A simple example of these ideas appears already in Maxwell’s equations without sources

(i.e., when jµ = 0):

∇ ·E = 0, ∇×B =
1

c
∂tE, ∇ ·B = 0, ∇×E = −1

c
∂tB. (12.1)

Clearly, these equations are left invariant by the following duality transformation:

(E,B)→ (−B,E). (12.2)

One may note that while the Hamiltonian H = 1
2(E2 + B2) is invariant the Lagrangian is

not since L = 1
2(E2 −B2)→ −L.

Let us now turn to the closed bosonic string moving in a spacetime with the X25 compact-

ified on a circle, i.e., X25 ∈ S1
R. Thus, if the radius is R we have X25 ∈ [0, 2πR].

37See ”Duality of fields and strings” by Joe Polchinski, hep-th/1412.5704.
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On this spacetime there are two kinds of closed strings: (view these two cases, e.g., on

a cylinder)

1) Untwisted sector: Closed strings that do not wind around the circle S1
R.

2) Twisted sector: Closed strings that do wind around the circle S1
R.

This implies that:

1) Untwisted sector: All components of Xµ have the standard mode expansion derived

previously in a uncompactified spacetime.

2) Twisted sector: AllXµ exceptX25 have the same mode expansion as in 1), whileX25 sat-

isfies (view this on an infinite x25 coordinate with the equivalence relation x25 ∼ x25 +2πR)

X25(τ, σ + 2π) = X25(τ, σ) +m(2πR), m 6= 0, (m ∈ Z). (12.3)

This new integer m is called the winding number.

Before deriving the mode expansion of the quantum operator X25(τ, σ), it is convenient to

introduce the winding operator w with eigenvalues mR
α′ . That is, we now have

X25(τ, σ + 2π) = X25(τ, σ) + 2πα′w. (12.4)

The final answer for the mode expansion in the twisted sector is rather interesting so let

us derive it in detail. As usual for the closed string solving the wave equation gives rise to

two independent functions (for left and right moving wave modes)

X(τ, σ) = XL(u) +XR(v), u = τ + σ, v = τ − σ. (12.5)

Then the definition of the twisted sector field above implies

XL(u+ 2π)−XL(u) = XR(v)−XR(v − 2π) + 2πα′w. (12.6)

Taking u and v derivatives of this equation implies that X ′L(u) and X ′R(v) are 2π periodic

functions, that is, we get the same expansions as for the untwisted case

XL(u) = x0,L +

√
α′

2
ᾱ0 u+ i

√
α′

2
Σn 6=0

1

n
ᾱne

−inu, (12.7)

XR(v) = x0,R +

√
α′

2
α0 v + i

√
α′

2
Σn6=0

1

n
αne

−inv, (12.8)

Inserting these expansions into the winding condition above gives

ᾱ0 − α0 =
√

2α′w ⇒ w =
1√
2α′

(ᾱ0 − α0). (12.9)

So together with the result for the momentum mode

p =
1

2πα′

∫ 2π

0
dσ (ẊL + ẊR) =

1√
2α′

(ᾱ0 + α0), (12.10)
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we now have two momentum like operators, p and w, and hence we must have two coordi-

nates dual to these: x0,L and x0,R.

The way to organise the zero mode sector for the compactified closed string coordinate

is as follows: In analogy with (from above)

ᾱ0 =

√
α′

2
(p+ w), α0 =

√
α′

2
(p− w), (12.11)

we introduce a new operator q which is the canonical coordinate of w, i.e., [q, w] = i. Note

that we already have [x0, p] = i where x0 = x0,L + x0,R and p = 1√
2α′

(ᾱ0 + α0). Then it

follows that q := x0,L − x0,R and we have

x0,L =
1

2
(x0 + q), x0,R =

1

2
(x0 − q). (12.12)

Thus we can write the two now completely independent left and right moving expansions

for the compactified closed string above as follows:

XL(u) = x0,L +
α′

2
pL u+ i

√
α′

2
Σn 6=0

1

n
ᾱne

−inu, (12.13)

XR(v) = x0,R +
α′

2
pR v + i

√
α′

2
Σn6=0

1

n
αne

−inv, (12.14)

where we have defined the left and right center of mass momenta

pL := p+ w, pR := p− w. (12.15)

Propagators and vertex operators:

After a Wick rotation we get a holomorphic XR(z) and an antiholomorphic XL(z̄):

XR(z) = x0,R +
α′

2
pR ln z + i

√
α′

2
Σn6=0

1

n
αnz

−n (12.16)

XL(z̄) = x0,L +
α′

2
pL ln z̄ + i

√
α′

2
Σn 6=0

1

n
ᾱnz̄

−n, (12.17)

Clearly, in this case, we have two independent propagators also:

x〈0|XR(z)XR(w)|0〉p = −α
′

2
ln(z − w), x〈0|XL(z̄)XL(w̄)|0〉p = −α

′

2
ln(z̄ − w̄). (12.18)

where we have used

[x0,L, pL] = i, [x0,R, pR] = i. (12.19)

This is good point to introduce the concept of vertex operator. These can be used to

compute interactions and scattering amplitudes in the low energy field theory associated

to any string. Let us define the normal ordered exponential of the compactified string
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coordinate defined above (we use the R sector but suppress the index R, and use kX for a

Lorentzian scalar product)

Vk(z) =: eikX(z) := eikX
−(z)eikX

+(z), satisfying x〈0|Vk(z)|0〉p = 1. (12.20)

Here we have used the following definitions (just as in QFT)

X+(z) :=
α′

2
p ln z + i

√
α′

2
Σn≥1

1

n
αnz

−n ⇒ X+(z)|0〉p = 0 (12.21)

X−(z) := x0 + i

√
α′

2
Σn≤−1

1

n
αnz

−n ⇒ x〈0|X−(z) = 0. (12.22)

Using the Baker-Hausdorff formula it is then rather simple to compute the product of two

such vertex operators located at two different points on the Euclidean world-sheet. We get

Vk1(z1)Vk2(z2) =: Vk1(z1)Vk2(z2) : e−[k1X+(z1),k2X−(z2)], (12.23)

where to get over-all normal ordering we had to flip the order of the two exponential factors

that were not normal ordered in the original product:

eik1X
+(z1)eik2X

−(z2) = e[ik1X+(z1),ik2X−(z2)]eik2X
−(z2)eik1X

+(z1). (12.24)

valid if the commutator in the exponent is a c-number (i.e., not an operator).

Then using the propagator result above, which is equal to the commutator in the exponent,

we see that

eik1X
+(z1)eik2X

−(z2) = (z1 − z2)
α′
2
k1·k2eik2X

−(z2)eik1X
+(z1). (12.25)

Thus the final answer for the operator product is

Vk1(z1)Vk2(z2) = (z1 − z2)
α′
2
k1·k2 : Vk1(z1)Vk2(z2) : . (12.26)

Comment:

It is an interesting fact that setting α′ = 2 and letting in one dimension (no µ indices)

the momenta be ±
√

2, the two vertex operators above together with the operator ∂zX(z)

generate the SU(2) Kac-Moody algebra which is an infinite dimensional version of the

ordinary SU(2) Lie algebra (with the three generators V0, V±)38. This kind of Kac-Moody

algebras are quite similar to the Virasoro algebra which, however, is not related to any Lie

algebra in the same way. In the heterotic string the gauge groups E8×E8 and SO(32) are

constructed in the same (from their root lattices).

38If you have studied Lie algebra representation theory you may recognise the momenta ±
√

2 as the root

lattice vectors of the Lie algebra SU(2). The full Kac-Moody algebra is obtained using vertex operator

techniques and mode expansions of the vertex operators V±
√
2(z) = Σn∈ZV

±
n z
−n and ”current” ∂zX(z) =

Σn∈ZHnz
−n. These operators give the level k = 1 SU(2) Kac-Moody algebra which general level k reads

[V +
n , V

−
m ] =

√
2Hn+m + knδn+m,0, [Hn, V

±
m ] = ±

√
2V ±n+m, [Hn, Hm] = knδn+m,0. (12.27)

Note that the zero mode (n=m=0) subalgebra is just the ordinary SU(2) Lie algebra.
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T-duality:

We should now try to understand the physical consequences of the structure of the zero

modes discussed above in the compactified closed string case. First we need the transverse

n = 0 Virasoro generator, using the right moving sector and the index split I = (i, 25),

L⊥0 =
1

2
αI0α

I
0 + Σ∞n=1α

I
−nα

I
n =

1

2
αi0α

i
0 +

1

2
α25

0 α
25
0 + Σ∞n=1α

I
−nα

I
n. (12.28)

Then using the ordinary relation between α0 and momenta, that is αi0 =
√

α′

2 p
i but in the

compactified direction α25
0 =

√
α′

2 (p− w), we find that

L⊥0 =
α′

4
pipi +

α′

4
(p− w)2 +N⊥. (12.29)

Similarly for the left moving sector we get

L̄⊥0 =
α′

4
pipi +

α′

4
(p+ w)2 + N̄⊥. (12.30)

The level matching condition L⊥0 = L̄⊥0 picks up new terms from the compactified direction:

L⊥0 = L̄⊥0 ⇒ α′pw = N⊥ − N̄⊥. (12.31)

Also the mass-square in the uncompactified directions will be affected by the compact

direction:

M2 = 2p+p− − pipi =
1

2
(p+ w)2 +

1

2
(p− w)2 +

2

α′
(N⊥ + N̄⊥ − 2), (12.32)

where the momenta in direction 25 has been moved over to the RHS. Combining these

momentum terms in M2 we get

M2 = p2 + w2 +
2

α′
(N⊥ + N̄⊥ − 2), (12.33)

The last step before we can discuss the physical implications is to replace p and w in the

level matching condition and mass formula by their eigenvalues p = n 1
R and w = m R

α′

where both m and n are integers:

M2 =
n2

R2
+
m2R2

α′2
+

2

α′
(N⊥ + N̄⊥ − 2), (12.34)

N⊥ − N̄⊥ = mn. (12.35)

State space in target spacetime with one S1 direction

In the following discussion the uncompactified part of spacetime is the part of interest to

us so we will set D = 1 + 24 and use indices µ, ν, ... = 0, 1, 2, ..., 24. The index value 25 is

suppressed from now on (as done already in the last formulas above).
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The ground state, i.e., the lowest level state, is obtained for (N, N̄) = (0, 0) and (n,m) =

(0, 0) where (n,m) are the eigenvalues of (p, w) in the compact direction:

|pµ; (0, 0)〉, M2 = − 4

α′
, T (x) : tachyon in 25 spacetime dimensions. (12.36)

The next level is a bit more interesting since it contains different kinds of states. This

happens since we can satisfy the new level matching condition in more than one way and

there are different kinds of oscillators:

1) N⊥ = N̄⊥ = 1 and n = m = 0 gives M2 = 0 (with either n or m non-zero we get

massive states)

αµ−1ᾱ
ν
−1|pµ; (0, 0)〉, αµ−1ᾱ−1|pµ; (0, 0)〉, α−1ᾱ

ν
−1|pµ; (0, 0)〉, α−1ᾱ−1|pµ; (0, 0)〉, (12.37)

corresponding to the massless metric, Kalb-Ramond and dilaton fields plus two massless

vector gauge fields and another scalar field. This set of fields is obtained by a direct field

theory compactification of the massless fields in D = 26 dimensions, that is, apart from

the dilaton, the metric and Kalb-Ramond field.

