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ABSTRACT

The Kaluza-Klein idea of extra spacetime dimensions continues to per-
vade current attempts to unify the fundamental forces, but in ways somewhat
different from that originally envisaged. We present a modern perspective
on the role of internal dimensions in physics, focussing in particular on su-
perstring theory. A novel result is the interpretation of Kaluza-Klein string
states as extreme black holes.
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1 The Kaluza idea

Cast your minds back to 1919. Maxwell’s theory of electromagnetism was

well established and Einstein had recently formulated his General Theory

of Relativity. By contrast, the strong and weak interactions were not well

understood. In searching for a unified theory of the fundamental forces,

therefore, it was natural to attempt to merge gravity with electromagnetism.

This Kaluza [1] was able to do through the remarkable device of postulating

an extra fifth dimension for spacetime. Consider Einstein’s theory of pure

gravity in five spacetime dimensions with signature (−, +, +, +, +). The line

element is given by

dŝ2 = ĝµ̂ν̂dx̂µ̂dx̂ν̂ (1)

where µ̂ = 0, 1, 2, 3, 4 and all hatted quantities are five-dimensional. Kaluza

then made the 4 + 1 split

ĝµ̂ν̂ = eφ/
√

3

(

gµν + e−
√

3φAµAν e−
√

3φAµ

e−
√

3φAν e−
√

3φ

)

(2)

where x̂µ̂ = (xµ, y), µ = 0, 1, 2, 3, and all unhatted quantities are four-

dimensional. Thus the fields gµν(x), Aµ(x) and φ(x) transform respectively

as a tensor, a vector and a scalar under four-dimensional general coordinate

transformations. All this was at the classical level, of course, but in the mod-

ern parlance of quantum field theory, they would be described as the spin

2 graviton, the spin 1 photon and the spin 0 dilaton3. Of course it is not

3This was considered an embarassment in 1919, and was (inconsistently) set equal to
zero. However, it was later revived by Jordan [4] and Thiry [5] and subsequently stimulated
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enough to call Aµ by the name photon, one must demonstrate that it satisfies

Maxwell’s equations and here we see the Kaluza miracle at work. After mak-

ing the same 4 + 1 split of the five-dimensional Einstein equations R̂µ̂ν̂ = 0,

we correctly recover the not only the Einstein equations for gµν(x) but also

the Maxwell equation for Aµ(x) and the massless Klein-Gordon equation for

φ(x). Thus Maxwell’s theory of electromagnetism is an inevitable conse-

quence of Einstein’s general theory of relativity, given that one is willing to

buy the idea of a fifth dimension.

2 The Klein idea

Attractive though Kaluza’s idea was, it suffered from two obvious drawbacks.

First, although the indices were allowed to range over 0, 1, 2, 3, 4, for no

very good reason the dependence on the extra coordinate y was suppressed.

Secondly, if there is a fifth dimension why haven’t we seen it? The resolution

of both these problems was supplied by Oskar Klein [2] in 1926. Klein insisted

on treating the extra dimension seriously but assumed the fifth dimension to

have circular topology so that the coordinate y is periodic, 0 ≤ my ≤ 2π,

where m is the inverse radius of the circle S1. Thus the space has topology

R4 × S1. It is difficult to envisage a spacetime with this topology but a

simpler analogy is provided by a hosepipe: at large distances it looks like a

line R1 but closer inspection reveals that at every point on the line there is

Brans-Dicke [6] theories of gravity. As we shall see, the dilaton also plays a crucial role in
superstring theory
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a little circle, and the topology is R1 × S1. So it was that Klein suggested

that there is a little circle at each point in four-dimensional spacetime.

Let us consider Klein’s proposal from a modern perspective. We start

with pure gravity in five dimensions described by the action

Ŝ =
1

2κ̂2

∫

d5x̂
√

−ĝR̂ (3)

Ŝ is invariant under the five-dimensional general coordinate transformations

δĝµ̂ν̂ = ∂µ̂ξ̂
ρ̂ĝρ̂ν̂ + ∂ν̂ ξ̂

ρ̂ĝρ̂µ̂ + ξ̂ρ̂∂ρ̂ĝµ̂ν̂ (4)

The periodicity in y means that the fields gµν(x, y), Aµ(x, y) and φ(x, y) may

be expanded in the form

gµν(x, y) =
n=∞
∑

n=−∞
gµνn(x)einmy,

Aµ(x, y) =
n=∞
∑

n=−∞
Aµn(x)einmy,

φ(x, y) =
n=∞
∑

n=−∞
φneinmy (5)

with

g∗
µνn(x) = gµν−n(x) (6)

etc. So (as one now finds in all the textbooks) a Kaluza-Klein theory describes

an infinite number of four-dimensional fields. However (as one finds in none of

the textbooks) it also describes an infinite number of four-dimensional sym-

metries since we may also Fourier expand the general coordinate parameter
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ξ̂µ̂(x, y) as follows

ξ̂µ(x, y) =
n=∞
∑

n=−∞
ξµ

n(x)einmy

ξ̂4(x, y) =
n=∞
∑

n=−∞
ξ4

n(x)einmy (7)

with ξ̂∗µ̂
n = ξ̂µ̂

−n.

Let us first focus on the n = 0 modes in (5) which are just Kaluza’s

graviton, photon and dilaton. Substituting (2) and (5) in the action (3),

integrating over y and retaining just the n = 0 terms we obtain (dropping

the 0 subscripts)

S =
1

2κ2

∫

d4x
√−g[R − 1

2
∂µφ∂µφ − 1

4
e−

√
3φFµνF

µν ] (8)

where 2πκ2 = mκ̂2 and Fµν = ∂µAν − ∂νAµ. From (4), this action is invari-

ant under general coordinate transformations with parameter ξµ
0, i.e (again

dropping the 0 subscripts)

δgµν = ∂µξ
ρgρν + ∂νξ

ρgµρ + ξρ∂ρgµν

δAµ = ∂µξ
ρAρ + ξρ∂ρAµ

δφ = ξρ∂ρφ, (9)

local gauge transformations with parameter ξ4
0

δAµ = ∂µξ
4 (10)

and global scale transformations with parameter λ

δAµ = λAµ, δφ = −2λ/
√

3 (11)

5



The symmetry of the vacuum, determined by the VEVs

< gµν >= ηµν , < Aµ >= 0, < φ >= φ0 (12)

is the four-dimensional Poincare group ×R. Thus, the masslessness of the

the graviton is due to general covariance, the masslessness of the photon to

gauge invariance, but the dilaton is massless because it is the Goldstone boson

associated with the spontaneous breakdown of the global scale invariance.

