Options and Mathematics: Lecture 1

November 3, 2020

Basic financial concepts

Financial assets

The course options and mathematics deals with the theoretical valuation of financial assets, such as

- Stocks
- Stock options
- Forward contracts
- Bonds

Exchange markets and OTC markets

Financial assets can be traded in

- Official exchange markets
- or Over The Counter (OTC)

Asset price

- bid price $=$ maximum price that the buyer is willing to pay for the asset
- ask price $=$ minimum price at which the seller is willing to sell the asset

When the bid-ask spread becomes zero, the exchange of the asset takes place at the corresponding price.

Notation

- $\mathcal{U} \equiv$ generic (financial) asset
- $\Pi^{\mathcal{U}}(t) \equiv$ asset price at time t

Remarks

1. Special notation for some specific assets (e.g., $S(t) \equiv$ price of a stock at time t)
2. Price are given in an unspecified unit of currency (e.g., dollars)
3. Price always refers to price per share of the asset
4. Any transaction in the market is subject to transaction costs (e.g., broker's commissions) and transaction delays (trading in real markets is not instantaneous).

Short-selling

An investor is said to short-sell N shares of an asset if the investor borrows the shares from a third party and sell them immediately in the market.
The reason for short-selling an asset is the expectation that the price of the asset will decrease in the future.

Example:

Long and short position

An investor is said to have a

- long position on an asset if the investor owns the asset and will therefore profit from an increase of its price.
- short position if the investor will profit from a decrease of its value, as it happens for instance when the investor is short-selling the asset.

Stock dividend

A stock may occasionally pay a dividend to its shareholders, usually in the form of a cash deposit.

- Announcement day \equiv day when it is announced that the stock with pay the dividend D at time T in the future
- Ex-dividend day \equiv first day before the payment date at which buying the stock does not entitle to the dividend
- Payment day \equiv the day T at which the dividend is payed

At the ex-dividend day, the price of the stock often (but not always!) drops of roughly the same amount paid by the dividend.

Exercise 1.1[?]: Explain why it is reasonable to expect that at the exdividend day the price of the stock will drop by the same amount paid by the dividend..

Portfolio position and portfolio process

A portfolio is the collection of all asset shares owned by the investor.
Consider an agent is investing on

- a_{1} shares of the asset \mathcal{U}_{1},
- a_{2} shares on \mathcal{U}_{2},
- ...,
- a_{N} shares on \mathcal{U}_{N}.

The vector $\mathcal{A}=\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in \mathbb{Z}^{N}$ is called a portfolio position.
A positive number of shares correspond to a long position, while a negative number of shares corresponds to a short position

Portfolio value at time t :

$$
V_{\mathcal{A}}(t)=\sum_{i=1}^{N} a_{i} \Pi^{\mathcal{U}_{i}}(t)
$$

- $a_{i}>0$ means long position on \mathcal{U}_{i} (portfolio value increases when price of \mathcal{U}_{i} increases)
- $a_{i}<0$ means short position on \mathcal{U}_{i} (portfolio value increases when price of \mathcal{U}_{i} decreases)

Remark: Portfolios can be added using the linear structure of \mathbb{Z}^{N}.

A portfolio process is a portfolio in which the position on the different assets changes in time.

Suppose that the investor changes the position on the assets at some times t_{1}, \ldots, t_{M-1}, where

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{M-1}<t_{M}=T
$$

We call $\left\{0=t_{0}, t_{1}, \ldots, t_{M}=T\right\}$ a partition of the interval $[0, T]$.

Denote

- $\mathcal{A}_{0} \equiv$ initial (at $t=0$) portfolio position
- $\mathcal{A}_{j} \equiv$ portfolio position in the interval $\left(t_{j-1}, t_{j}\right], j=1, \ldots, M$

As positions hold for one instance of time only are meaningless, we assume $\mathcal{A}_{0}=\mathcal{A}_{1}$, i.e.,

$$
\mathcal{A}_{1} \text { is the portfolio position in the closed interval }\left[0, t_{1}\right]
$$

The vector $\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{M}\right)$ is called a portfolio process.
Denoting by $a_{i j}$ the number of shares of the asset i in the portfolio \mathcal{A}_{j}, the value of the portfolio process at all times is given by

$$
V(t)= \begin{cases}V_{\mathcal{A}_{1}}(t)=\sum_{i=1}^{N} a_{i 1} \Pi^{\mathcal{U}_{i}}(t), & \text { for } t \in\left[0, t_{1}\right] \\ V_{\mathcal{A}_{2}}(t)=\sum_{i=1}^{N} a_{i 2} \Pi^{\mathcal{U}_{i}}(t), & \text { for } t \in\left(t_{1}, t_{2}\right] \\ \vdots & \vdots \\ V_{\mathcal{A}_{M}}(t)=\sum_{i=1}^{N} a_{i M} \Pi^{\mathcal{U}_{i}}(t), & \text { for } t \in\left(t_{M-1}, t_{M}\right]\end{cases}
$$

The initial value $V(0)=V_{\mathcal{A}_{0}}=V_{\mathcal{A}_{1}}(0)$ of the portfolio, when it is positive, is called the initial wealth of the investor.