2) If n = ±1 AND m = ±1 then level-matching requires either (N⊥, N̄⊥) = (1, 0) or

(N⊥, N̄⊥) = (0, 1) in which case we get M2 = 0 for special values of the radius R. This

part of the spectrum is a pure string phenomenon and cannot be understood in terms of

the low-energy field theory:

αµ−1|p
µ; (±,±)〉, α−1|pµ; (±,±)〉, (12.38)

ᾱµ−1|p
µ; (±,∓)〉, ᾱ−1|pµ; (±,∓)〉. (12.39)

In all these cases the mass square is

M2 =
1

R2
+
R2

α′2
− 2

α′
= (

1

R
− R

α′
)2. (12.40)

This purely stringy result is very interesting since it implies that at the special value of the

radius R =
√
α′ the states are massless, and for all other values they are massive.

Thus for the particular value of the radiusR =
√
α′ we have four massless vector fields which

can be shown to generate an interacting Yang-Mills theory with gauge group SU(2)×U(1).

The trick the string is using to get this amazing result is to make use of the SU(2) vertex

operators and their Kac-Moody algebra we mentioned above39. This phenomenon that

appears only in string theory and only for the radius R =
√
α′ is called symmetry en-

hancement. This technique to generate Yang-Mills interactions in a closed string theory

39In general the Cartan subalgebra of the gauge group can be understood in the low-energy field theory

while the generators of the Lie algebra corresponding to roots (i.e., the step operators) are represented by

vertex operators.
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is also the basis of the heterotic string construction of the two possible gauge groups

E8 × E8 and SO(32)/Z2 for which the Cartan subalgebra is 16-dimensional (note that 16

= 26 -10).

T-duality: Finally we can address another (perhaps well-known) string phenomenon,

namely what happens when the radius R is inverted. Let us first define the T-duality

transformation and observe its effect on the mass spectrum of the closed string

T-duality: R→ R̃ :=
α′

R
, and m↔ n⇒M2(R; (n,m)) = M2(R̃; (m,n)). (12.41)

Since the spectrum as a whole is left invariant we can regard T-duality as a symmetry

transformation.

We should now recall the origin of R, namely that it is actually an expectation value

of the D = 24 scalar field g25,25. This field has no potential in D = 24 which means that

any value of R is possible and thus plays the role of a parameter in the D = 24 theory:

Such a parameter is called a modulus. In more complicated compactifications there may

be many scalars like this which then parametrise a space called moduli space. These

spaces play are crucial role in string theory and are also important objects in mathematics.

The physical implications of the facts above is that the string theory associated with a

given value of R ≤
√
α′ is by T-duality equivalent to a string theory with R̃ ≥

√
α′. In this

sense there is a minimal distance given by R̃ =
√
α′.

There is another way to express the T-duality by noting that m ↔ n means that p ↔ w.

Then we see from the mode expansions of XL(u) and XR(v) that the momentum terms

behaves as pL = p+w → +pL but pR = p−w → −pR. Extending this to the whole mode

expansions we may define T-duality as

XL → +XL, XR → −XR, or as (12.42)

X → X̃, where X = XL +XR, X̃ := XL −XR. (12.43)

Note that the T-duality transformation is a symmetry of the whole theory since the string

Hamiltonian is invariant and that this symmetry statement can be shown to be true also

at the interacting level (using vertex operators).
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12.2 Chapter 18: T-duality for open strings

The previous discussion of T-duality for the closed string led to some interesting results

about minimal distances and moduli spaces. When this concept is taken over to the open

string some new phenomena appear related to D-branes.

Recall the mode expansion we found in the previous discussion of a closed string with

a component taking values on the circle of a compactified dimension

X(τ, σ) = XL(τ + σ) +XR(τ − σ), (12.44)

where the two completely independent parts are

XL(u) =
1

2
(x0 + q) +

α′

2
(p+ w)(τ + σ) + i

√
α′

2
Σn6=0

1

n
ᾱne

−in(τ+σ), (12.45)

XR(v) =
1

2
(x0 − q) +

α′

2
(p− w)(τ − σ) + i

√
α′

2
Σn6=0

1

n
αne

−in(τ−σ). (12.46)

The eigenvalues of the momentum operators are

p =
n

R
, w =

mR

α′
, n,m ∈ Z. (12.47)

The spectrum of a closed string in a target space with one such compact dimension is

determined by

M2 = (
n

R
)2 + (

mR

α′
)2 +

2

α′
(N + N̄ − 2), (12.48)

N − N̄ = n ·m. (12.49)

This spectrum is T-duality invariant under the transformation

R→ R̃ :=
α′

R
, n↔ m. (12.50)

We note that this means that p→ w and w → p, or

pL = p+ w → pL, pR = p− w → −pR. (12.51)

Viewing these last two relations as part of the mode expansions it suggests that this result

should be extended to the whole mode expansions40, i.e.,

XL → XL, XR → −XR. (12.52)

Finally, we introduce a new string coordinate along with the usual one X = XL + XR,

namely

X̃ := XL −XR (12.53)

Now we use the results above for the compactified closed string to analyse the compactified

40This conclusion is important when checking T-duality when interactions are considered.
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open string with (N,N) bc on all 26 components Xµ. This open string we view as having its

ends attached to a space-filling D25-brane (thus filling up all 25+1 spacetime dimensions).

Such a string cannot have any winding modes in the mode expansion of any component,

including the compact 25th space dimension with X25 ∈ S1
R. This is because the ends are

free to move and any winding can therefore be undone. This situation is standard in all

uncompactified dimensions so we discuss now only X25, again dropping the 25. The mode

expansion for this open string X is obtained from the closed string mode expansion above

for X = XL +XR by setting all ᾱn = αn for all n ∈ Z. This gives

X = XL +XR = x0 + 2α′ p τ + i
√

2α′Σn 6=0
1

n
αn e

−inτ cosnσ, (12.54)

which is the same mode expansion as the one derived before for an open string with (N,N)

bc. In particular we find the cosnσ characteristic of these boundary conditions and the

zero modes operators x0, p where the momentum has discrete eigenvalues p = n
R . The N

bc can be written

∂σX| = ∂σ(XL +XR)| = 0⇒ (X ′L −X ′R)| = 0. (12.55)

We now come to the key point here. Performing a T-duality transformation we get

X = XL +XR → X̃ = XL −XR = q0 + 2α′ p σ +
√

2α′Σn6=0
1

n
αn e

−inτ sinnσ. (12.56)

Strangely enough, the T-duality transformation turns the (N,N) open string into a (D,D)

open string which is seen by the sin function in the oscillator part of the mode expan-

sion. The zero modes are now q0, p which are not operators (note that p multiplies σ

not τ) since the (D,D) open string expansion is obtained by identification q0 := x̄1 and

2α′p := 1
π (x̄2 − x̄1). The conclusion is then that a T-duality transformation transforms a

D bc into a N bc and vice versa. In the case studied here the D25 brane is transformed

into a D24 brane by the T-duality transformation.

Note also that the open string after T-duality from X ∈ S1
R to X̃ ∈ S1

R̃
gives

X̃(τ, σ = π)− X̃(τ, σ = 0) = 2π α′ p = 2π α′
n

R
= 2πR̃n. (12.57)

This open string has its two ends fixed at the D-brane having a fixed position on the S1
R̃

and can therefore have winding, here given by the integer n in the above formula.

The perhaps simplest way to see the change of boundary conditions is as follows

N bc : ∂σX| = ∂σ(XL +XR)| = (X ′L −X ′R)| = 0→ (X̃ ′L + X̃ ′R)| = ∂τ X̃| = 0 : D bc.

(12.58)
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13 Lecture 15

A nice way to approach string theory if we want to understand the physics content of it

is to derive its low energy effective field theory. This can be viewed as an approximation

obtained by letting the energy (in, e.g., some physical scattering amplitude) get smaller

and smaller whereby the string shrinks (due to tension) and starts behaving like a field

theory based on point particle excitations, i.e., it looks more and more like a QFT. The

natural length scale to relate such limits to is the Planck energy.

In this lecture we will develop some insight into the nature of the low energy effective

field theories of the open string massless fields, which we have seen live on the D-brane.

We will be concentrating on the vector gauge field Aµ(x) where x are coordinates on the

D-brane. After an initial discussion of boundary conditions and moving D-branes, we

turn to non-linear aspects which are of two kinds: 1) Non-linear Maxwell fields, i.e., Born-

Infeld theory, and 2) Yang-Mills fields from intersecting stacks of D-branes, which is the

topic of the next lecture where the Standard Model is (partly) extracted from string theory.

We start with a general discussion of the action functional of the effective field theory

which will be denoted as

Seff [gµν , ...., Aµ, ...;α
′, gs, ...], (13.1)

where we have added the dependence of the theory on the parameters, gs and α′, as well as

other possible ones called moduli. These latter ones are VEVs of the (many) scalar fields

appearing in the string theory, e.g., various radii after compactification. As for the fields we

note that there are terms in Seff which are integrals over all ten dimensions (we will have

in mind superstrings in the following discussions), as in the Einstein-Hilbert term, but also

integrals over the dimensions of various D-branes where the vector fields live. Note that

the vector fields that arise from the 10D metric when compactifying are of a different nature.

As discussed previously, the string loop-expansion is associated with the Euler number

χ = 2−2g where g is the genus of a closed Riemann surface related to a given closed string

loop-diagram (a ”plumbing” diagram). When we include D-branes into this discussion

the open strings are related to Riemann surfaces with boundaries and the Euler number

changes to41

χ = 2− 2g − b, b is the number of disconnected boundaries. (13.2)

This implies that while the Einstein-Hilbert term comes with a factor 1/g2
s as we have

argued for in a previous lecture, D-brane terms are related to Riemann surfaces with one

boundary and hence come with a factor 1/gs (at tree level). There is another kind of branes

in string theory coming from the (NS,NS) sector which are dual to the fundamental string

41Is it possible to add yet another term, the number of cross caps, relevant for closed strings without

orientation on the world-sheet. E.g., the sphere with one cross cap is a Möbius strip and with two cross

caps it becomes a Klein bottle.
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(they have a magnetic charge under the Bµν field, recall the previous discussion of electric

and magnetic D-brane charges). These NS5-branes come instead with a factor 1/g2
s which,

however, cannot be explained by this new Euler number since these branes are not related

to open strings.