Note that the gauge group is R rather than U(1) because this truncated

n = 0 theory has lost all memory of the periodicity in y.

Now, however, let us include the n 6= 0 modes. An important observation

is that the assumed topology of the ground state, namely R4 × S1 restricts

us to general coordinate transformations periodic in y. Whereas the general

covariance (9) and local gauge invariance (10) simply correspond to the n = 0

modes of (4) respectively, the global scale invariance is no longer a symmetry

because it corresponds to a rescaling

δĝµ̂ν̂ = −1

2
λĝµ̂ν̂ (13)

combined with a a general coordinate transformation

ξ4 = −λy/m (14)

which is now forbidden by the periodicity requirement. The field φ0 is there-

fore merely a pseudo-Goldstone boson.
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Just as ordinary general covariance may be regarded as the local gauge

symmetry corresponding to the global Poincare algebra and local gauge in-

variance as the gauge symmetry corresponding to the global abelian algebra,

so the infinite parameter local transformations (7) correspond to an infinite-

parameter global algebra with generators

P µ
n = einmy∂µ

Mµν
n = einmy(xµ∂ν − xν∂µ)

Qn = ieinmy∂/∂(my) (15)

It is in fact a Kac-Moody-Virasoro generalization of the Poincare/gauge al-

gebra [7]. Although this larger algebra describes a symmetry of the four-

dimensional theory, the symmetry of the vacuum determined by (12) is only

Poincare ×U(1). Thus the gauge parameters ξµ
n and ξ4

n with n 6= 0 each

correspond to spontaneously broken generators, and it follows that for n 6= 0

the fields Aµn and φn are the corresponding Goldstone boson fields. The

gauge fields gµνn, with two degrees of freedom, will then each acquire a mass

by absorbing the the two degrees of freedom of each vector Goldstone boson

Aµn and the one degree of freedom of each scalar Goldstone boson φn to yield

a pure spin 2 massive particle with five degrees of freedom. This accords with

the observation that the massive spectrum is pure spin two [8]. Thus we find

an infinite tower of charged, massive spin 2 particles with charges en and

masses mn given by

en = n
√

2κm, mn = |n|m (16)
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Thus Klein explained (for the first time) the quantization of electric charge

[3]. (Note also that charge conjugation is just parity tranformation y → −y

in the fifth dimesion.) Of course, if we identify the fundamental unit of charge

e =
√

2κm with the charge on the electron, then we are forced to take m to be

very large: the Planck mass 1019 GeV , way beyond the range of any current

or forseeable accelerator. This answers the second question left unanswered

by Kaluza because with m very large, the radius of the circle must be very

small: the Planck size 10−35 meters, which satisfactorily accords with our

everyday experience of living in four spacetime dimensions.

It is interesting to note that, despite the inconsistency problems [9] that

arise in coupling a finite number of massive spin two particles to gravity

and/or electromagnetism, Kaluza-Klein theory is consistent by virtue of hav-

ing an infinite tower of such states. Any attempt to truncate to a finite

non-zero number of massive modes would reintroduce the inconsistency [10].

We also note, however, that these massive Kaluza-Klein modes have the

unusual gyromagnetic ratio g = 1 [11], which seems to lead to unaccept-

able high-energy behaviour for Compton scattering [12]. Moreover, as we

shall see in section (8), where we embed the theory in a superstring theory,

these Kaluza-Klein states will persist as a subset of the full string spectrum.

However, string theory comes to the rescue and ensures correct high-energy

behaviour.

In summary, it seems that a five-dimensional world with one of its di-
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mensions compactified on a circle is operationally indistinguishable from a

four dimensional world with a very particular (albeit infinite) mass spectrum.

From this perspective, therefore, it seems that one could kick the ladder away

and forget about the fifth dimension.

3 The Kaluza-Klein black hole

The equations which follow from (8) admit electrically charged black hole

solutions [13, 14, 15, 16]:

ds2 = −∆+∆−
−1/2dt2 + ∆+

−1∆−
1/2dr2 + r2∆−

3/2dΩ2

e2φ = ∆
√

3
−

e−
√

3φ∗F = (r+r−)1/2ǫ2 (17)

where ∆± = 1 − r±/r and ǫ2 is the volume form on S2. The electric charge

e and ADM mass m are related to r± by

√
2κe/4π = (r+r−)1/2

2κ2m/4π = 2r+ − r− (18)

The existence of an event horizon, r+ ≥ r−, thus implies the bound

√
2κm ≥ e (19)

In the extreme limit, r+ = r−, the line element reduces to

ds2 = −∆−
1/2dt2 + ∆−

−1/2dr2 + r2∆−
3/2dΩ2 (20)
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and the bound (19) is saturated. Note that this yields exactly the same

charge to mass ratio (16) as the massive Kaluza-Klein states. As we shall

show in section (8), this is no coincidence: the massive states are extreme

black holes!

The same equations also admit the magnetically charged black hole solu-

tion with the same metric but with

e−2φ = ∆
√

3
−

F = (r+r−)1/2ǫ2 (21)

and with magnetic charge g given by

√
2κg/4π = (r+r−)1/2 (22)

In the extreme limit, r+ = r−, this is the Kaluza-Klein monopole [15, 17, 18].

We note that the four-dimensional monopole metric gµν of (20) exhibits

a curvature singularity at r = r−, even though the five-dimensional metric

ĝµ̂ν̂ of (2) from which it is descended is perfectly regular! This appears to

contradict the impression gained at the end of the last section that the five-

dimensional perspective is an unnecessary luxury. However, consider the

Weyl rescaled metric g̃µν = e
√

3φgµν . The magnetic monopole line element is

now

ds̃2 = −∆−
−1dt2 + ∆−

−2dr2 + r2dΩ2 (23)

and the curvature singularity at r = r− has disappeared! The physical

significance of this metric is that it is the one that couples to the worldline
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of an electrically charged point particle [19, 20]. We shall return to this in

section (8).

4 The humble torus

In D > 5 dimensions the pure gravity field equations R̂µ̂ν̂ = 0 are consis-

tent with the ground state M4 × T k where T k is the metrically flat k-torus

T k = S1 × S1 × ...S1. The gauge group is now G = [U(1)]k. The count

of massless modes (degrees of freedom) is: 1 spin 2 (2); k spin 1 (2k);

k(k + 1)/2 spin 0 (k(k + 1)/2). Note that the total number of degrees of

freedom is (4 + k)(1 + k)/2 which matches the degrees of freedom of a gravi-

ton in D = 4 + k dimensions. The number of scalars is given by the moduli

of T k and they parameterize the non-linear σ-model GL(k, R)/SO(k) [21].

