MVE080 and MMG640 Scientific Visualization

Lecture on 3D graphics

Mathematical Sciences

CHALMERS

17th November 2020

CHALMERS

Outline

Linear Transformations

Rigid Body Motion

Homogeneous Coordinates

Projections

Linear Transformations - Matrices

Linear transformations on \mathbb{R}^{3} are studied in linear algebra, and are characterised by linearity:

$$
\left\{\begin{aligned}
T(\boldsymbol{x}+\boldsymbol{y}) & =T(\boldsymbol{x})+T(\boldsymbol{y}), & \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{3} \\
T(\lambda \boldsymbol{x}) & =\lambda T(\boldsymbol{x}), & \forall \lambda \in \mathbb{R}, \boldsymbol{x} \in \mathbb{R}^{3} .
\end{aligned}\right.
$$

Linear Transformations - Matrices

Linear transformations on \mathbb{R}^{3} are studied in linear algebra, and are characterised by linearity:

$$
\left\{\begin{aligned}
T(\boldsymbol{x}+\boldsymbol{y}) & =T(\boldsymbol{x})+T(\boldsymbol{y}), & \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{3} \\
T(\lambda \boldsymbol{x}) & =\lambda T(\boldsymbol{x}), & \forall \lambda \in \mathbb{R}, \boldsymbol{x} \in \mathbb{R}^{3} .
\end{aligned}\right.
$$

If $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)$ then $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}\right)=T(\boldsymbol{x})$ can be written as a matrix multiplication:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]}_{\boldsymbol{A}}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

where \boldsymbol{A} is constant.

Images of the Basic Unit Vectors

Since $(1,0,0)$ is transformed into

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right]
$$

the first column of \boldsymbol{A} is the destination of $(1,0,0)$.

Images of the Basic Unit Vectors

Since $(1,0,0)$ is transformed into

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right]
$$

the first column of \boldsymbol{A} is the destination of $(1,0,0)$.
Similarly, the second and third column tell us where ($0,1,0$) and $(0,0,1)$ go!

Some Properties

- Matrix multiplication is not commutative, i.e. $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$

Some Properties

- Matrix multiplication is not commutative, i.e. $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$
- Matrix multiplication is associative, i.e. $(\boldsymbol{A B}) \boldsymbol{C}=\boldsymbol{A}(B C)$

Some Properties

- Matrix multiplication is not commutative, i.e. $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$
- Matrix multiplication is associative, i.e. $(A B) C=A(B C)$
- Some (but not all) matrices are invertible, depending on whether the determinant $\operatorname{det} \boldsymbol{A}$ is zero or not

Some Properties

- Matrix multiplication is not commutative, i.e. $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$
- Matrix multiplication is associative, i.e. $(\boldsymbol{A B}) \boldsymbol{C}=\boldsymbol{A}(B C)$
- Some (but not all) matrices are invertible, depending on whether the determinant $\operatorname{det} \boldsymbol{A}$ is zero or not
- If $\operatorname{det} \boldsymbol{A} \neq 0$, then \boldsymbol{A} is invertible and \boldsymbol{A}^{-1} can be found using Gaußian elimination

Some Properties

- Matrix multiplication is not commutative, i.e. $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$
- Matrix multiplication is associative, i.e. $(\boldsymbol{A B}) \boldsymbol{C}=\boldsymbol{A}(B C)$
- Some (but not all) matrices are invertible, depending on whether the determinant $\operatorname{det} \boldsymbol{A}$ is zero or not
- If $\operatorname{det} \boldsymbol{A} \neq 0$, then \boldsymbol{A} is invertible and \boldsymbol{A}^{-1} can be found using Gaußian elimination
- If \boldsymbol{A} is an orthogonal matrix, i.e. $\boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{I}$, then $\boldsymbol{A}^{-1}=\boldsymbol{A}^{\top}$

Some Properties

- Matrix multiplication is not commutative, i.e. $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$
- Matrix multiplication is associative, i.e. $(\boldsymbol{A B}) \boldsymbol{C}=\boldsymbol{A}(B C)$
- Some (but not all) matrices are invertible, depending on whether the determinant $\operatorname{det} \boldsymbol{A}$ is zero or not
- If $\operatorname{det} \boldsymbol{A} \neq 0$, then \boldsymbol{A} is invertible and \boldsymbol{A}^{-1} can be found using Gaußian elimination
- If \boldsymbol{A} is an orthogonal matrix, i.e. $\boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{I}$, then $\boldsymbol{A}^{-1}=\boldsymbol{A}^{\top}$
- Whatever \boldsymbol{A} is, the origin is never moved, i.e. $\boldsymbol{A 0}=\mathbf{0}$

Definition of Rigid Body Motion

A rigid body motion is composed of a rotation and a translation:

Definition of Rigid Body Motion

A rigid body motion is composed of a rotation and a translation:

If combined with a scaling, it becomes a similarity transformation.