One important feature of this action functional is that it is a dubbel sum

Seff [gµν , ...., Aµ, ...;α
′, gs, ...] = Σn(α′)nΣχ g

−χ
s Seffχ,n . (13.3)

As mentioned previously these terms can in principle be computed using 1) vertex operators

or 2) world-sheet beta-functions. However, due to the enormously complicated structure

of the higher derivative terms only a few of them are known. Note that the counterterm

expansion in ordinary gravity theories (with no more than two derivatives in the classical

Lagrangian) is a power series in Newton’s constant G
(10)
N = g2

s(α
′)4.

In the context of D-branes and their effective low-energy field theories we will in this

lecture, however, use another method to argue for the non-linear version of Maxwell theory

that the string generates. Thus we are seeking SeffD−brane[Aµ] to lowest order in gs and see

what this means for the α′ dependence.

Comment: The higher derivative terms in the effective action of course means that the

theory is not power-counting renormalisable, not even if we neglect all the gravitational

interactions (see below). However, this is not a problem since string theory is finite, i.e.,

all string loop integrals are finite42 at both UV43 and IR44 limits of the loop-momenta.

This is equivalent to the fact that the coefficients in the gravity counterterm expansion,

which need experiments to be determined in Einstein’s gravity theory, are all determined

in string theory (but very hard to compute).

13.1 Chapter 19: Electromagnetic fields on D-branes

We start by recalling the action describing how the open string couples to a Dp-brane:

(with xm (m = 0, 1, ..., p = (0, i)) being coordinates on the Dp-brane)

S[X] =

∫
dτdσLNG(Ẋ,X ′) +

∫
dτ Am(X)∂τX

m|σ=π −
∫
dτ Am(X)∂τX

m|σ=0. (13.4)

We can interpret this by associating to each end of the string an electric charge that couples

to the Maxwell vector potential living on the D-brane where the open string ends.

42See Ed Witten, ”Perturbative Superstring Theory Revisited” (see end of Introduction), hep-

th/1209.5461.
43This is due to the modular invariance of loop-amplitudes, see e.g. Shapiro Phys. Rev. D5 (1972) p.

1945-8 and the books by Green, Schwarz and Witten.
44See the penultimate footnote.
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Consider now the simplest possible field strength of Am, namely that with a constant

Fmn. As usual we have F0i = −Ei and Fij = Bij . As is well-known from previous courses

one can choose a gauge where the vector potential is simply linear in the coordinates

An =
1

2
xm Fmn. (13.5)

Then we insert this vector potential into the action above and perform the usual steps to

find the boundary conditions from Hamilton’s principle. We get, indicating by S[X;Fmn]

the dependence on the constant ”parameters” Fmn,

S[X;Fmn] =

∫
dτdσLNG(Ẋ,X ′) +

1

2

∫
dτ FmnX

mẊn|σ=π −
1

2

∫
dτ FmnX

mẊn|σ=0.

(13.6)

The vanishing of the variation of the action under δXµ (i.e., in all µ directions) gives

δS =

∫
dτdσ(

∂L
∂Ẋµ

δẊµ +
∂L
∂X ′µ

δX ′µ) (13.7)

+
1

2

∫
dτ FmnδX

mẊn
∣∣∣σ=π

σ=0
+

1

2

∫
dτ FmnX

mδẊn
∣∣∣σ=π

σ=0
= 0. (13.8)

As usual we must now integrate by parts to move the derivatives away from the variations

(in the first line and 2nd term in the 2nd line). This gives, dropping the boundary terms

in the τ direction)

δS = −
∫
dτdσ

(
∂τ (

∂L
∂Ẋµ

) + ∂σ(
∂L
∂X ′µ

)

)
δXµ (13.9)

+

∫
dτ

∂L
∂X ′µ

δXµ
∣∣∣σ=π

σ=0
+

∫
dτ FmnδX

mẊn
∣∣∣σ=π

σ=0
= 0. (13.10)

So, δS = 0 implies the usual string world-sheet field equation from the bulk term above (1st

line) and from the 2nd line we get the usual boundary result for the directions orthogonal

to the D-brane (µ 6= m) but a new kind of boundary condition in the D-brane directions

(µ = m)
∂L
∂X ′m

+ FmnẊ
n = 0 at σ = 0, π. (13.11)

or, after gauge fixing,

X ′m − 2πα′ FmnẊ
n = 0 at σ = 0, π. (13.12)

This result means that the usual N bc now, due to the vector field living on the D-brane,

is mixed up with the D bc (sometimes called Robin boundary conditions).

Let us now try to see what the physics of these new boundary conditions is. Consider

first the magnetic case (m = (0, i))

Fmn : F0i = 0, Fij 6= 0⇒ X ′0 = 0, X ′i 6= 0 at σ = 0, π. (13.13)

As an example we set F23 = B. Then

X ′2 = 2πα′B Ẋ3, X ′3 = −2πα′B Ẋ2 at σ = 0, π, (13.14)
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which tell us that for B = 0 both X2 and X3 have N bc and for B =∞ they both have D

bc, and for other values of B they satisfy Robin bc. Note that for B =∞ the D b.c. seems

to say that there are D(p− 2)-branes oriented orthogonally to the X2 and X3 directions.

Let us now discuss the electric case: F0i 6= 0 for one direction, i = 25 say, and Fij = 0.

Then

X ′0 = −2πα′ F0,25Ẋ
25 = 0, X ′25 = −2πα′ F25,0Ẋ

0 = 0 at σ = 0, π. (13.15)

Setting E = 2πα′ F25,0 we can write these equations as (X25 := X and X0 = −X0)

X ′ 0 − EẊ = 0, X ′ − EẊ0 = 0 at σ = 0, π. (13.16)

These equations have a rather surprising interpretation. To see this we express them

in terms of light-cone coordinates on the world-sheet, that is σ± = τ ± σ, which imply

∂± = 1
2(∂τ ±∂σ) and hence that ∂τ = ∂+ +∂− and ∂σ = ∂+−∂−. Replacing the derivatives

above by these ∂± derivatives the equations become

∂+X
0 − E∂+X = ∂−X

0 + E∂−X,
−E∂+X

0 + ∂+X = E∂−X0 + ∂−X. (13.17)

Solving these equations for ∂+X
0 and ∂+X gives

∂+

(
X0

X

)
=

(
1+E2
1−E2

2E
1−E2

2E
1−E2

1+E2
1−E2

)
∂−

(
X0

X

)
. (13.18)

Splitting the X0 and X into their left and right moving parts this equation becomes

∂+

(
X0
L

XL

)
=

(
1+E2
1−E2

2E
1−E2

2E
1−E2

1+E2
1−E2

)
∂−

(
X0
R

XR

)
. (13.19)

Consider a situation where both X0 and X have a N bc, i.e., X ′0 = X ′ = 0. Written in

terms of ∂± derivatives the N b.c.s read

∂+

(
X0

X

)
= ∂−

(
X0

X

)
, (13.20)

which after splitting into left and right parts reads

∂+

(
X0
L

XL

)
= ∂−

(
X0
R

XR

)
, (13.21)

which in fact corresponds to the E equation above for E = 1.
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Let us now perform a T-duality transformation XL → XL and XR → −XR and use

the definition X̃ = XL −XR. Then the N bc equation for X0 and X becomes

∂+

(
X0

X̃

)
=

(
1 0

0 −1

)
∂−

(
X0

X̃

)
. (13.22)

This equation confirms what we have seen above, namely that a T-duality flips a N bc to

a D bc, or the other way around.

However, the purpose of the exercise done above is to argue that having a non-zero electric

field given by E present when doing the T-duality will result in an equation which looks

relativistic: This fact will then be used to claim that E = β. The end result is hence that

E2 ≤ 1, a fact that will have profound implications for the Lagrangian and for how the

electric field enters it (see next part of this lecture). So before turning to the construction

of this Lagrangian let us finish the argument that tells us that E = β.

Recall that doing a T-duality transformation in the standard situation with E2 = 0 re-

sults in a D(p− 1)-brane sitting at rest at some point along the circle S1
R̃

as we saw from

the mode expansion of X̃ above. Turning on the electric field E then implies that the

D(p − 1) starts to move around the circle with velocity β = E . To see this, we write the

last formula above in terms coordinates (Y 0, Ỹ ) that are a boosted version of (X0, X̃), i.e.,

∂+

(
Y 0

Ỹ

)
=

(
1 0

0 −1

)
∂−

(
Y 0

Ỹ

)
, with

(
Y 0

Ỹ

)
=

(
γ(X0 − βX̃)

γ(−βX0 + X̃)

)
= M(β, γ)

(
X0

X̃

)
.

(13.23)

This gives

∂+

(
X0

X̃

)
= M−1

(
1 0

0 −1

)
M∂−

(
X0

X̃

)
. (13.24)

If we now T-dualise back to (X0, X) with (N,N) bc on the original circle S1
R, this equation

becomes

∂+

(
X0

X

)
= M−1

(
1 0

0 −1

)
M

(
1 0

0 −1

)
∂−

(
X0

X

)
. (13.25)

Doing the matrix multiplications give directly the following result

∂+

(
X0
L

XL

)
=

(
1+β2

1−β2
2β

1−β2

2β
1−β2

1+β2

1−β2

)
∂−

(
X0
R

XR

)
. (13.26)

This is exactly the formula we derived above but then for E instead of the relativistic

velocity β of the D(p− 1) brane moving on the S1
R̃

-circle. Thus we conclude that

E = 2πα′E = β. (13.27)

In an analogues way we can establish the fact that using a non-zero magnetic field Fij = Bij
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in the plane spanned by Xi and Xj instead of an electric one F0i = Ei the boost is replaced

by a space rotation between the two directions involved.

13.2 Chapter 20: The non-linear Born-Infeld dynamics

There is a very strange, and not very often used, old result by Born and Infeld from 1934

that cures the infinite self-energy problem in electrodynamics. The Born-Infeld theory is a

non-linear version of the ordinary linear Maxwell theory, and being non-linear it does not

seem fundamental and cannot be part of a renormalisable QFT. However, in string theory

the effective low-energy Lagrangian is certainly not renormalisable as a QFT theory, even

if gravity is neglected (it is highly non-linear in any field appearing in the Leff ). So one

may in fact wonder if the somewhat strange Born-Infeld theory could play a role in string

theory by being part of Leff . We will see below that this is indeed exactly what happens.

To get some understanding of the non-linear Born-Infeld theory we start by looking at

electromagnetic field inside a material that have charges that can move and create effects

like polarisation, screening etc. The standard way to treat this situation in EM is to start

by introducing the usual vector potential Aµ and its field strength Fµν = ∂µAν − ∂νAµ.