Thus even the humble torus (in the words of Abdus Salam), the simplest of

extra-dimensional geometries one could envisage, gives rise to a non-trival

four-dimensional world.

As we shall now show, the torus becomes even more non-trivial in the

context of supergravity theory. Here, in addition to the metric ĝµ̂ν̂ , the

D = 10 supergravity multiplet contains a 2-form B̂µ̂ν̂ and a dilaton Φ̂. After

compactification to D = 4 on a torus, the bosonic degrees of freedom count

now is: 1 spin 2; 12 spin 1; and 38 scalars composed of 36 moduli param-

eterizing SO(6, 6)/SO(6)× SO(6) and an axion and dilaton parameterizing

SL(2, R)/U(1). There will also be an equal number of fermion degrees of
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freedom: 4 spin 3/2 and 28 spin 1/2. If we include the Yang-Mills multiplet

we obtain a further 16 spin 1; 64 spin 1/2 and 96 spin 0 so that the moduli

coset is then SO(6, 22)/SO(6)× SO(22). Since this theory is the field theory

limit of the heterotic string compactfied on a generic torus let us consider

the action in more detail [26, 27]. Its bosonic sector is given by:

S =
1

2κ2

∫

d4x
√
−Ge−Φ[RG + Gµν∂µΦ∂νΦ − 1

12
GµλGντGρσHµνρHλτσ

−1

4
GµλGντFµν

a(LML)abFλτ
b +

1

8
GµνTr(∂µML∂νML)] (24)

where Fµν
a = ∂µAν

a−∂νAµ
a and Hµνρ = (∂µBνρ+2Aµ

aLabFνρ
b)+permutations.

Here Φ is the D = 4 dilaton, RG is the scalar curvature formed from the string

metric Gµν , related to the canonical metric gµν by Gµν ≡ eΦgµν . Bµν is the

2-form which couples to the string worldsheet and Aµ
a (a = 1, ..., 28) are the

abelian gauge fields. M is a symmetric 28× 28 dimensional matrix of scalar

fields satisfying MLM = L where L is the invariant metric on O(6, 22):

L =







0 I6 0
I6 0 0
0 0 −I16





 . (25)

The action is invariant under the O(6, 22) transformations M → ΩMΩT ,

Aµ
a → Ωa

bAµ
b, Gµν → Gµν , Bµν → Bµν , Φ → Φ, where Ω is an O(6, 22) ma-

trix satisfying ΩT LΩ = L. T -duality corresponds to the O(6, 22; Z) subgroup

and is known to be an exact symmetry of the full string theory. The equa-

tions of motion, though not the action, are also invariant under the SL(2, R)

transformations: M → ωMωT ,Fµν
aα → ωα

βFµν
aβ, gµν → gµν , M → M

12



where α = 1, 2 with Fµν
a1 = Fµν

a and Fµν
a2 =

(

λ2(ML)a
bF̃µν

b + λ1Fµν
a
)

,

where ω is an SL(2, R) matrix satisfying ωTLω = L and where

M =
1

λ2

(

1 λ1

λ1 |λ|2
)

, L =

(

0 1
−1 0

)

. (26)

λ is given by λ = Ψ + ie−Φ ≡ λ1 + iλ2. The axion Ψ is defined through the

relation
√−gHµνρ = −e2Φǫµνρσ∂σΨ. S-duality corresponds to the SL(2, Z)

subgroup and, as discussed in section (8) there is now a good deal of evidence

[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] in favor of its also being an exact

symmetry of the full string theory. It generalizes earlier conjectures in global

Yang-Mills theories [33, 34, 35, 36]

5 Non-abelian generalization

The arrival of Yang-Mills gauge theories in 1954 presented an altogether

different challenge to higher-dimensional gravity theories: could they also

account for non-abelian gauge bosons? Curiously enough, Oskar Klein [37]

came close4 to discovering non-abelian gauge fields in 1939 while investigating

D = 5 geometries, but their significance was never fully articulated. The

first concrete attempt seems to be that of De Witt [39] in 1963 and this

was followed by work of Rayski [40], Kerner [41], Trautmann [42], Cho [43],

Cho and Freund [44], Cho and Jang [45] and others. The breakthrough was

the realization that the gauge group G obtained in D = 4 was connected to

the isometry group of the extra dimensions which, in analogy with S1, were

4See the article by Gross [38].
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taken to be compact to ensure the compactness of G. Thus, it was argued,

SU(2) gauge bosons arose from taking three extra dimensions and assigning

to them the geometry of a three-sphere which was, after all, the SU(2) group

manifold.

With the wisdom of hindsight, we can now identify several shortcomings

of these non-abelian developments. First, little attention was paid to the

question of why the extra dimensions were compactified and whether this

was consistent with the higher-dimensional field equations. It was usually a

completely ad hoc procedure. This was remedied by the idea of spontaneous

compactification. Here one looks for stable ground state solutions of the

field equations for which the metric describes a product manifold M4 × Mk

where M4 is four-dimensional spacetime with the usual signature and Mk is a

compact ”internal” space with Euclidean signaature. As shown by Cremmer

et al [46] it was necessary to augment pure gravity with matter fields in order

to achieve a satisfactory compactification. A second shortcoming was the

failure to realize that the the extra-dimensional manifold need not correspond

to a group space G in order to obtain Yang-Mills gauge fields with G as their

gauge group. Now we know that any Mk with G as its isometry group will

do, i.e., any metric admitting the Killing vectors of G. This could be a

homogeneous space. In this case the group G acts transitively and we may

write the manifold as the coset space Mk = G/H where H is the isotropy

subgroup of the isometry group G. The use of such homogeneous spaces in

14



Kaluza-Klein theories was was discussed by Luciani [47]. Since k = dimG −

dimH , one was no longer obliged to have only one gauge boson for each extra

dimension, as had previously been assumed. Indeed, the isometry group of

a group manifold can be as large as G× G if we use the bi-invariant metric,

so S3 can give SU(2) × SU(2) gauge bosons and not merely SU(2).