Representing Rigid Body Motions

Let \boldsymbol{R} be a rotation matrix (later slides) and \boldsymbol{t} be a vector. Then

$$
y=\boldsymbol{R} x+t
$$

represents a rigid body motion.

Representing Rigid Body Motions

Let \boldsymbol{R} be a rotation matrix (later slides) and \boldsymbol{t} be a vector. Then

$$
\boldsymbol{y}=\boldsymbol{R} x+\boldsymbol{t}
$$

represents a rigid body motion.

- Rigid body motions are not commutative

Representing Rigid Body Motions

Let \boldsymbol{R} be a rotation matrix (later slides) and \boldsymbol{t} be a vector. Then

$$
\boldsymbol{y}=\boldsymbol{R} x+\boldsymbol{t}
$$

represents a rigid body motion.

- Rigid body motions are not commutative
- Rigid body motions are associative

Representing Rigid Body Motions

Let \boldsymbol{R} be a rotation matrix (later slides) and \boldsymbol{t} be a vector. Then

$$
\boldsymbol{y}=\boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}
$$

represents a rigid body motion.

- Rigid body motions are not commutative
- Rigid body motions are associative
- Not a linear transformation - the origin is moved!

Representing Rigid Body Motions

Let \boldsymbol{R} be a rotation matrix (later slides) and \boldsymbol{t} be a vector. Then

$$
\boldsymbol{y}=\boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}
$$

represents a rigid body motion.

- Rigid body motions are not commutative
- Rigid body motions are associative
- Not a linear transformation - the origin is moved!
- We will see later how to write them using only a matrix multiplication anyway!

Representing Rotations - 2D

In 2D, rotations are almost always represented using the 2×2 matrix

$$
\boldsymbol{R}(\varphi)=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]
$$

which is an orthogonal matrix.

Representing Rotations - 2D

In 2D, rotations are almost always represented using the 2×2 matrix

$$
\boldsymbol{R}(\varphi)=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]
$$

which is an orthogonal matrix.
To rotate a point $\boldsymbol{x}=(x, y)$ and angle φ about the origin, we do

$$
\boldsymbol{y}=\boldsymbol{R}(\varphi) \boldsymbol{x}=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \cos \varphi-y \sin \varphi \\
x \sin \varphi+y \cos \varphi
\end{array}\right] .
$$

Representing Rotations - 3D

In 3D, rotations around the three coordinate axes are written as

$$
\begin{aligned}
& \boldsymbol{R}_{x}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right], \\
& \boldsymbol{R}_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right], \\
& \boldsymbol{R}_{z}(\gamma)=\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Representing Rotations - 3D

- Any 3D rotation can be obtained using Tait-Bryan angles as

$$
\boldsymbol{R}(\alpha, \beta, \gamma)=\boldsymbol{R}_{x}(\alpha) \boldsymbol{R}_{y}(\beta) \boldsymbol{R}_{z}(\gamma)
$$

Representing Rotations - 3D

- Any 3D rotation can be obtained using Tait-Bryan angles as

$$
\boldsymbol{R}(\alpha, \beta, \gamma)=\boldsymbol{R}_{x}(\alpha) \boldsymbol{R}_{y}(\beta) \boldsymbol{R}_{z}(\gamma)
$$

- By performing different combinations of the rotations, we get various Euler angle representations - no clear standard!

Representing Rotations - 3D

- Any 3D rotation can be obtained using Tait-Bryan angles as

$$
\boldsymbol{R}(\alpha, \beta, \gamma)=\boldsymbol{R}_{x}(\alpha) \boldsymbol{R}_{y}(\beta) \boldsymbol{R}_{z}(\gamma)
$$

- By performing different combinations of the rotations, we get various Euler angle representations - no clear standard!
- It is often easier to think using an axis-angle representation, e.g. Rodrigues' formula:

$$
\boldsymbol{R}=\boldsymbol{I}+\sin \varphi[\boldsymbol{v}]_{\times}+(1-\cos \varphi)[\boldsymbol{v}]_{\times}^{2}
$$