Thus the Bianchi identities for the electric field E and the magnetic B are satisfied:

∇×E = −1

c
∂tB, ∇ ·B = 0. (13.28)

The equations of motion are sourced by the free currents and charges in the material

that are not involved in the polarisation, screening etc. These latter effects are instead

taken care of by introducing the ”effective” fields D and H satisfying the ordinary-looking

Maxwell equations

∇ ·D = ρfree, ∇×H =
1

c
jfree +

1

c
∂tD. (13.29)

Here the sources (ρfree, jfree) describe the charges and currents that move in the back-

ground of the polarised and screened medium. However, these dynamical equations are

potentially non-linear due to the relation to the fundamental fields in the Bianchi identi-

ties

D = D(E,B), H = H(E,B). (13.30)

These relations are determined by experiments for the system under study.

In Lorentz covariant notation we can summarise these equations as

∂[µFνρ] = 0, ∂νG
µν =

1

c
jµfree. (13.31)

The field strengths Fµν and Gµν are related to E,B and D,H, respectively, as usual in EM.

The Lagrangian description of these equations gives further insight. Since we don’t know
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the non-linear relations also the Lagrangian is unknown. So a general variation of the

action functional

S[Aµ] =

∫
dDxL(Fµν) +

1

c

∫
dDxAµj

µ
free, (13.32)

under δAµ to find the field equations gives (dropping boundary terms)

δS[Aµ] =

∫
dDx

1

2

∂L
∂Fµν

δFµν +
1

c

∫
dDxjµδAµ =

∫
dDx

(
∂ν(

∂L
∂Fµν

)+
1

c
jµfree

)
δAµ (13.33)

So the field equations obtained from δS[Aµ] = 0 becomes identical to the ones above for

Gµν if we set

Gµν = − ∂L
∂Fµν

. (13.34)

We should now try to understand how to construct general Lagrangians which are non-

linear in the field strength Fµν . To respect Lorentz invariance L must be a function of the

two scalar invariants

s := −1

4
FµνFµν =

1

2
(E2 −B2), (13.35)

p := −1

4
F̃µνFµν = −1

4
(
1

2
εµνρσFρσ)Fµν = E ·B. (13.36)

That these two invariants are the only ones is perhaps surprising if the argument is based

on Fµν but is clear using E and B.

Born-Infeld theory

We are ready to construct the non-linear generalisation of Maxwell theory known as the

Born-Infeld theory. Recall how we found that D-branes could be seen to move on the

T-dualised circle if an electric field E was introduced on the D-brane before performing

the T-dualisation (inversion of the circle radius). The velocity was found to be given by

electric field by E = 2πα′E = β. The fact that β < 1 (special relativity) means therefore

that also E < 1 and that E has a maximal value.

This last property can be implemented in the Lagrangian in analogy with relativistic me-

chanics (the square root) as done by Born and Infeld

LBI = −
√
−det(ηµν + Fµν) + 1. (13.37)

First, this Lagrangian is clearly Lorentz invariant since a Lorentz transformation Λµ
ν gives

ηµν +Fµν → Λµ
ρΛν

σ(ηρσ +Fρσ) = Λµ
ρ(ηρσ +Fρσ)ΛTσν . The invarians of −det(ηµν +Fµν)

then follows from the product rule for determinants and that det Λ = 1. But also det Λ =

−1 is OK since this determinant appears squared. An especially nice feature of this Born-

Infeld Lagrangian compared to other generalisations is that LBI can be used in any space-

time dimension D.

A second property of LBI is that since det(ηµν + Fµν) = det(ηTµν + F Tµν) = det(ηµν − Fµν)
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the field strength must appear squared in one writes out the whole
√
−det(ηµν + Fµν) as

a power series in Fµν .

Thirdly, the form of LBI has been designed to be precisely a non-linear generalisation

of the ordinary Maxwell theory. This means that in a small-field expansion the first term

must be the Maxwell term −1
4F

µνFµν . Clearly the addition of 1 to the square root means

that the first term in the expansion is F 2. The way to perform the expansion is to write,

in matrix form, det(η + F ) = det η det(1 + Fη−1) and perform the expansion in powers of

(Fη−1)µ
ν .

In D = 4 dimensions LBI can be written as follows45

LD=4
BI = −

√
1− 2s− p2 + 1, (13.38)

where s and p are defined above. It is then obvious that the first term is ordinary Maxwell

theory since LBI = s+O(s2, p2) = −1
4F

µνFµν +O(F 4).

To see what the physical implications are we use the fact, mentioned above, that the Born-

Infeld theory eliminates the infinity in the electron self-energy. This is easily demonstrated:

(we denote energies in the two cases EEM and EBI , and |E| = E etc)

Maxwell: EEM ∼
∫ ∞
r=0

d3rE2 ∼
∫ ∞
r=ε

dr r2(
1

r2
)2 ∼ 1

ε
→∞ as ε→ 0. (13.39)

For the Born-Infeld theory this calculation changes dramatically since the energy is now

given by EBI ∼ ED. This is also the case in Maxwell theory but there D = E. The reason

the energy is EBI ∼ ED comes from the fact that to make LBI dimensionally correct we

have to insert a constant, b with dimension 1/L2, as follows (for B = 0)

LD=4
BI = −b2

√
1− E2

b2
+ b2. (13.40)

In the self-energy context we are only interested in large field values in the r → 0 limit. To

study this we need the Born-Infeld Hamiltonian (recall from above that D is the ”canonical

momentum” of ”velocity” E)

HBI = E ·D− LBI = b2
√

1 +
D2

b2
− b2. (13.41)

Finally we can take the large field limit to get the Born-Infeld self-energy, the value of HBI ,

HBI ∼ b|D| ⇒ EBI ∼ b
∫ ∞
r=0

d3r|D| ∼ b
∫
r=ε

dr r2(
1

r2
) ∼ finite as ε→ 0. (13.42)

Note that for a point charge inside a medium D(r) = −∇Qfree
4πr . It is also important to

find out what the physical meaning of b is. One can in fact compute D (the canonical

45In a very recent development a further one-parameter generalisation of the Born-Infeld theory was

found that is also electro-magnetic duality invariant, see Bandos et al, hep-th/2007.09092.
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momentum of E) from the Lagrangian and solve the equation you get for E. The result is

E2 = D2

(
b2

b2 +D2

)
. (13.43)

This equation is interesting since it shows that |E| cannot exceed the value b:

Born-Infeld: |E| ≤ b := Emax. (13.44)

The value of b = Emax is determined by the physical system under study.

The Born-Infeld self-energy can in fact the computed exactly (see BZ) for a point charge.

Using
∫∞

0 dx(
√

1 + x4 − x2) = (Γ(1/4))2

6
√
π

the finite result is (with an approximate value for

the definite integral) it becomes in a string context (see below)

Eself−energyBI ∼ 1

4π
· 1.748

Q2

√
α′Q

. (13.45)

This should be compared to the usual infinite (as a→ 0) result in Maxwell theory

Eself−energyMaxwell ∼ 1

4π
· 3

5

Q2

a
with a point like charge in the limit a→ 0. (13.46)

In string theory the Born-Infeld theory is relevant for Dp-branes as we saw above and must

involve the only dimensionfull constant α′ so

LDp = −Tp(gs)
√
−det(ηmn + 2πα′Fmn). (13.47)

Several comments are needed:

1) The factor 2πα′ makes the whole expression under the square root dimensionless.

2) The term b2, or +1, in previous versions of the Lagrangian is not present here since

setting Fµν = 0 should give the energy stored in the D-brane without any fields on it.

3) The stored energy in 2) comes from the tension as indicated by the coefficient Tp(gs)

with dimension [energy/volume] = L−(p+1).

4) In the context of the string Polyakov path integral the comment was made that the

dependence of gs is determined by the Euler number χ = 2 − 2g − b (g = genus = #loops

and b = #boundaries) as (gs)
−χ. Thus computing the coefficient of the Einstein-Hilbert

action in spacetime at tree level, i.e., from the genus zero closed Riemann surface having

g = 0 and thus χ = 2, we get the result 1
g2s

∫
dDxR. D-branes are in a similar way related

to open strings and hence Riemann surfaces with one boundary. At tree level (g=0) this

gives χ = 1 and therefore

Tp(gs) ∼ g−1
s . (13.48)

Using α′ to get the dimension correct, the final answer is

Tp(gs) =
1

gs(2π)p(α′)(p+1)/2
. (13.49)
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Comments:

1) The gs = g2
YM dependence of the brane tension Tp(gs) is the one obtained for instantons

or solitons in ordinary Yang-Mills field theories. These objects are solutions of the classical

field equations which are considered as non-perturbative from a QFT point of view (similar

to bound states in QFT, see Peskin and Schroeder pages 148 - 153). The characteristic

feature of such solutions is that their energy goes to infinity as the coupling constant goes

to zero.

2) The results obtained are all for Maxwell like fields, i.e., Fµν is not a matrix (as in Yang-

Mills theory) which makes the square root rather ease to handle. In the case of an N -stack

of D-branes we know from previous discussions that the Maxwell theory is replaced by a

Yang-Mills theory based on the gauge group U(1)×SU(N). Unfortunately, this makes the

development of a Born-Infeld like theory very much more complicated and it is in fact not

yet known how to obtain such a theory in a constructive way.

3) It is interesting to note that the first of the previous comments does not seem to have an

analogue in M-theory. The second one, on the other hand, is believed to have an analogue

but it is not understood exactly how it would work mathematically. There are results for

M2-branes ending on one M5-brane leading to a closed string theory (instead of a Maxwell

type field theory) living on the M5-brane. In the case of a stack of M5-branes this little

string theory is based on gauge groups which are simply-laced, i.e., An, Dn and E8,

known as the ADE classification. Since the ”little string theory” consists of closed strings

it should contain gravitons which is not possible on an M-brane. This, and many other

strange features, has made it very hard to understand and construct explicit versions of

such little string theories. The final answer is believed to involve a supersymmetric CFT

theory in the 1+5 dimensional world-volume of the M5-brane denoted (2,0)CFT6
46. A

funny aspect of such theories is that they must contain a gauge field that couples to a

string, that is a Kalb-Ramond field Bµν . Furthermore, this field must have a self-dual field

strength H+
µνρ and hence there is no simple Lagrangian formulation for it in 1+5 spacetime

dimensions (similar to the situation forG+
µ1...µ5 in type IIB supergravity in 1+9 dimensions).

Another huge problem is that it is enormously tricky to write down interaction terms for

any kind of Kalb-Ramond fields.

4) Dp-branes can also have a Polyakov type formulation which can be generalised to curved

Dp-branes described by the Dirac-Born-Infeld action47

S
(p)
DBI = −Tp(gs)

√
−det(g + 2πα′F), (13.50)

which combines the Nambu-Goto and Born-Infeld ideas. So, here g refers to the induced

metric gmn = ∂mX
µ∂nX

ν gµν and F to the stringy field strength Fmn = Fmn − Bmn.