Deriving Yang-Mills fields from gravity is perhaps the most beautiful

aspect of Kaluza-Klein theories so let us examine how it works. Let us

make the 4 + k split x̂µ̂ = (xµ, yn), µ̂ = 0, 1, ..., D − 1, µ = 0, 1, 2, 3 and

n = 4, 5, ..., D − 1. Consider the D-dimensional metric ĝµ̂ν̂(x, y) and in

particular, the off diagonal component ĝµn(x, y). In its Fourier expansion,

the lowest term looks like

ĝµn(x, y) = Aµ
i(x)Kn

i(y) + ... (27)

where Ki = Kni∂n is a Killing vector obeying the Lie algebra of G

[Ki, Kj] = f ij
kK

k (28)

and f i
jk are the structure constants. Now we consider the general coordinate

transformation (4) and focus our attention on the very special transformation

ξ̂µ̂(x, y) = (0, ǫi(x)Kmi(y)) (29)

with ǫi(x) arbitrary. Then from (4) we may compute the transformation rule

for ĝµn(x, y) and hence from (27) that for Aµ
i(x). We find

δAµ
i(x) = ∂µǫi(x) − f i

jkAµ
j(x)ǫk(x) (30)
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This is precisely the transformation law for a Yang-Mills field with gauge

group G. Hence G is a subgroup of the D-dimensional general coordinate

group. In summary, the basic idea is that what we perceive to be internal

symmetries in four dimensions are really spacetime symmetries in the extra

dimensions. Carrying this logic to its ultimate conclusion, one might be

tempted to conclude that there is no such thing in nature as an internal

symmetry, even apparent discrete internal symmetries like charge conjugation

being just discrete spacetime tranformations in the extra dimensions.

One can only speculate on how the course of twentieth century physics

might have changed if, in groping towards non-abelian gauge fields in 1939

[38], Klein had applied his own ideas to a sphere instead of a circle.

6 Kaluza-Klein Supergravity

The history of Kaluza-Klein took a totally new turn with the advent of

supergravity [48, 49] whose mathematical consistency requires D ≤ 11 di-

mensions [50]. Cremmer, Julia and Scherk [51] were able to construct the

N = 1, D = 11 supergravity Lagrangian, describing the interaction of the

elfbein eM
A, the gravitino ΨM , and the three-index gauge field AMNP . The

uniqueness of the field equations meant that not only did Kaluza-Klein en-

thusiasts have a guide to the dimensionality of spacetime but also a guide to

the correct interactions with gravity and matter. In D ≤ 11, supersymmetric

theories are no longer unique but still very restrictive. It seemed that this
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restriction on the dimension and the restrictions on the interactions, which

supersymmetry provides, were essential to any successful Kaluza-Klein unifi-

cation. Otherwise one is wandering in the wilderness: the problem of finding

the Lagrangian of the world in D = 4 is simply replaced by the problem of

finding the the Lagrangian of the world in D > 4 with the extra headache of

which D to pick. Nothing has been gained by way of economy of thought.

Weinberg [52] is fond of recalling the fable of the ”stone soup” when dis-

cussing this problem. Just as the promise of delicious soup made from stones

proved to mean stones plus meat and vegetables, so the Kaluza-Klein promise

of a unified theory made only from gravity had proved to mean gravity plus

a whole variety of matter fields with each author choosing his favorite in-

gredients. But by combining gravity and matter into one simple superfield

to which no further supermatter may be added, D = 11 realized Einstein’s

old dream of replacing the ”base wood” of matter by the ”pure marble” of

geometry. Eleven-dimensional supergravity is ”marble soup”.

The early 1980s thus marked a major renaissance of extra dimensions.

First Freund and Rubin [53] showed that the 3-form of D = 11 supergravity

provided a dynamical mechanism whereby 7 of the 11 dimensions compactify

spontaneously. Then Witten [54] considered the search for a realistic Kaluza-

Klein theory pointing out both the advantages of D = 11 supergravity ( seven

extra dimensions is the minimum to accommodate SU(3) × SU(2) × U(1))

and its disadvantages ( quarks and leptons do not fit into the right represen-
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tations, in particular the four dimensional theory cannot be chiral). Thirdly,

Salam and Strathdee [8] laid the foundations for much of the subsequent

research on harmonic expansions on coset spaces, essential for the under-

standing of the massive modes. All this sparked off the observation [55] that

the seven extra dimensions of D = 11 supergravity could, via the Freund-

Rubin ansatz yield ground-state solutions of the form (D = 4 Anti de Sitter

space) ×S7 and that since S7 has isometry group SO(8), this would give rise

to a D = 4 theory with SO(8) invariance. It was not difficult to prove that S7

also admits 8 Killing spinors and hence gives rise to N = 8 supersymmetry in

D = 4. It was therefore natural to conjecture [55, 56, 57] that the massless

supermultiplet of spins (2, 3/2, 1, 1/2, 0+, 0−) in the SO(8) representations

(1, 8, 28, 56, 35, 35) corresponded to the gauged N = 8 theory of de Wit and

Nicolai [58].

There then followed a deluge of activity in both D = 11 and D <

11 Kaluza-Klein supergravity (and in Kaluza-Klein cosmology and quan-

tum effects in Kaluza-Klein theories) by Abbott, Alvarez, Appelquist, Au-

relia, Awada, Bais, Barkanroth, Barr, Bars, Bele’n Gavela, Berkov, Bi-

ran, Candelas, Castellani, Ceresole, Chapline, Cho, Chodos, Coquereax,

D’Auria, De Alwis, Dereli, Detweiler, deWit, Duff, Ellis, Emel’yanov, En-

glert, Fre, Freedman, Freund, Fujii, Gell-Mann, Giani, Gibbons, Gunay-

din, Gursey, Hurni, Jadcyk, Inami, Ito, Kato, Kogan, Koh, Kolb, Lukier-

ski, Maeda, Manton, MacDowell, McKenzie, Mecklenburg, Minnaert, Moor-
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house, Morel, Nicolai, Nikitin, Nilsson, Nixon, Ohta, Orzalesi, Page, Panah-

himoghaddam, Pilch, Pollard, Pope, Randjbar Daemi, Romans, Rooman,

Rozenthal, Rubakov, Salam, Sahdev, Schaposnikov, Sezgin, Shafi, Slansky,

Sorokin, Spindel, Strathdee, Sudbery, Tanii, Tkach, Toms, Townsend, Tucker,

Tze, van Baal, van Nieuwenhuizen, Volkov, Voronov, Wang, N. Warner, R.

Warner, Weinberg, West, Wetterich, Wu, Yamagishi, Yasuda, Zwiebach, to

name but some.