Self-financing portfolio

A portfolio process is said to be self-financing if the portfolio assets pay no dividends and if no cash is ever withdrawn or infused in the portfolio.

Example: Let $\mathcal{U}_{1}, \mathcal{U}_{2}, \mathcal{U}_{3}$ be non-dividend paying assets in the interval $[0, T]$.
Consider a portfolio process on these assets with initial position

$$
\mathcal{A}_{0}=(-400,200,100),
$$

whose value is

$$
V_{\mathcal{A}_{0}}=-400 \Pi^{\mathcal{U}_{1}}(0)+200 \Pi^{\mathcal{U}_{2}}(0)+100 \Pi^{\mathcal{U}_{3}}(0) .
$$

This value can be positive, zero or negative.
When $V_{\mathcal{A}_{0}}>0$ we call it initial wealth of the investor.
The value of the portfolio process in the interval $\left[0, t_{1}\right]$ is

$$
V(t)=-400 \Pi^{\mathcal{U}_{1}}(t)+200 \Pi^{\mathcal{U}_{2}}(t)+100 \Pi^{\mathcal{U}_{3}}(t) .
$$

Suppose that at time $t=t_{1}$ the investor

- buys 500 shares of \mathcal{U}_{1},
- sells x shares of \mathcal{U}_{2},
- sells all the shares of \mathcal{U}_{3}.

In the interval $\left(t_{1}, t_{2}\right]$ the investor has a new portfolio which is given by
$\mathcal{A}_{2}=(100,200-x, 0), \quad$ with value $\quad V(t)=100 \Pi^{\mathcal{U}_{1}}(t)+(200-x) \Pi^{\mathcal{U}_{2}}(t)$

Question: Can this new portfolio position be created without adding or removing cash from the portfolio?

To answer this we take the limit of $V(t)$ as $t \rightarrow t_{1}^{+}$:

$$
V\left(t_{1}^{+}\right):=\lim _{t \rightarrow t_{1}^{+}} V(t)=100 \Pi^{\mathcal{U}_{1}}\left(t_{1}\right)+(200-x) \Pi^{\mathcal{U}_{2}}\left(t_{1}\right)
$$

$V\left(t_{1}^{+}\right)$is the value of the portfolio "immediately after" changing the position at time t_{1}.

The difference between the value of the two portfolios immediately after and immediately before the transaction is then

$$
\begin{aligned}
V\left(t_{1}^{+}\right)-V\left(t_{1}\right)= & 100 \Pi^{\mathcal{U}_{1}}\left(t_{1}\right)+(200-x) \Pi^{\mathcal{U}_{2}}\left(t_{1}\right) \\
& -\left(-400 \Pi^{\mathcal{U}_{1}}\left(t_{1}\right)+200 \Pi^{\mathcal{U}_{2}}\left(t_{1}\right)+100 \Pi^{\mathcal{U}_{3}}\left(t_{1}\right)\right) \\
= & 500 \Pi^{\mathcal{U}_{1}}\left(t_{1}\right)-x \Pi^{\mathcal{U}_{2}}\left(t_{1}\right)-100 \Pi^{\mathcal{U}_{3}}\left(t_{1}\right) .
\end{aligned}
$$

If $V\left(t_{1}^{+}\right)-V\left(t_{1}\right)$ is positive, then the new portfolio cannot be created from the old one without infusing extra cash.
If $V\left(t_{1}^{+}\right)-V\left(t_{1}\right)$ is negative, then the new portfolio is less valuable than the old one, the difference being equivalent to cash withdrawn from the portfolio.
For a self-financing portfolio processes we must have $V\left(t_{1}^{+}\right)-V\left(t_{1}\right)=0$, and similarly

$$
V\left(t_{j}^{+}\right)-V\left(t_{j}\right)=0, \text { for all } j=1, \ldots, M-1 \text { (self-financing portfolio). }
$$

Thus the number x of shares of \mathcal{U}_{2} to be sold at time t_{1} in a self-financing portfolio is

$$
x=\frac{500 \Pi^{\mathcal{U}_{1}}\left(t_{1}\right)-100 \Pi^{\mathcal{U}_{3}}\left(t_{1}\right)}{\Pi^{\mathcal{U}_{2}}\left(t_{1}\right)} .
$$

Of course, x will be an integer only in exceptional cases, which means that perfect self-financing strategies in real markets are almost impossible.