The Polyakov version of these S
(p)
DBI actions are in general quite tricky to derive (see last

footnote).

46It is known from a theorem proved by W. Nahm in Nucl. Phys. B135 (1978) p. 149 (see also p. 6 in

Cordova et al hep-th/1602.01217 or S. Minwalla hep-th/9712074) that there are no superconformal theories

in higher dimensions than 6.
47See, e.g., Cederwall et al hep-th/9606173.
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14 Lecture 16

The purpose of this final lecture is to briefly introduce some ideas that are useful in bringing

string theory closer to real physical systems: brane world scenarios and the AdS/CFT

correspondence. Both require a lot deeper understanding of string theories than is pro-

vided in this course so the following introductions to these subjects will be brief and many

results will not be derived in detail. It should be said in this context that the AdS/CFT

correspondence is far from being proved but an enormous amount of scattered results in-

dicate that it is true. It was discovered by Juan Maldacena in 1997, see hep-th/9711200,

a paper which now (Dec. 2020) has over 20.000 citations. There have been, however,

holographic ideas floating around in physics prior to Maldacena’s paper but his paper was

certainly the first step towards a new and very deep aspect of string theory.

The swampland program

A more recent attempt to connect quantum gravity, or string theory, to the Standard

Model and other kinds of theories used in our description of the universe is the swampland

program. In this approach to extract physics from quantum gravity one aims at formulating

conditions on field theories without gravity which, if satisfied, make it possible to couple

them to quantum gravity in a consistent way. Some of these conjectures can be (almost)

proven from string theory but most cannot so these conditions are generally referred to

as swampland conjectures. If a field theory satisfies all these conjectured conditions it

ends up in the ”nice area”, i.e., the landscape, otherwise it belongs to the huge number of

bad theories in the swampland. This philosophy is also highly relevant for the applications

of AdS/CFT to strongly coupled condensed matter systems. We end this brief account

with some examples of swampland conjectures:

Example 1: The weak gravity conjecture (WGC): Gravity is the weakest of all forces48.

Example 2: There are no global symmetries. This is actually a known feature of string

theory and is, e.g., relevant when discussing the B − L global symmetry of the Standard

Model.

Example 3: There are no stable non-supersymmetric AdS vacuum solutions49. This is

presently under heavy debate but no accepted counter examples are yet known.

Example 4: There are no stable (or semi-stable) de Sitter solutions at all50. This conjec-

ture will clearly have profound implications if true! Remember that our universe is known

from observations to be de Sitter.

48See ”The string landscape, black holes and gravity as the weakest force” by Arkani-Hamed, Motl,

Nicolis and Vafa, hep-th/0601001.
49See ”Non-supersymmetric AdS and the swampland” by Ooguri and Vafa, hep-th/1610.01533.
50See ”de Sitter space and the swampland” by Obied, Ooguri, Spodyneiko and Vafa, hep-th/1806.08362.
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14.1 Chapter 21: String theory and particle physics (briefly)

Here the idea is to present a string theory setup that generates several features possessed

by the Standard Model used in elementary particle physics in 1+3 dimensional Minkowski

space. To do this we will consider string theories with the following properties51:

1) Superstrings are needed to get spacetime fermions. Note that there are no Yang-Mills

fields in the theory in D = 10 unless we use heterotic strings.

2) We need six compact dimensions to get from D = 10 to D = 4. To make it as simple as

possible we use T 6 and define the split xM = (xµ, xm) with

xm = (x4, ...., x9) ∈ (S1)6 = T 6 where all circles have the same radius R: xm ∼ xm+2πR.

(14.1)

3) We need several different N -stacks of D-branes to get at least a U(1)× SU(2)× SU(3)

gauge group. Note that each non-abelian factor comes with a separate U(1) factor.

4) Since we would like to use the Yang-Mills theories living on the D-brane stacks to

give the usual Standard Model gauge fields, our 1+3 dimensional spacetime must fit into

the Dp-branes, i.e., p ≥ 3. We will use D6-branes, and hence type IIA strings, for reasons

explained below. Note that there are therefore no Yang-Mills fields in this theory in D = 10.

5) These different stacks of D6-branes must have the 1+3 dimensional spacetime as com-

mon directions, i.e., they must be intersecting D-branes with 1+3 spacetime intersections.

As an example consider the following two stacks (using the 10=4+6 split M = (µ,m)):

M = + - 2 3 4 5 6 7 8 9

D61 N N N N N D N D N D

D62 N N N N D N D N D N

Since N bc represent a direction within a Dp-brane we see that XM for M = µ = +,−, 2, 3
are common to both of these stacks of D6-branes which, furthermore, are orthogonal in

the remaining 6 torus directions. Note the alternating assignments of N and D b.c.s on

T 6. We will also place the D6-branes at the ”origin” of T 6, i.e., the D61-branes sit at

x5 = x7 = x9 = 0 and D62-branes sit at x4 = x6 = x8 = 0.

6) Three (or more) families may be obtained using strings that wind around the target

space circles in T 6.

51The duality relations between different string theories, and M-theory, indicate that Standard Model

like models should be possible to find in all string/M theories. And indeed, several other type of derivations

of Standard Model physics are known. Among the more intriguing ones is the compactification of D = 11

M-theory on so called G2-manifolds leading to supergravity theories in D = 4 AdS or Minkowski space

with one supersymmetry which is what is needed for the MSSM beyond the Standard Model theory.
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This particular setup makes it possible to set T 6 = T 2(45) × T 2(67) × T 2(89), where

the compact dimensions of each two-torus are given in the bracket. We can then represent

each two-torus by a square with its sides identified and the axes corresponding to one

dimension from each of the two stacks of D-branes, the x-direction from the D61-branes

and the y-direction from the D62-branes. So an open string stretching from D61 to D62

will appear in each of these three T 2 diagrams as a curve from some point on the x-axis

to the some point on the y-axis (avoiding the origin to make the situations clear). As has

been discussed previously the mode expansion of such DN or ND-strings are tied to the

intersection point and will in fact stay close to it due to their own tension. The low energy

fields will therefore ”live on the intersection” which is our 1+3 dimensional spacetime.

Also, since the orthogonal stacks of D6-branes have different gauge groups the ends of these

strings will have charges corresponding to different representations of the gauge group in

question. If we denote as [12] a string that starts at the D61, which we choose now to be a

2-stack, and ends at the D62, which we decide is a 3-stack, then open superstring massless

Ramond states will be spacetime spin 1/2 fields charged as indicated by the indices on ψaA
where a is a 2-dimensional irrep of SU(2) and A is a 3-dimensional irrep of SU(3). This set

of irreps is possessed by the left-handed (u, d)L type quarks in each family of the Standard

Model.

These charges are actually coming from the collection of open strings with one end on

each of the branes in the weak 2-stack and the other end on each of the branes in the

strong 3-stack in all possible ways. That is, if we denote the two branes in the 2-stack as

+ and −, and the three branes in the 3-stack as blue, green and red we get all the six

possible fermionic fields in ψaA. Furthermore, since the two ends of a string have opposite

charges we define a σ = π end to have charges red, blue and green and a σ = 0 end

to have charges anti-blue, anti-green and anti-red. The former set of three charges

transform as the irrep 3 under the strong, or color, group SU(3) and latter set as the

irrep 3̄. The situation is the same for the 2-stack where the charges (+,−) transform

as the irrep 2 under the weak SU(2). In QM we know this irrep as spin-1/2. One differ-

ence between SU(2) and SU(3), however, is that the anti-(+,−) irrep is the same as (+,−).

This way of assigning charges to fermion fields in spacetime can be carried over to the

NS sector and its massless vector fields. The counting then leads to N2 gauge fields and

thus to the gauge groups we have identified before, namely U(1) × SU(N). We can then

immediately identify one interesting fact: Since we must use one 3-stack and one 2-stack

it seems unavoidable to get two U(1) gauge fields. This might mean one of two things:

1) Either there exist more complicated versions of these string models that remove the ex-

tra Maxwell field (which it does) with the remaining one playing the role of hypercharge

gauge field, or

2) the Standard Model really must be extended with another Maxwell field to be consistent

with string theory and hence with quantum gravity (such U(1) fields are being looked for
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e.g. at CERN and analysed theoretically in many many papers).

Families:

In order to get also the remaining fermions in the Standard Model (leptons etc) one has to

introduce a number of other D6-branes in a rather complicated way. This can however be

done. The issue which is of a slightly different nature is how to get more than one family,

and perhaps also to understand why the number of families is exactly three. The number

of families can be connected to winding numbers on the three 2-torii in T 6 used above.

Higgs:

Spontaneous symmetry breaking is easy get by separating the branes in some of the stacks

(as discussed previously) but getting the potential needed for the Higgs field is tricky.

Some different approaches giving physics in D = 4 Minkowski space:

1) Type IIA on T 6 with D6 -branes → SM without susy.

2) Het(E8 × E8) on Calabi-Yau → MSSM (one susy)

3) M-theory on G2-manifolds with singularities → MSSM (one susy)

Moduli stabilisation:

This is one of the most important issues in string theory when trying to make contact with

ordinary physics. It is also one of the currently most studied questions as part of the search

for de Sitter solutions52 and more generally as part of the swampland program.

We will here discuss the moduli stabilisation problem in one of the most simple, but yet

important, situations: How is the radius of a compact circle dimension determined by the

string? A follow-up question is: Can this be generalised to all other moduli?

Consider the Kaluza-Klein compactification we studied in the first week of the course:

D = 5 gravity on S1
R → D = 4.