7 Superstrings

Thus up until the summer of 1984 various proposals were put forward com-

bining supersymmetry and the Kaluza-Klein idea but none with complete

success. Those based on conventional field theory suffered from various prob-

lems, not least of which was the traditional objection to a non-renormalizable

theory of gravity. Those based on superstrings seemed better from this point

of view, and also from the point of view of chirality, but had problems of

their own. The realistic-looking strings appeared to suffer from inconsisten-

cies (anomalies akin to the triangle anomalies of the standard model) while

the anomaly-free strings did not appear realistic. In particular, they seemed

to live in ten spacetime dimensions rather than undergoing a spontaneous

compactification to four spacetime dimensions as demanded by the Kaluza-

Klein idea. This was the sorry state of affairs until the September 1984

superstring revolution:
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1) Green and Schwarz [59] discovered that the gravitational and Yang-

Mills anomalies of the ten-dimensional superstrings all cancel provided the

gauge group is either SO(32) or E8 × E8;

2) Gross, Harvey, Martinec and Rohm [60] discovered the heterotic (hy-

brid) string with the above gauge groups;

3) Candelas, Horowitz, Strominger and Witten [61] discovered that the

E8 × E8 heterotic string admits spontaneous compactifciation to four di-

mensions on a six-dimensional Calabi-Yau manifold. The resulting four-

dimensional theory resembles a GUT theory based on the group E6. In

particular, there are chiral families of quarks and leptons.

This is probably the place to admit the supreme irony of the Kaluza-Klein

unification story. It is that the heterotic superstring [60], which is currently

the favorite way to unify gravity with the other forces, while making use of

(and indeed demanding) extra spacetime dimensions a la Kaluza-Klein, nev-

ertheless eschews the route of getting the Yang-Mills gauge group from the

general coordinate group. Instead, the Yang-Mills fields are already present

in the D = 10 dimensional formulation! Moreover, the favorite way subse-

quently to compactify the theory to D = 4 invokes a Calabi-Yau manifold

[61]; an M6 with no isometries at all! Does this mean that the idea of

non-abelian gauge fields from extra dimensions is dead? Actually, no. The

heterotic string construction involves taking the right-moving modes on the

2-dimensional worldsheet to correspond to a 10-dimensional superstring and
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the left-moving modes to correspond to a 26-dimensional bosonic string. The

D = 10 formulation is obtained by compactifying the extra 16 dimensions on

a specially chosen T 16 corresponding to an even, self-dual lorentzian lattice.

This leads uniquely to the anomaly-free [59], dimension 496, gauge groups

E8 × E8 or SO(32). The Cartan subalgebra U(1)16 admits a Kaluza-Klein

interpretation, but the remaining 480 gauge bosons arise as solitons from the

very different Frenkel-Kac mechanism. However, from the point of view of

conformal field theory, a string moving on such a k-torus is indistinguishable

from a string moving on a simply laced group manifold G with k = rankG.

In fact, therefore, it is possible to understand all of the 496 gauge bosons as

Kaluza-Klein gauge bosons having arisen from compactifcation on the group

manifold [62, 63]. (One gets Yang-Mills fields of G rather than G×G because

the construction applies only to the left-movers and not the right-movers.)

It has to be admitted, however, that such a traditional Kaluza-Klein inter-

pretation, though valid, has not lead to any new insights into string theory.

Nevertheless, many other discoveries of the Kaluza-Klein supergravity era

do continue to influence current thinking in string theory. These include: the

connection between holonomy, Killing spinors and unbroken supersymmetry

in four dimensions; Calabi-Yau manifolds (first proposed as a way of going

from 10 to 6 on K3); orbifolds; fermion condensates and the cosmological

constant; the higher dimensional interpretation of the Higgs mechanism as

a distortion of the extra dimensional geometry; the importance of topology,
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index theorems and zero modes in determining the massless spectrum. All

this work is summarized in the Physics Report by Duff, Nilsson and Pope

[64], where the corresponding references may be found.

Historical reviews of string theory frequently dwell on the early days of

Regge theory, the Veneziano model and the dual resonance model of hadrons

and then jump to 1984 as though nothing much happened in between. In

my opinion, however, the renaissance of string theory in 1984 owed more to

Kaluza-Klein supergravity than it did to the dual resonance model.

In addition to Calabi-Yau manifolds many sophisticated ways of arriving

at a consistent four-dimensianal heterotic string theory have been studied

in the last ten years, including: self-dual Lorentzian lattices, symmetric and

asymmetric orbifolds, fermionic formulations, etc. These were reviewed in

[65] and I will not repeat the story here. Suffice it to say that despite a good

deal of technical progress, we are still no closer to resolving what is perhaps

the most important issue in string theory, namely the vacuum degeneracy

problem. Finding the right compactification has become synonomous with

finding the right c = 9 superconformal field theory and there are literally

billions (maybe an infinite number?) of candidates. For the time being

therefore, the phrase superstring inspired phenomenology can only mean sift-

ing through these billions of heterotic models in the hope of finding one that

is realistic. The trouble with this needle-in-a-haystack approach is that even

if we found a model with good phenomenology, we would be left wondering
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in what sense this could be described as a prediction of superstrings.

The general consensus now is that this problem will never be resolved

provided we remain within the confines of a weak coupling perturbation ex-

pansion. I would therefore like to finish with some very recent developments

in string theory which address this strong coupling problem, and I am de-

lighted to say that they rely heavily on the Kaluza-Klein idea.

8 Kaluza-Klein states as extreme black holes

The idea that elementary particles might behave like black holes is not a new

one [66, 67, 68]. Intuitively, one might expect that a pointlike object whose

mass exceeds the Planck mass, and whose Compton wavelength is therefore

less than its Schwarzschild radius, would exhibit an event horizon. In the

absence of a consistent quantum theory of gravity, however, such notions

would always remain rather vague. Superstring theory, on the other hand,

not only predicts such massive states but may provide us with a consistent

framework in which to discuss them. In this section we shall summarize the

results of [30] and confirm the claim [20] that certain massive excitations

of four-dimensional superstrings are indeed black holes. Our results thus

complement those of [69, 70, 71] where it is suggested that all black holes are

single string states. Of course, non-extreme black holes would be unstable

due to the Hawking effect. To describe stable elementary particles, therefore,

we must focus on extreme black holes whose masses saturate a Bogomol’nyi
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bound.

Here we return to the humble torus and consider the four-dimensional

heterotic string obtained by toroidal compactification. At a generic point in

the moduli space of vacuum configurations the unbroken gauge symmetry

is U(1)28 and the low energy effective field theory is described by the N =

4 supergravity coupled to the 22 abelian vector multiplets of section (4).

We shall consider the Schwarz-Sen [26, 27] O(6, 22; Z) invariant spectrum of

elementary electrically charged massive NR = 1/2, NL = 1 states of this four-

dimensional heterotic string, and show that the spin zero states correspond

to extreme limits of the Kaluza-Klein black hole solutions of section (3)

which preserve 1/2 of the spacetime supersymmetries. By supersymmetry,

the black hole interpretation then applies to all members of the N = 4

supermultiplet [72, 73], which has smax = 1. Here NL and NR refer to the

number of left and right oscillators respectively. The N = 4 supersymmetry

algebra possesses two central charges Z1 and Z2. The NR = 1/2 states

correspond to that subset of the full spectrum that belong to the 16 complex

dimensional (smax ≥ 1) representation of the N = 4 supersymmetry algebra,

are annihilated by half of the supersymmetry generators and saturate the

strong Bogomol’nyi bound m = |Z1| = |Z2|. As discussed in [35, 36, 26, 27],

the reasons for focussing on this N=4 theory, aside from its simplicity, is that

one expects that the allowed spectrum of electric and magnetic charges is not

renormalized by quantum corrections, and that the allowed mass spectrum
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of particles saturating the Bogomol’nyi bound is not renormalized either.