Rodrigues' Formula

Rodrigues' Formula Proof

We have $\boldsymbol{x}=\boldsymbol{x}_{\|}+\boldsymbol{x}_{\perp}$, where $\boldsymbol{x}_{\|}$is parallel to \boldsymbol{v} (and thus does not change), and \boldsymbol{x}_{\perp} is perpendicular to \boldsymbol{v}. Note also that \boldsymbol{x}_{\perp} and $\boldsymbol{v} \times \boldsymbol{x}_{\perp}$ make up an orthogonal basis in the plane orthogonal to \boldsymbol{v}. It follows that

$$
\begin{aligned}
\boldsymbol{R} \boldsymbol{x}_{\perp} & =\cos \varphi \boldsymbol{x}_{\perp}+\sin \varphi\left(\boldsymbol{v} \times \boldsymbol{x}_{\perp}\right) \\
& =-\cos \varphi\left(\boldsymbol{v} \times\left(\boldsymbol{v} \times \boldsymbol{x}_{\perp}\right)\right)+\sin \varphi\left(\boldsymbol{v} \times \boldsymbol{x}_{\perp}\right) \\
& =-\cos \varphi(\boldsymbol{v} \times(\boldsymbol{v} \times \boldsymbol{x}))+\sin \varphi(\boldsymbol{v} \times \boldsymbol{x})
\end{aligned}
$$

Thus

$$
\begin{aligned}
\boldsymbol{R} \boldsymbol{x} & =\boldsymbol{R} \boldsymbol{x}_{\|}+\boldsymbol{R} \boldsymbol{x}_{\perp} \\
& =\left(\boldsymbol{v}^{\top} \boldsymbol{x}\right) \boldsymbol{v}-\cos \varphi(\boldsymbol{v} \times(\boldsymbol{v} \times \boldsymbol{x}))+\sin \varphi(\boldsymbol{v} \times \boldsymbol{x}) \\
& =\boldsymbol{x}+\sin \varphi(\boldsymbol{v} \times \boldsymbol{x})+(1-\cos \varphi)(\boldsymbol{v} \times(\boldsymbol{v} \times \boldsymbol{x})) .
\end{aligned}
$$

The Planar Case

Suppose we are working in the plane, and have a point (x, y). The plane can be 'embedded' in 3D as the plane $z=1$:

The Planar Case (contd.)

- Each point in the plane $z=1$ corresponds to a 3D-line through the origin

Möbius, Der barycentrische Calcul - ein neues Hülfsmittel zur analytischen Behandlung der Geometrie, 1827.

The Planar Case (contd.)

- Each point in the plane $z=1$ corresponds to a 3D-line through the origin
- The line through $(x, y, 1)$ includes $(\lambda x, \lambda y, \lambda)$ for any scalar λ

Möbius, Der barycentrische Calcul - ein neues Hülfsmittel zur analytischen Behandlung der Geometrie, 1827.

The Planar Case (contd.)

- Each point in the plane $z=1$ corresponds to a 3D-line through the origin
- The line through $(x, y, 1)$ includes $(\lambda x, \lambda y, \lambda)$ for any scalar λ
- If $\lambda \neq 0$, we call $(\lambda x, \lambda y, \lambda)$ homogeneous coordinates of the point (x, y)

The Planar Case (contd.)

- Each point in the plane $z=1$ corresponds to a 3D-line through the origin
- The line through $(x, y, 1)$ includes $(\lambda x, \lambda y, \lambda)$ for any scalar λ
- If $\lambda \neq 0$, we call $(\lambda x, \lambda y, \lambda)$ homogeneous coordinates of the point (x, y)
- Note that $(\lambda x, \lambda y, 1)$ and $(x, y, 1 / \lambda)$ represent the same point

The Planar Case (contd.)

- Each point in the plane $z=1$ corresponds to a 3D-line through the origin
- The line through $(x, y, 1)$ includes $(\lambda x, \lambda y, \lambda)$ for any scalar λ
- If $\lambda \neq 0$, we call $(\lambda x, \lambda y, \lambda)$ homogeneous coordinates of the point (x, y)
- Note that $(\lambda x, \lambda y, 1)$ and $(x, y, 1 / \lambda)$ represent the same point
- When $\lambda \rightarrow \pm \infty$ we obtain ideal points, $(x, y, 0)$, infinitely far away (on the line at infinity)

[^0]
The Planar Case (contd.)

- Each point in the plane $z=1$ corresponds to a 3D-line through the origin
- The line through $(x, y, 1)$ includes $(\lambda x, \lambda y, \lambda)$ for any scalar λ
- If $\lambda \neq 0$, we call $(\lambda x, \lambda y, \lambda)$ homogeneous coordinates of the point (x, y)
- Note that $(\lambda x, \lambda y, 1)$ and $(x, y, 1 / \lambda)$ represent the same point
- When $\lambda \rightarrow \pm \infty$ we obtain ideal points, $(x, y, 0)$, infinitely far away (on the line at infinity)
- This can be used to capture the difference between vectors and points!