The radius is actually a scalar field R(x) in D = 4 since the metric ansatz for the com-

pactification reads (using the 5=4+1 split xM = (xµ, y) and setting gµ5 = 0)

ds2
D=5 = gMNdx

MdxN = gµνdx
µν + g55(x)dy2. (14.2)

In the last term we can let y ∈ [0, 2πR0] with a fixed R0. Then the physical radius of the

circle is (remember that g55 is dimensionless)

R(x) = 2πR0 · g55(x). (14.3)

52 A very interesting comment on this problem appeared very recently in Gia Dvali hep-th/2012.02133:

There may be a fundamental clash between string theory, being defined in terms of its perturbation expan-

sion and S-matrix, and de Sitter, which does not have an S-matrix since its space is compact.
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So the question is how to get a fixed value of the radius, that is 〈R(x)〉. This situation is

very similar to how the Higgs effect works so we need to find a potential V (R(x)) for the

D = 4 scalar field R(x). However, this compactification does not give rise to a potential

(see home problem 1). In this case all values of 〈R(x)〉 are equally good and thus provides a

parameter in the space of solutions, that is, a modulus. Can we improve on this situation

and get a potential?53

To get a non-zero potential V (R(x)) we go up one dimension and consider KK from D = 6

on Σ2 to D = 4 where the 2-dimensional compact internal space Σ2 is a Riemann surface

with genus g (a multi-hole torus) and Euler number χ = 2−2g. Without going through the

rather long calculation starting from (with the 6=4+2 split XM = (xµ, ym) and gµn = 0)

ds2
D=6 = gMNdx

MdxN = gµν(x)dxµdxν +R(x)ḡmn(y)dymdyn, (14.4)

where ḡmn is a fixed sized metric on Σ2, we just state the result that we now do get a

potential:

Vg(R) = −ag
χ

R4
, ag > 0. (14.5)

So using the theory of Riemann surfaces (the first implication below uses χ = 2 − 2g) we

get information about the potential (second implication) and the behaviour of R:

g = 0 ⇒ χ = 2⇒ Vg(R)< 0⇒ R→ 0,

g = 1 ⇒ χ = 0⇒ Vg(R) = 0⇒ R = modulus,

g > 1 ⇒ χ< 0⇒ Vg(R) > 0⇒ R→∞. (14.6)

Although the situation improved since we did get a non-zero potential it did not stabilise

the radius R, i.e., this V (R(x)) does not have a global or local minimum giving a finite

value for 〈R(x)〉. To obtain a potential with this property it must contain more terms. One

possibility is to use fluxes. (This is a very hot research topic today in exactly this context.)

The word ”flux” refers here to a gauge field, that is a p-form, which when integrated over

a closed p-surface gives an integer, the flux through the surface. Using Gauss’ law in

d = 3 to compute the magnetic charge inside a closed 2-surface is a well-known example:

Qm = 1
4π

∫
S2

1
2F

ijdaij . Let us denote, as usual, the integrand as B2. Then

1

4π

∫
Σ2

B = n, |B| ∼ n

R2
. (14.7)

This flux |B| gives a contribution to the energy, in fact the potential energy, E ∼ R2B2

where B2 is the usual energy density in EM and R2 comes from the ”volume” of Σ2. Thus

the new potential is

Vflux(R) = af
n2

R6
, (af > 0). (14.8)

53It has become a tradition in string theory to call also scalar fields VEVs that have a non-zero potential

for mudulii.
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The final R6 in the denominator arises from R2B2 ∼ n2

R2 multiplied by 1
R4 coming from

the fact that one has to make a Weyl-transformation (gµν → f(R)gµν) to end up with an

Einstein-Hilbert term in D = 4 without a function of R multiplying it.

Thus the new potential is

Vnew(R) = −ag
χ

R4
+ af

n2

R6
, (ag, af > 0). (14.9)

The situation (when n 6= 0) for stabilisation has changed:

g = 0 ⇒ χ = 2⇒ Vnew(R) ⇒ one global minimum for finite R⇒ R stabilased!,

g = 1 ⇒ χ = 0⇒ Vnew(R) > 0⇒ global minimum as R→∞,
g > 1 ⇒ χ< 0⇒ Vnew(R) > 0⇒ global minimum as R→∞. (14.10)

de Sitter universe? The current attempts to obtain a de Sitter universe in string theory

rely heavily on proving that all modulii can be fixed at values where the potential gives a

negative cosmological constant. The swampland program seems to have a lot say here but,

unfortunately, mostly in a negative way.
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14.2 Chapter 23: The AdS/CFT correspondence (briefly)

In his 1997 paper The large-N limit of superconformal field theories and supergravity” Juan

Maldacena gave a proposal for the answer to the question:

Question: There seems to exist two different descriptions of D-brane physics without

gravity. What does this mean?

Let us review these two descriptions giving non-gravitational physics in the case of D3-

branes54:

1) Open string picture: open strings ending on N-stacks of D3-branes

a) U(N) = SU(N)× U(1) Yang-Mills theory.

b) Conformal invariance in 1+3 dimensions, i.e., SO(2, 4) (or superconformal).

c) Dimensionless parameters N and gYM .

d) Relevant objects: Gauge invariant operators like OF 2 = Tr(FµνF
µν).

2) Closed string picture: Solutions in supergravity

The basic parameters in superstring theory are: ls =
√
α′ and gs together with size param-

eter R when we consider compactifiactions as we do here, namely AdS solutions. Note that

the parameter R determines the size of both the spacetime AdS and the internal manifold

which is a sphere in the discussion here. This kind of supergravity solutions have not been

discussed before in this course. What we need to know here is that in, e.g., by setting

Fµνρσ ∼ εµνρσ in D = 11 supergravity one rather easily obtains a D = 4 a maximally sym-

metric solution which is AdS4×S7. In type IIB a similar procedure leads to an AdS5×S5

solution. In all such cases (there are several others) the size of both factor manifolds is

given by the same parameter R as noted above. This is sometimes a problematic property

known as the scale separation problem. Of course, we also assume that the Newton’s

constant is given in terms of these string parameters as shown previously in the course. The

relevance of these comments become clear when we now analyze the solution of interest here.

Let us return to the charged brane solutions in supergravity discussed previously in the

course. Remember that supergravity comes from the (NS,NS) sector of the closed su-

perstring. This time the discussion concerns the 1+3 dimensional solution of type IIB

supergravity: (using the split 10 = 4 + 6 with xM = (xµ, ym), and r = |y|)

ds2(p = 3) = H−1/2(r)dx2 +H1/2(r)dy2, H(r) = 1 +
r4

0

r4
, (14.11)

G5 =
1

gs
dx0 ∧ dx1 ∧ dx2 ∧ dx3 dH−1. (14.12)

where both dx2 and dy2 are flat (Lorentzian and Euclidean, respectively).

54The fact that D-branes correspond to solutions in supergravity with Ramond-Ramond charges was

discovered in 1995 by Polchinski, see hep-th/9510017.
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In order to check the properties of the solution

ds2(p = 3) = H−1/2(r)(−dt2 + dx2) +H1/2(r)(dr2 + r2dΩ2
5), H(r) = 1 +

r4
0

r4
, (14.13)

close to the horizon we take r → 0: (H(r)→ r40
r4

)

ds2(p = 3)→ ds2|horizon = (
r0

r
)−2(−dt2 + dx2) + (

r0

r
)2(dr2 + r2dΩ2

5). (14.14)

Now we change variables to z = r2
0/r. This gives (note that dr2/r2 = dz2/z2)

ds2|horizon =
r2

0

z2
(−dt2 + dx2) + r2

0

dz2

z2
+ r2

0dΩ2
5. (14.15)

If this metric is written ds2|horizon =
r20
z2

(−dt2 + dx2 + dz2) + r2
0dΩ2

5 we see that the first

part is the metric of AdS5 and the second one the metric of S5. Thus

ds2|horizon ∼ ds2(AdS5 × S5). (14.16)

Comment: The AdS5 metric that arises close to the horizon above is a particularly sim-

ple version, known as the Poincaré metric. It does, however, not cover the whole of

the manifold AdS5. The simplicity becomes clear when computing the affine connection

and the Riemann tensor. This metric has its boundary at z → 0 (the horizon above was

obtained for z → ∞) which shows that the AdS boundary geometry is D = 4 Minkowski

space.

Exercise: Compute the Riemann tensor of the Poincaré metric above using xµ = (x0, x1, x2, x3, z).

Comment: The appearance of AdS5 × S5 at the horizon demonstrates the close rela-

tion of this solution to solitons55. A simple example of a soliton is the solution of the

Klein-Gordon field equations in 1+1 dimensions with a potential that has two local minima

at φ± = ±φ0: Solitons are then solutions which interpolate between these two minima:

φ(x → +∞) → φ+ and φ(x → −∞) → φ−. Such solutions have energy stored in the

region around the origin where the function ∂xφ(x) is non-zero. The supergravity solu-

tion discussed here interpolates in a similar fashion between the two background solutions

D = 10 Minkowski for r →∞ and AdS5×S5 for r → 0. The stored energy in the D-brane

supergravity solution is given by the mass M (see below).

The AdS/CFT correspondence:

The task now is to understand how features on one side enter the other side of the corre-

spondence. Let’s start with the conformal symmetry SO(2, 4).

55Solitons were discovered by J.S. Russell in Edinburgh in 1834 when riding along a narrow channal he

saw a solitary wave top moving for a long distance seemingly without loosing energy.
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A) SO(2, 4): That this symmetry is present on both sides is clear from what has been

said above. For the D3-brane it is the conformal symmetry and close to the horizon it

is the isometry of AdS5 . Note also the curious fact that the boundary of AdS5 is the

compactified version of 1+3 dimensional Minkowski space. This word compactified is not

related to Kaluza-Klein but means instead that all points at spatial infinity in D = 4

Minkowski space are identified thereby changing its topology to R × S3, while remaining

flat. This can be checked by taking z → 0 above.

B) From before we know that gs = g2
YM .

C) We must also relate R in the supergravity solution AdS5×S5 to the parameters on the

other side N and gYM . Since these latter ones are both dimensionless it is actually the

dimensionless ratio R/ls we should consider. Here arises a crucial question: Are we using

R� ls ⇒ strings moving in a large AdS5 × S5, (14.17)

or

R� ls ⇒?????(hard to describe) (14.18)

Clearly it is the first case we are dealing with in the current discussion of AdS/CFT .

However, the other case is extremely important too as we will see below. So, how do we

find the relation between R/ls and N and gYM?

We know that in D = 10 Newton’s potential from the brane solution above is given by

V (r) = −G
(10)
N M

r4
which is dimensionless since it is related to the g00 component of the

metric. Define then r0 by

r4
0 = G

(10)
N M. (14.19)

In terms of stringy parameters we know from before that

1) G
(10)
N = g2

s l
8
s , and

2) for an N -stack of D3-branes (assuming this is the source of the solution) that the mass

is M = N · T3 where the D3-brane tension is T3 = 1/(gsl
4
s). Thus

r4
0 = gsNl

4
s ⇒

r4
0

l4s
= gsN = g2

YMN := λ. (14.20)

Here we need two clarifications: 1) r0 is the parameters giving the scale, or ”size”, of

the geometry of the supergravity solution, and thus of both factors in the close horizon

geometry AdS5 × S5. Hence r0 := R, the parameter used above. Thus

(
R

ls
)4 = g2

YMN := λ. (14.21)

We then see that R � ls implies g2
YMN := λ � 1. The second clarification therefore

concerns λ and the meaning of it.