Following [22, 23, 24], Schwarz and Sen have also conjectured [26, 27]

on the basis of string/fivebrane duality [74, 75] that, when the solitonic ex-

citations are included, the full string spectrum is invariant not only under

the target space O(6, 22; Z) (T -duality) but also under the strong/weak cou-

pling SL(2, Z) (S-duality). The importance of S-duality in the context of

black holes in string theory has also been stressed in [25]. Schwarz and

Sen have constructed a manifestly S and T duality invariant mass spec-

trum. T -duality transforms electrically charged winding states into electri-

cally charged Kaluza-Klein states, but S-duality transforms elementary elec-

trically charged string states into solitonic monopole and dyon states. We

shall show that these states are also described by the extreme magnetically

charged black hole solutions discussed in [20]. Indeed, although the results of

this section may be understood without resorting to string/fivebrane duality,

it nevertheless provided the motivation. After compactification from D = 10

dimensions to D = 4, the solitonic fivebrane solution of D = 10 supergravity

[76] appears as a magnetic monopole [77, 78] or a string [29] according as it

wraps around 5 or 4 of the compactified directions 5. Regarding this dual

string as fundamental in its own right interchanges the roles of T -duality

and S-duality. The solitonic monopole states obtained in this way thus play

5It could in principle also appear as a membrane by wrapping around 3 of the compact-
ified directions, but the N = 4 supergravity theory (24) obtained by naive dimensional
reduction does not admit the membrane solution [29].
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the same role for the dual string as the elementary electric winding states

play for the fundamental string. The Kaluza-Klein states are common to

both. Since these solitons are extreme black holes [20], however, it follows by

S-duality that the elementary Kaluza-Klein states should be black holes too!

By T -duality, the same holds true of the elementary winding states. Rather

than invoke S-duality, however, we shall proceed directly to establish that

the elementary states described above are in one-to-one correspondence with

the extreme electric black holes 6. Now this leaves open the possibility that

they have the same masses and quantum numbers but different interactions.

Although we regard this possibilty as unlikely given the restrictions of N = 4

supersymmetry, the indirect argument may be more compelling in this re-

spect (even though it suffers from the drawback that S-duality has not yet

been rigorously established). Of course, elementary states are supposed to

be singular and solitonic states non-singular. How then can we interchange

their roles? As we saw in section (3), the way the theory accommodates

this requirement is that when expressed in terms of the fundamental met-

ric e
√

3φgµν that couples to the worldline of the superparticle the elementary

solutions are singular and the solitonic solutions are non-singular, but when

expressed in terms of the dual metric e−
√

3φgµν , it is the other way around

[19, 20].

6The idea that there might be a dual theory which interchanges Kaluza-Klein states and
Kaluza-Klein monopoles was previously discussed in the context of N = 8 supergravity
by Gibbons and Perry [79].
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We now turn to the electric and magnetic charge spectrum. Schwarz and

Sen [26, 27] present an O(6, 22; Z) and SL(2, Z) invariant expression for the

mass of particles saturating the strong Bogomol’nyi bound m = |Z1| = |Z2|:

m2 =
1

16
(αa βa)M0(M0 + L)ab

(

αb

βb

)

(31)

where a superscript 0 denotes the constant asymptotic values of the fields.

Here αa and βa (a = 1, ..., 28) each belong to an even self-dual Lorentzian

lattice Λ with metric given by L and are related to the electric and magnetic

charge vectors (Qa, P a) by (Qa, P a) =
(

Mab
0(αb + λ1

0βb)/λ2
0, Labβ

b
)

. The

fundamental charge Q is normalized so that Q2 = e2/2π and we have set

κ2 = 16π. As discussed in [26, 27] only a subset of the conjectured spectrum

corresponds to elementary string states. First of all these states will be only

electrically charged, i.e. β = 0, but there will be restrictions on α too. After

performing an O(6, 22) rotation Ω of the background M0 transforming it into

the 28-dimensional identity matrix I and an accompanied change of basis to

α̂ = LΩLα the mass formula (31) can be rewritten [26, 27] as

m2 =
1

16λ2
0
α̂a(I + L)abα̂

b =
1

8λ2
0

(α̂R)2 (32)

with α̂R = 1
2
(I + L)α̂ and α̂L = 1

2
(I − L)α̂. In the string language α̂R(L) are

the right(left)-moving internal momenta. The mass of a generic string state

in the Neveu-Schwarz sector (which is degenerate with the Ramond sector)

is given by

m2 =
1

8λ2
0

{

(α̂R)2 + 2NR − 1
}

=
1

8λ2
0

{

(α̂L)2 + 2NL − 2
}

. (33)
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A comparison of (32) and (33) shows that the string states satisfying the

Bogomol’nyi bound all have NR = 1/2. One then finds

NL − 1 =
1

2

(

(α̂L)2 − (α̂R)2
)

=
1

2
αT Lα, (34)

leading to αT Lα ≥ −2.

We shall now show that the extreme Kaluza-Klein black holes are string

states with αTLα null (NL = 1). To identify them as states in the spectrum

we have to find the corresponding charge vector α and to verify that the

masses calculated by the formulas (19) and (31) are identical. The action

(24) can be consistently truncated by keeping the metric gµν , just one field

strength (F 1 say), and one scalar field φ via the ansatz Φ = φ/
√

3 and M11 =

e2φ/
√

3 = M−1
77 . All other diagonal components of M are set equal to unity and

all non-diagonal components to zero. Now (24) reduces to (8). (This yields

the electric and magnetic Kaluza-Klein (or ”F”) monopoles. This is not

quite the truncation chosen in [20], where just F 7 was retained and M11 =

e−2φ/
√

3 = M−1
77 . This yields the electric and magnetic winding (or ”H”)

monopoles. However, the two are related by T -duality). We shall restrict

ourselves to the purely electrically charged solution with charge Q = 1, since

this one is expected to correspond to an elementary string excitation. The

charge vector α for this solution is obviously given by αa = δa,1 with αT Lα =

0. Applying (31) for the mass of the state we find m2 = 1/16 = Q2/16,

which coincides with (19) in the extreme limit. This agreement confirms the

claim that this extreme Kaluza-Klein black hole is a state in the Schwarz-
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Sen spectrum and preserves 2 supersymmetries. From this solution we can