Portfolio generating a cash flow

If $V\left(t_{j}^{+}\right) \neq V\left(t_{j}\right)$, we say that at time t_{j} the portfolio process generates the cash flow

$$
C\left(t_{j}\right)=-\left(V\left(t_{j}^{+}\right)-V\left(t_{j}\right)\right)
$$

- a positive cash flow corresponds to cash removed from the portfolio (causing a decrease of its value),
- a negative cash flow corresponds to cash added to the portfolio.

Remarks

1. The total cash flow generated by the portfolio process in the interval $[0, T]$ is $C_{\text {tot }}=\sum_{j=1}^{M-1} C\left(t_{j}\right)$ and can be negative, positive or zero.
2. If an asset pays a dividend D at some time $t_{*} \in(0, T)$, then the portfolio process generates the positive cash flow D at time t_{*} if the portfolio is long on the asset and the negative cash flow $-D$ if it is short on the asset
3. Constant portfolio positions are self-financing provided the assets pay no dividends.

Portfolio return

Consider a self-financing portfolio process opened at time $t=0$ and closed at time $t=T>0$.
Let $V(t)$ be the value of the portfolio at time $t \in[0, T]$.
We define

$$
R(T)=V(T)-V(0) \quad \text { return of the portfolio in the interval }[0, T]
$$

If $R(T)>0$ the investor makes a profit in the interval $[0, T]$.
If $R(T)<0$ the investor incurs in a loss in the interval $[0, T]$.
When $V(0)>0$ we define
$R_{\mathrm{rate}}(T)=\frac{V(T)-V(0)}{V(0)} \quad$ rate of return of the portfolio in the interval $[0, T]$.
The total cash flow C generated by a (non-self-financing) portfolio process must be included in the computation of the return of the portfolio in the interval $[0, T]$ according to the formula

$$
R(T)=V(T)-V(0)+C .
$$

Portfolio returns are commonly "annualized" by dividing the return $R(T)$ by the time T expressed in fraction of years (e.g., $T=6$ months $=1 / 2$ years).
Remark: 1 day $=1 / 252$ years (markets are closed in the week-ends!)

Assets return

Consider now a portfolio that consists of a long position on one share of the asset \mathcal{U} in the interval $[t, t+h]$ and assume that the asset pays no dividend in this time interval.

The annualized rate of return of this portfolio is given by

$$
R_{h}(t)=\frac{\Pi^{\mathcal{U}}(t+h)-\Pi^{\mathcal{U}}(t)}{h \Pi^{\mathcal{U}}(t)}
$$

and is also called simply compounded rate of return of \mathcal{U}.
In the limit $h \rightarrow 0^{+}$we obtain the continuously compounded (or instantaneous) rate of return of the asset:

$$
r(t)=\lim _{h \rightarrow 0^{+}} R_{h}(t)=\frac{1}{\Pi^{\mathcal{U}}(t)} \lim _{h \rightarrow 0^{+}} \frac{\Pi^{\mathcal{U}}(t+h)-\Pi^{\mathcal{U}}(t)}{h}=\frac{1}{\Pi^{\mathcal{U}}(t)} \frac{d \Pi^{\mathcal{U}}(t)}{d t}
$$

that is

$$
r(t)=\frac{d \log \Pi^{\mathcal{U}}(t)}{d t}
$$

Asset returns are often computed using the logarithm of the price rather than the price itself.
For instance the quantity

$$
\widehat{R}_{h}(t)=\log \Pi^{\mathcal{U}}(t+h)-\log \Pi^{\mathcal{U}}(t)=\log \left(\frac{\Pi^{\mathcal{U}}(t+h)}{\Pi^{\mathcal{U}}(t)}\right)
$$

is called log-return of the asset \mathcal{U} in the interval $[t, t+h]$. Since $\widehat{R}_{h}(t) / h$ and $R_{h}(t)$ have the same limit when $h \rightarrow 0^{+}$, namely

$$
\lim _{h \rightarrow 0^{+}} \frac{1}{h} \widehat{R}_{h}(t)=\lim _{h \rightarrow 0^{+}} \frac{\log \Pi^{\mathcal{U}}(t+h)-\log \Pi^{\mathcal{U}}(t)}{h}=\frac{d \log \Pi^{\mathcal{U}}(t)}{d t}=r(t)
$$

then $r(t)$ is also called instantaneous log-return of the asset.