The ’t Hooft parameter λ:
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That g2
YMN := λ naturally appears in the above discussion is very interesting. λ is called

the ’t Hooft parameter and was introduced by ’t Hooft when trying to develop an alterna-

tive to the usual perturbation expansion in terms powers of gYM , in particular for gYM � 1

when this expansion breaks down. The idea is as follows. Consider an SU(N) Yang-Mills

theory with a field strength F = dA + gYMA
2 (schematically). By absorbing one factor

of gYM into the gauge field Aµ the Lagrangian density becomes (the trace is over the Lie

algebra matrices)

L = − 1

4g2
YM

Tr FµνF
µν = −N

λ
Tr FµνF

µν , where now F = dA+A2. (14.22)

From the last form of the Lagrangian we conclude that the propagator is ∼ λ
N while the

three-point and the four-point vertices are both proportional to N
λ . Any Feynman diagram

will then behave as

Diagram ∼ (
λ

N
)E · (N

λ
)V ·NF , (14.23)

where E (edges) is the number of propagators, V the number of vertices and F is the

number of faces. This last concept corresponds to a loop inside a diagram and that it

gives a factor N is seen as follows: Recall that since the gauge field Aµ is Lie algebra valued

we can express it in some irrep (the lower i index, and anti-irrep the upper j index) of

SU(N) as

Aµ = Aaµ (T a)i
j ⇒ Draw the propagator as two // lines with arrows in opposite directions.

(14.24)

Any loop in a diagram will then appear as a closed line with an arrow on it. Such a closed

index-line generates a trace in the expression for the loop hence the factor NF for the

general diagram above with F loops.

What ’t Hooft realized next was that this result can be expressed as a Riemann sur-

face genus expansion which we already have encountered in the context of the string loop

expansion. In the present case we have

(
λ

N
)E · (N

λ
)V ·NF = NV−E+F λE−V = Nχ λE−V , (14.25)

where we have made use of the observation that χ = V − E + F is just the Euler number

for a Riemann surface (a multi-genus 2-torus). It is then possible to define a perturbative

genus expansion in 1/N for large N and fixed λ of any size. In terms of gYM this new

series may even contain non-perturbative information.

We can now summarise the relations between the AdS5 × S5 type IIB string parameters

ls =
√
α′, gs, R and the Yang-Mills ones gYM , N found above:

gs = g2
YM , (

R

ls
)4 = g2

YM N = λ. (14.26)
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Comment: Using G
(10)
N = g2

s l
8
s , derived in string theory above, and the definition of the

Planck length G
(10)
N = l8P the above relations gives rise to another interesting relation (see

below):

(
lP
R

)4 =
1

N
. (14.27)

Having established the basic relations between the parameters on the two sides we can

start asking what they mean and how they can be used in actual physics applications.

The discussion above concerns the identification of two ”classical” objects, the D-branes in

open string theory and the extremal charged brane solutions in supergravity from closed

strings. So far there is nothing new compared to the work of Polchinski who discovered this

relation. What Maldacena added was that it must be possible to also identify the physics

of the low energy excitations in the two cases.

The crucial parameter in the following is the ’t Hooft parameter λ = gsN = g2
YMN .

We will discuss the physics of the low energy excitations in the two limits λ = gsN � 1

and λ = gsN � 1 and try to find the physics that is disconnected from gravity (that is,

the Yang-Mills sector). One key point here is that low energy now refers to energies much

smaller than the Planck energy while in the previous discussion the energy did not play

a role at all. Energy is normally related to scattering amplitudes and particle momenta

and not to solutions of field equations. Also important here is ”taking the limit in energy”

must be done in terms of a dimensionless parameter, namely E ls in the D-brane case and

E lp in the supergravity case.

λ = gsN � 1: The excitations here are clearly the U(N) gauge fields of stack of D-

branes. This field theory is weakly coupled when λ = gsN = g2
YM N � 1 for any value

of (non-zero) N . There is a gravitational field generated by the stack which can have its

own excitations. These excitations interact with themselves and with the matter fields

(here the Yang-Mills fields). The strength of these interactions is determined by G
(10)
N ,

or lp, so we must design another limit that takes these interactions to zero while keeping

the Yang-Mills interactions small but finite. The gravitational interactions are however

given at low energies by E/Ep which is very small. This is also true for the interactions

between gravity and the fields on the branes. Thus the physical system in this case is just a

weakly interacting Yang-Mills theory on the branes plus free gravity excitations in the bulk.

λ = gsN � 1: The gravitational potential between the branes in the stack is governed by

R which we determined above to be (R/ls)
4 = gsN = λ � 1. This strong gravity will

collapse the stack of D-branes into a bound state which is naturally described as a black

brane solution of the field equations, here the ones in supergravity coming from the closed

strings. The low energy excitations in this case can only be closed string field excitations

on the background of the black brane-solution.
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There are two fundamentally different situations that one must analyse carefully:

1) R� ls and 2) R� ls, or λ� 1 and λ� 1. However, both systems above should exist

for any value of λ, or of gs and N , which means that there is a duality, or correspondence,

between them for any values of these parameters. The problem is that this statement is

very hard to check since one system is simple in one of the λ limits and the system is simple

in the pother limit. We will now make this more precise and useful by defining a particular

kind of dubble limit: Large N and low energy.

1) R � ls: This is the case studied by Maldacena in the limit of large N . Here the

Yang-Mills system is strongly coupled (λ fixed but large) but the other side can be made

weakly coupled and therefore useful computationally. The above relations tell us immedi-

ately that when N →∞ the string coupling constant gs → 0. This eliminates the gs power

series leaving only the first term. The other limit of low energy then implies that α′E2 → 0.

The implications of these two limits is best seen by looking at the general structure of the

low energy effective action

Seff = Σm,n(α′)m(gs)
n Sm,neff , (14.28)

where the gs power series corresponds to the string loop expansion and the α′ one to the

world-sheet loop expansion which corresponds in turn to an expansion of Seff in powers of

the Riemann tensor and other fields with derivatives in them. In fact, the actual dimen-

sionless expansion parameter in this is α′E2 or α′∂µ∂ν . So we conclude that in Seff only

the first term gives a significant contribution and all loop and higher derivative terms can

be neglected. The remaining theory has weakly coupled Einstein-type classical gravity (for

large but finite λ).

2) R � ls: In this limit the situation for the two systems is the opposite one. The

Yang-Mills system since λ is small but the other gravity side is strongly coupled which is

seen by the fact that R� ls.

The Maldacena correspondence described above is somewhat unclear about how the cor-

respondence can be used since it is not specified in a mathematical way. This necessary

additional information is provided stringent form of the correspondence developed by Wit-

ten56, Gubser, Klebanov and Polyakov57. It is stated in terms of the field theory partition

functions (path integrals) on the entire AdS, i.e., including the boundary. Then the corre-

spondence can be expressed as the equality

ZAdS(φ̄ = J) = ZCFT (J). (14.29)

Here the RHS is the generating functional of correlation functions of gauge invariant op-

erators 〈O1...On〉 which can obtained from ZCFT (J) by taking derivatives 〈O1...On〉 =

56For a discussion of the partition functions and AdS boundaries, see Ed Witten ”Anti de Sitter space

and holography” hep-th/9802150.
57See hep-th/9802109.
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δ
δJ1
.... δ

δJn
ZCFT (J)|J=0. On the LHS one has an on-shell theory (low energy string theory

on AdS) which is obtained by solving the field equations for all fields in AdS. This means

that the boundary conditions of all these fields must be specified, here as φ̄ = J . This way

it is possible to set the two partition functions equal to each other58.

Higher spin theories:

Finally we comment on the case R� ls in a different limit, namely keeping R fixed while

letting R/ls → 0: This case is much less understood than the previous one since it is really

very stringy and hard to express in field theory terms. Here we are concerned with small

λ which means that α′ is large and that in the derivative expansion all terms start to be

equally important. However, in the limit α′ → ∞, the tension T goes to zero and all

massive string states become massless. The theory is strongly believed to become a field

theory called higher spin theory. Such theories have been developed on their own right

and it is known that they must contain massless gauge fields for all values of the spin from

one to infinity, possibly also with scalar fields. These higher spin theories are also believed

to exist on AdS spacetimes with a CFT boundary.

58Clearly boundary conditions imposed on fields in AdS will play a key role here. A nice introduction to

this subject can be found in Marolf and Ross, hep/th-0606113.
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15 Topics for small projects

This section is divided into two parts:

1. Topics based on problems in Part 2 of BZ’s book.

2. Topics for slightly more advanced projects going beyond the BZ book.

15.1 ”Small projects” based on chapters in Part II of BZ

Chapter 15: D-branes and gauge fields

Project on orientifolds: Solve problem 15.4 in BZ.

Reading instructions: The mathematics in this chapter is rather easy except perhaps for

the discussion of how gauge groups and gauge fields arise. Try to get a visual picture of

the various open strings connecting D-branes of different kinds and how the vector states

build up non-abelian gauge fields, i.e., Yang-Mills theories, on the branes. This property

of the open string is crucial for the rest of the course.

Chapter 16: String charge and D-brane electric and magnetic charges

Project on string charges and Kalb-Ramond fields: Solve problems 16.3 and 16.4 in BZ.

Reading instructions: The string charge is discussed in detail in this chapter but D-brane

charges are not. This latter topic will however be expanded upon in the lecture!

Chapter 17: T-duality of closed strings

Project on dualities in T 2 compactifications: Solve problems 17.4, 17.5 and 26.3 in BZ.

Reading instructions: The message of this chapter should be fairly clear namely that circle

compactifications related by T-duality, i.e., by letting the radius R → α′

R , are physically

equivalent! One important example is provided by type IIA and IIB superstrings (why?

See chapter 18!).

Chapter 18: T-duality of open strings

Project on effects of T-duality: Solve problems 18.2, 18.5 and 18.6 in BZ.

Reading instructions: The effects of T-duality is now more complicated since Dp-branes

are affected (p can change!). Explain in detail how this can happen and how it relates to

the T-duality connection between type IIA and IIB string theories. Sections 18.2, 18.3 and

18.4 contain a lot of nice stuff on U(1) gauge theory and Wilson loops. However, I will

only require that you know the bottom line of this discussion namely that T-duality leads

to D(p-1) branes at fixed position on the T-duality circle and the consequences of this fact

mentioned at the end of sect. 18.4 in connection with eqs 18.56, 18.57 and 18.58. The

derivation of these results are part of the project problems in this chapter!

Chapter 19: EM fields on D-branes

Project on moving strings in electric fields: Solve problems 19.2 in BZ.

Reading instructions: Sections 19.1 and 19.2 deal with electric fields on D-branes and con-
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tain all that we need from this chapter. In section 19.3 the analysis is repeated for magnetic

fields. It is very similar but a bit more complicated.

Chapter 20: Born-Infeld dynamics

Project on Born-Infeld and strings ending on D-branes : Solve problems 20.6 and 20.7 in

BZ.

Reading instructions: You can skip the magnetic discussion on page 444 which is based on

section 19.3.

Chapter 21: String theory and particle physics

Project : Solve problem 21.3 in BZ. (Requires a bit more work than the other Part 2

problems.)