generate the whole set of supersymmetric black hole solutions with αT Lα = 0

in the following way: first we perform an O(6, 22; R) transformation to obtain

a vector proportional to the desired lattice vector. This clearly leaves the

mass invariant, but the new charge vector α′ will in general not be located on

the lattice. To find a state in the allowed charge spectrum we have to rescale

α′ by a constant k so that α′′ = kα′ is a lattice vector. Clearly the masses

calculated by (19) and (31) still agree (this is obvious by reversing the steps

of rotation and rescaling), leading to the conclusion that all states obtained

in this way preserve 1/2 of the supersymmetries. Therefore all states in the

spectrum belonging to smax = 1 supermultiplets for which NR = 1/2, NL = 1

are extreme Kaluza-Klein black holes.

It should also be clear that the purely magnetic extreme black hole so-

lutions [20] obtained from the above by the replacements φ → −φ, F →

e−
√

3φ∗F will also belong to the Schwarz-Sen spectrum of solitonic states.

Starting from either the purely electric or purely magnetic solutions, dyonic

states in the spectrum which involve non-vanishing axion field Ψ can then

be obtained by SL(2, Z) transformations. Specifically , a black hole with

charge vector (α, 0) will be mapped into ones with charges (aα, cα) with the

integers a and c relatively prime [26, 27].

We have limited ourselves to NR = 1/2, NL = 1 supermultiplets with

smin = 0. Having established that the s = 0 member of the multiplet is
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an extreme black hole, one may then use the fermionic zero modes to per-

form supersymmetry transformations to generate the whole supermultiplet

of black holes [72, 73]. Of course there are NR = 1/2 multiplets with smin > 0

coming from oscillators with higher spin and our arguments have nothing to

say about whether these are also extreme black holes.

As discussed in [30] the NR = 1/2, NL > 1 states (and their dual coun-

terparts) are also extreme electric (magnetic) black holes. However, whereas

the Kaluza-Klein black holes have a scalar-Maxwell coupling e−aφF µνFµν

with a =
√

3, the NL > 1 states have a = 1 and correspond to the supersym-

metric dilaton black hole [16]. It is well-known that the non-supersymmetric

a = 1 case provides a solution of the heterotic string [80, 81] but it was

only recently recognized that the supersymmetric a = 1 case and also the

a =
√

3 case are also solutions [20, 30]. The electric solutions are in fact

exact [82] with no α′ corrections for both a =
√

3 and a = 1. There are

also a = 0 Reissner-Nordstrom black holes [30], but these do not belong to

the N− = 1/2 sector of string states. None of the spinning NR = 1/2 states

is described by extreme rotating black hole metrics because they obey the

same Bogomol’nyi bound as the smin = 0 states, whereas the mass formula

for an extreme rotating black hole depends on the angular momentum J .

Rather it is the fermion fields which carry the spin. (For the a = 0 black

hole, they yield a gyromagnetic ratio g = 2 [73]; the a =
√

3 and a = 1

superpartner g-factors are unknown to us.) It may be that there are states
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in the string spectrum described by the extreme rotating black hole metrics

but if so they will belong to the NR 6= 1/2 sector7. Since, whether rotating or

not, the black hole solutions are still independent of the azimuthal angle and

independent of time, the supergravity theory is effectively two-dimensional

and therefore possibly integrable. This suggests that the spectrum should be

invariant under the larger duality O(8, 24; Z) [22, 23], which combines S and

T . The corresponding Kac-Moody extension would then play the role of the

spectrum generating symmetry [86].
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7The gyromagnetic and gyroelectric ratios of the states in the heterotic string spectrum
would then have to agree with those of charged rotating black hole solutions of the heterotic
string. This is indeed the case: the NL = 1 states [11] and the extreme rotating a =

√
3

black holes [83] both have g = 1 whereas the NL > 1 states [71] and the extreme rotating
a = 1 [84] (and a = 0 [85]) black holes both have g = 2. In fact, it was the observation
that the Regge formula J ∼ m2 also describes the mass/angular momentum relation of an
extreme rotating black hole which first led Salam [67] to imagine that elementary particles
might behave like black holes!

31



References

[1] Th. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Klasse 996

(1921).

[2] O. Klein, Z. F. Physik 37 (1926) 895.

[3] O. Klein, Nature 118 (1926) 516.

[4] P. Jordan, Ann, der. Phys., Lpz.1 (1947) 219.

[5] Y. Thiry, Acad. Sci. Paris 226 (1948) 216 and 1881.

[6] C. Brans and R. H. Dicke, Phys. Rev. 124 (1961) 925.

[7] L. Dolan and M. J. Duff, Phys. Rev. Lett. 52 (1984) 14.

[8] A. Salam and J. Strathdee, Ann. Phys. 141 (1982) 316.

[9] D. Boulware and S. Deser, Phys. Rev. D6 (1972) 3368.

[10] M. J. Duff, C. N. Pope and K. S. Stelle, Phys. Lett. B223 (1989) 71.

[11] A. Hosoya, K. Ishikawa, Y. Ohkuwa and K. Yamagishi, Phys. Lett.

B134 (1984) 44.

[12] S. Ferrara, M. Porati and V. L. Telegdi, Phys. Rev. D46 (1992) 3529.

[13] P. Dobiasch and D. Maison, Gen. Rel. Grav. 14 (1982) 231.

[14] A. Chodos and S. Detweiler, Gen. Rel. Grav. 14 (1982) 879.

32



[15] D. Pollard, J. Phys. A16 (1983) 565.

[16] G. W. Gibbons, Nucl. Phys. B207 (1982) 337.

[17] D. Gross and M. J. Perry, Nucl. Phys. B226 (1983) 29.

[18] R. Sorkin, Phys. Rev. Lett. 51 (1983) 87.

[19] M. J. Duff and J. X. Lu, Nucl. Phys. B416 (1994) 301.

[20] M. J. Duff, R. R. Khuri, R. Minasian and J. Rahmfeld, Nucl. Phys.

B418 (1994) 195.

[21] E. Cremmer and B. Julia, Nucl. Phys. B159 (1979) 141.

[22] M. J. Duff and J. X. Lu, Nucl. Phys. B347 (1990) 394.

[23] M. J. Duff, Phys. Lett. B173 (1986) 289.

[24] A. Font, L. Ibanez, D. Lust and F. Quevedo, Phys. Lett. B249 (1990)

35.