[^1]
The 3D Case

- Similarly to the 2D case, we add an extra coordinate that is equal to one, i.e. the homogeneous coordinates for (x, y, z) become $(x, y, z, 1)$ (or $(\lambda x, \lambda y, \lambda z, \lambda)$ for any $\lambda \neq 0)$.

The 3D Case

- Similarly to the 2D case, we add an extra coordinate that is equal to one, i.e. the homogeneous coordinates for (x, y, z) become $(x, y, z, 1)$ (or $(\lambda x, \lambda y, \lambda z, \lambda)$ for any $\lambda \neq 0)$.
- The homogeneous coordinates $(x, y, z, 0)$ represent the point infinitely far away in the direction (x, y, z)

Revisiting Rigid Body Motions

Recall that a rigid body motion consisting of the rotation \boldsymbol{R} and the translation \boldsymbol{t} is written as $\boldsymbol{y}=\boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}$.

Revisiting Rigid Body Motions

Recall that a rigid body motion consisting of the rotation \boldsymbol{R} and the translation \boldsymbol{t} is written as $\boldsymbol{y}=\boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}$.
As it turns out,

$$
y=\boldsymbol{R} x+\boldsymbol{t}=\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t}
\end{array}\right]\left[\begin{array}{l}
x \\
1
\end{array}\right],
$$

SO

$$
\left[\begin{array}{l}
\boldsymbol{y} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\boldsymbol{0}^{\top} & 1
\end{array}\right]}_{\boldsymbol{A}}\left[\begin{array}{l}
\boldsymbol{x} \\
1
\end{array}\right] .
$$

Revisiting Rigid Body Motions

Recall that a rigid body motion consisting of the rotation \boldsymbol{R} and the translation \boldsymbol{t} is written as $\boldsymbol{y}=\boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}$.
As it turns out,

$$
\boldsymbol{y}=\boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}=\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x} \\
1
\end{array}\right],
$$

SO

$$
\left[\begin{array}{l}
\boldsymbol{y} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t} \\
\boldsymbol{0}^{\top} & 1
\end{array}\right]}_{\boldsymbol{A}}\left[\begin{array}{c}
\boldsymbol{x} \\
1
\end{array}\right]
$$

If we use homogeneous coordinates, we can represent a rigid body motion as the matrix \boldsymbol{A} above.

The Pinhole Perspective Camera

The Pinhole Perspective Camera (contd.)

A 3D point (X, Y, Z) is thus projected to $(f X / Z, f Y / Z, f)$ in the image plane - we may omit the last coordinate:

$$
(X, Y, Z) \longmapsto(f X / Z, f Y / Z)
$$

The Pinhole Perspective Camera (contd.)

A 3D point (X, Y, Z) is thus projected to $(f X / Z, f Y / Z, f)$ in the image plane - we may omit the last coordinate:

$$
(X, Y, Z) \longmapsto(f X / Z, f Y / Z)
$$

Using homogeneous coordinates, we can write the projection as a matrix multiplication:

$$
\left[\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right]=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]}_{\boldsymbol{K}}\left[\begin{array}{ll}
\boldsymbol{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] .
$$

The Pinhole Perspective Camera (contd.)

- A camera positioned at t instead of the origin, and rotated a rotation \boldsymbol{R}, is represented by the matrix

$$
P=K R^{\top}\left[\begin{array}{ll}
I & -t
\end{array}\right]
$$

The Pinhole Perspective Camera (contd.)

- A camera positioned at t instead of the origin, and rotated a rotation \boldsymbol{R}, is represented by the matrix

$$
P=\boldsymbol{K} \boldsymbol{R}^{\top}\left[\begin{array}{ll}
\boldsymbol{I} & -t
\end{array}\right]
$$

- For us, the focal length f is not particularly interesting most of the time - we can set it to $f=1$ for simplicity and skip \boldsymbol{K} entirely

Orthographic Cameras - Illustration

Perspective projection

Orthographic projection

Orthographic Cameras - Illustration

Perspective projection

Orthographic projection

[^0]: Möbius, Der barycentrische Calcul - ein neues Hülfsmittel zur analytischen Behandlung der Geometrie, 1827.

[^1]: Möbius, Der barycentrische Calcul - ein neues Hülfsmittel zur analytischen Behandlung der Geometrie, 1827.