Reading instructions: Read sections 21.1 - 21.3 carefully and try to understand what goes

on in section 21.4. Sections 21.5 and 21.6 (you can skip pages 484 (from eq 21.70) to

489 (up to Quick calc 21.20)) are very important for a basic understanding of the current

landscape research a topic referred to as ”the swampland conjectures”.

Chapter 22 Black holes: Not part of the course.

Chapter 23: AdS/CFT

Project on AdS/CFT: Solve problem 23.x in BZ (decided together with the student).

Reading instructions: This is a rather difficult chapter and is included to give the student

a rough idea what AdS/CFT is and what it can be used for. The main point is the duality

between strongly and weakly interacting theories in the bulk and on the boundary of AdS.

Chapter 24: Covariant quantisation

Project: Solve problem 24.2 in BZ.

Reading instructions: This chapter makes more sense if (the last) section 24.6 is studied

first!

Chapter 25 String interactions and Riemann surfaces: Not part of the course.

Chapter 26 Loop amplitudes: Not part of the course.
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15.2 Advanced projects

The OPE, i.e., the ”operator product expansion”, is something that is familiar from any

basic QFT course (maybe without being called OPE) which takes a particular simple form

in CFT in two dimensions for instance on the string world-sheet. Consider any operator

in string theory Wick rotated to Euclidean signature. Then τ and σ can be used to form

a complex coordinate z = eτ−iσ and we are interested in computing the product of two

normal ordered operators, e.g., two stress tensors, at the two points z and w. The OPE is

obtained by writing the product in over-all normal ordered form (as when computing the

contraction in QFT) followed by a Taylor expansion of the z dependence around the point

w assuming that |z| > |w|. The final answer of the OPE is usually given by writing out ex-

plicitly the singular terms as z → w which contain (almost) all the interesting information.

This is rather easily done in most cases and it provides an amazingly efficient method to

obtain a number of important results. In this set of advanced problems this method should

be used in problems 1 - 4 and 10 below.

1. Deriving the Virasoro algebra using CFT

2. Scattering amplitudes: the 4-tachyon vertex

1) Derive the form the closed string coordinates Xµ(τ, σ) take after Wick rotation done

by replacing τ by −iτ . Write the answer Xµ(z, z̄) as a power series in z = eτ−iσ and

z̄ = eτ+iσ.

2) Use the commutation relations for the zero modes xµ, pµ and the oscillators αµn and ᾱµn
to compute the contraction of Xµ(z, z̄)Xµ(w, w̄) by just writing the product in over-all

normal ordered form as usually done for scalar fields in any QFT course. The answer is

the contraction, or propagator, of Xµ(z, z̄). Note that to do the infinite sum one must

assume that |z| > |w|. Hint: Do the split Xµ(τ, σ) = Xµ(+)(τ, σ) +Xµ(−)(τ, σ) where the

(+) part contains the momentum operator pµ and all the annihilation operators while the

(−) part contains position operator xµ and all the creation operators. Then the vacuum is

defined by Xµ(+)(τ, σ)|0〉p = 0 where |0〉p is the zero momentum eigenstate as in ordinary

QM times all the harmonic oscillator ground-states.

3) Next consider the tachyon vertex operator V (z, z̄) :=: eikµX
µ(z,z̄) : where kµ is the mo-

mentum (not an operator) of the tachyon. The normal ordered expression is by definition

the product of two exponentials the first one containing Xµ(+)(τ, σ) and the second an-

nihilation Xµ(−)(τ, σ) just as in scalar QFT. Now the task is to compute the product of

two such normal ordered vertex operators which is done by writing the product in over-all

normal ordered form using the Baker-Hausdorff (BH) formula eAeB = e[A,B]eBeA applied

to the exponentials that are not automatically in normal ordered form. This form of the

BH formula is valid when [A,B] commutes with both A and B.

4) Generalise the result in 3) to the product of four vertex operators and take the vacuum

expectation value of the answer between p〈0| and |0〉p. You will need the fact that a mo-

mentum eigenstate can be written |k〉p = eikµx
µ |0〉p.
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3. OPE and conformal dimensions

Compute the OPE between the stress tensor T (z) and a vertex operator V (z, z̄) in the

following cases:

1) V T
k (z, z̄) =: eikµX

µ(z,z̄) :

2) V g
k (z, z̄) =: εµν∂X

µ∂̄XνeikρX
ρ(z,z̄) :

3) What can we say about the mass of the particles in space-time associated to these vertex

operators if we require that (h, h̄) = (1, 1)?

4) Find the physical states that correspond to the operators in a) and b).

4. OPE in the bosonic string ghost sector and dimension of space-time

The propagator for the (anti-commuting) b, c system is obtained from their operator prod-

uct

b(z)c(w) =: b(z)c(w) : +
1

z − w
, for |z| > |w|. (15.1)

The expression for the ghost stress tensor reads

T (z) =: (∂b(z))c(z) : −2∂(: b(z)c(z) :). (15.2)

1) Compute the OPE between two such stress tensors. This is best done using Wick’s

theorem.An OPE is what results from an operator product if the answer is expanded in a

power series close the pole.

2) Interpret the result in terms of the dimension of space-time required to keep the confor-

mal symmetry of the world-sheet theory intact (i.e., the conformal anomaly should vanish)

at the quantum level.

5. Unitary representations of the Virasoro algebra

Show that the Virasoro algebra has unitary representations only for

1) c > 0 (Note: strictly larger than zero)

2) h ≥ 0 where h is the eigenvalue of L0

6. Weyl-rescalings and the duality between M-theory the type IIA string

1) Derive the formula relating the Ricci tensors for two metric fields related by a Weyl-

rescaling.

2) Then compactify the bosonic part of the supergravity M-theory Lagrangian and in

D = 11 to D = 10.

3) Use the Weyl-rescaling formula to relate the obtained result to both the Einstein frame

and string frame formulations.

4) Show that strong coupling in D = 10 leads to the ”opening up” of the eleventh dimen-

sion.

7. Kaluza-Klein compactification: d=11 to d=4 on S7

1) Derive the bosonic field equations in M-theory from the Lagrangian (given).

2) Show that assuming the background geometry to be a product of 4d Minkowski and a

round S7 manifold solves the field equations. Hint: Assume that the background value of

the 4-form is < Hµνρσ >= 3m2εµνρσ where the epsilon is a tensor, not a density.
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8. AdS/CFT with scalar fields in the AdS bulk

Consider an uncharged scalar field of mass m in a D-dimensional anti-de Sitter (AdSD)

spacetime.

1) Derive the behaviour of the scalar field at the boundary of AdSD, i.e., at radial infinity.

The answer should be in terms of ∆± = d
2 ±

√
(d2)2 +m2L2 where L is the AdS scale

parameter.

2) What is the meaning of the two answers ∆±?

3) What does ”alternative” boundary conditions mean and how can one obtain these from

the ”standard” ones?

9. Superstrings and supersymmetry on the world-sheet

In this problem we develop the superstring world-sheet theory in two steps. To get fermions

in the spacetime spectrum of a string theory it must contain fermions on the world sheet. In

the so called NSR (Neveu-Schwarz-Ramond) formalism one introduces world-sheet fermions

ψµ which are spacetime vectors like the bosonic string Xµ but contrary to the these latter

ones the ψµ are also world-sheet spinors having two complex components. The spinor in-

dex will not be written explicitly unless absolutely necessary. To eliminate the effect of the

µ = 0 when quantising Xµ and ψµ (leading to negative norm states in Hilbert space) we

need local symmetries on the world-sheet, coordinate invariance in τ, σ for X0 and local

supersymmetry for ψ0.

1) As a first step show that the action for the super-pair Xµ, ψµ on a flat world-sheet

S[Xµ, ψµ] = − 1
2πα′

∫
dτdσ(1

2η
αβ∂αX

µ∂βX
νηµν + i

2 ψ̄
µρα∂αψ

νηµν), (15.3)

has a global supersymmetry (dropping boundary terms) under

δXµ = iε̄ψµ, δψµ = ραε∂αX
µ, (15.4)

where ε is anti-commuting constant spinor parameter and the two-dimensional Dirac ma-

trices ρα satisfy {ρα, ρβ} = 2ηαβ and can be chosen as follows in terms of usual Pauli

matrices

ρ0 = iσ2, ρ1 = −σ1,⇒ ρ̄ := ρ0ρ1 = −σ3. (15.5)

The Dirac conjugate above is defined as usual ε̄ := ερ0 etc. Note that for this supersym-

metry to work the fermions must be subjected to a constraint. What is this constraint?

2) The action with the required local supersymmetry is more complicated written in

Polyakov form with a bosonic part involving the independent metric hαβ plus fermionic

terms for ψµ and the superpartner of hαβ (with spin=2), the so called Rarita-Schwinger

field χα (with spin=3/2):

S[Xµ, ψµ, hαβ, χα] = − 1
2πα′

∫
dτdσ

√
−h(1

2h
αβ∂αX

µ∂βX
νηµν + i

2 ψ̄
µρα∂αψ

νηµν

− i
2 χ̄αρ

βραψµ(∂βX
ν − i

4 χ̄βψ
ν)ηµν). (15.6)
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A new aspect of this action is that it contains Dirac matrices which in a general coordinate

invariant formulation requires ”viel-bein” fields since Dirac matrices are only defined in flat

space, the tangent space at each point. Thus ρα := ρaea
α where ρa are written in tangent

space with a flat index, now denoted a, and the ”zwei-bein” ea
α satisfies ηabea

αeb
β = hαβ.

Instead of proving the local supersymmetry of this action the task here is to derive the

constraints from it: one is a new version of the constraint familiar from the bosonic string

(related to the vanishing of the stress tensor) and one is an entirely new anti-commuting

constraint coming from the Rarita-Schwinger field equation.

10. Vertex operators, OPEs and the SU(2) Kac-Moody algebra

1) Derive the operator product of the vertex operators and the current which defines the

SU(2) Kac-Moody algebra.

2) The OPE version of the result in 1).

3) Mode expand the result in 2) and find the usual oscillator form of the SU(2) Kac-Moody

algebra.

11. The Virasoro algebra from OPEs

1) Derive the operator product of two stress tensors for the holomorphic sector of the

bosonic string, e.g., a compactified component of Xµ(z).

2) Get the OPE version of the result in 1) by expanding the answer close to the pole.

3) Find the usual form of the Virasoro algebra in terms of the expansion coefficients Ln of

the stress tensor by a mode analysis of the formula obtained in 2).

12. The super-Virasoro algebra from OPEs

Repeat the three steps to get the Virasoro algebra in the previous problem for the holomor-

phic sector of the NSR superstring. This gives a graded algebra called the super-Virasoro

algebra consisting of both commutators and anti-commutators for the generators Ln, Fn or

Ln, Gr.
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