[25] S. Kalara and D. V. Nanopoulos, Phys. Lett. B267 (1991) 343.

[26] J. H. Schwarz and A. Sen, Phys. Lett. B312 (1993) 105.

[27] A. Sen, TIFR/TH/94-03, hep-th/9402002.

[28] P. Binetruy, Phys. Lett. B315 (1993) 80.

[29] M. J. Duff and R. R. Khuri, Nucl. Phys. B411 (1994) 473.

33

http://arXiv.org/abs/hep-th/9402002


[30] M. J. Duff and J. Rahmfeld, CTP-TAMU-25/94, hep-th/9406105.

[31] J. Gauntlett and J. H. Harvey, EFI-94-36, hep-th/9407111.

[32] C. Vafa and E. Witten, HUTP-94-A017, hep-th/9408074.

[33] C. Montonen and D. Olive, Phys. Lett. B72 (1977) 117.

[34] P. Goddard, J. Nyuts and D. Olive, Nucl. Phys. B125 (1977) 1.

[35] E. Witten and D. Olive, Phys. Lett. B78 (1978) 97.

[36] H. Osborn, Phys. Lett. B83 (1979) 321.

[37] O. Klein, in New Theories in Physics (International Institute of Intel-

lectual Cooperation, Scientific Collection, Paris, 1939).

[38] D. Gross, in Proceedings of the Oskar Klein Centenary Symposium

(World Scientific, to appear).

[39] B. S. De Witt in Relativity, Groups and Topology, eds C. and B. S. De

Witt (Gordan and Breach, New York, 1964).

[40] J. Rayski, Acta. Phys. Polon. 27 (1965) 947 and 28 (1965) 87.

[41] R. Kerner, Ann. Inst. Poincare, Sect. A9 (1968) 29.

[42] A. Trautmann, Rep. Math. Phys. 1 (1970) 29.

[43] Y. M. Cho, J. Math. Phys. 16 (1975) 2029.

34

http://arXiv.org/abs/hep-th/9406105
http://arXiv.org/abs/hep-th/9407111
http://arXiv.org/abs/hep-th/9408074


[44] Y. M. Cho and P. G. O. Freund, Phys. Rev. D12 (1975) 1711.

[45] Y. M. Cho and P. S. Yang, Phys. Rev. D12 (1975) 3789.

[46] E. Cremmer, Z. Horvath, L. Palla and J. Scherk, Nucl. Phys. B127

(1977) 57.

[47] J. F. Luciani, Nucl. Phys. 135 (1978) 111.

[48] D. Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Phys. Rev. D13

(1976) 3214.

[49] S. Deser and B. Zumino, Phys. Lett. B62 (1976) 335.

[50] W. Nahm, Nucl. Phys. B135 (1978) 149.

[51] E. Cremmer, B. Julia and J. Scherk, Phys. Lett. B76 (1978) 409.

[52] S. Weinberg, in Proc. 5th Workshop on Grand Unification (1984).

[53] P. G. O. Freund and M. A. Rubin, Phys. Lett. B97 (1980) 233.

[54] E. Witten, Nucl. Phys. B186 (1981) 412.

[55] M. J. Duff and C. N. Pope, in Supersymmetry and Supergravity 82, eds.

Ferrara, Taylor and van Nieuwenhuizen (World Scientific,1983).

[56] M. J. Duff, Nucl. Phys. B219, (1983) 389.

[57] M. J. Duff, B. E. W. Nilsson and C. N. Pope, Nucl. Phys. B233 (1984)

433.

35



[58] B. de Wit and H. Nicolai, Nucl. Phys. B208 (1982) 323.

[59] M. B. Green and J. Schwarz, Phys. Lett. B149 (1984) 117.

[60] D. J. Gross, J. A. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett.

54 (1985) 502.

[61] P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Nucl. Phys.

B 258 (1985) 46.

[62] M. J. Duff, B. E. W. Nilsson and C. N. Pope, Phys. Lett. 163B (1985)

343.

[63] M. J. Duff, B. E. W. Nilsson, C. N. Pope and N. P. Warner, Phys. Lett.

171B (1986) 170.

[64] M. J. Duff, B. E. W. Nilsson and C. N. Pope, Phys. Rep. 130 (1986) 1.

[65] M. J. Duff, ”Not the Standard Superstring Review” in Superworld II,

(Ed. Zichichi, Plenum Press 1991).

[66] S. W. Hawking, Monthly Notices Roy. Astron. Soc. 152 (1971) 75.

[67] Abdus Salam in Quantum Gravity: an Oxford Symposium (Eds. Isham,

Penrose and Sciama, O.U.P. 1975).

[68] G. ’t Hooft, Nucl. Phys. B335 (1990) 138.

36



[69] J. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Lett. B278

(1992) 246.

[70] L. Susskind, RU-93-44, hep-th/9309145.

[71] J. G. Russo and L. Susskind, UTTG-9-94,hep-th/9405117.

[72] G. W. Gibbons, in Supersymmetry, Supergravity and Related Topics,

eds. F. del Aguila, J. A. Azcarraga and L. E. Ibanez (World Scientific,

1985).

[73] P. Aichelburg and F. Embacher, Phys. Rev. D37 (1986) 3006.

[74] M. J. Duff, Class. Quantum Grav. 5 (1988) 189.

[75] A. Strominger, Nucl. Phys. B343 (1990) 167.

[76] M. J. Duff and J.X. Lu, Nucl. Phys. B354 (1991) 141.

[77] R. R. Khuri, Phys. Lett. B259 (1991) 261; Nucl. Phys. B387 (1992)

315.

[78] J. P. Gauntlett, J. A. Harvey and J. T. Liu, Nucl. Phys. B409 (1993)

363.

[79] G. W. Gibbons and M. J. Perry, Nucl. Phys. B248 (1984) 629.

[80] D. Garfinkle, G. Horowitz and A. Strominger, Phys. Rev. D43 (1991)

3140.

37

http://arXiv.org/abs/hep-th/9309145
http://arXiv.org/abs/hep-th/9405117


[81] S. B. Giddings, J. Polchinski and A. Strominger, NSF-ITP-93-62.

[82] G. T. Horowitz and A. A. Tseytlin, hep-th/9409067.

[83] G. W. Gibbons and D. L. Wiltshire, Ann. of Phys. 167 (1986) 201.

[84] A. Sen, Phys. Rev. Lett. 69 (1992) 1006.

[85] G. C. Debney, R. P. Kerr and A. Schild, J. Math. Phys. 10 (1969) 1842.

[86] R. Geroch, J. Math. Phys. 13 (1972) 394.

38

http://arXiv.org/abs/hep-th/9409067

