Options and Mathematics: Lecture 5

November 10, 2020

Exercises

Exercise 1.9

Assume that at time t it is known that the underlying stock will pay the dividend $D < S(t_0)$ at time $t_0 \in (t, T)$. Prove the following variant of the put-call parity for $t < t_0$:

$$C(t, S(t), K, T) - P(t, S(t), K, T) = S(t) - KB(t, T) - DB(t, t_0).$$

In the following exercises it is assumed that the arbitrage-free principle holds and that the stock pays no dividend.

Exercise 1.12

Consider the European derivative \mathcal{U} with maturity time T and pay-off Y given by

$$Y = \min[(S(T) - K_1)_+, (K_2 - S(T))_+],$$

where $K_2 > K_1$ and $(x)_+ = max(0, x)$. Draw the graph of the pay-off function of the derivative.

Find a constant portfolio consisting of European calls expiring at time T which **replicates** the value of \mathcal{U} , i.e., whose value at any time $t \leq T$ equals the value of \mathcal{U} .

Let \mathcal{U}_1 be a call stock option with strike K_1 and maturity T and \mathcal{U}_2 the physically-settled digital call option on the same stock with strike K_2 and maturity T. Decide whether the following statements are true or false and explain your answer.

- (a) If $K_2 \leq K_1$, the value of \mathcal{U}_2 is greater or equal than the value of \mathcal{U}_1 for all t < T;
- (b) If $K_2 > K_1$, the value of \mathcal{U}_1 is greater or equal than the value of \mathcal{U}_2 for all t < T.

Consider the European derivative with pay-off Y at maturity T and the derivative with pay-off $Z = \Pi_Y(t_*)$ at maturity $t_* < T$. Show that $\Pi_Z(t) = \Pi_Y(t), t \in [0, t_*]$

Exercise 1.17 (Chooser option)

Let $T_2 > T_1$. A chooser option with maturity T_1 is a contract which gives to the buyer the right to choose at time T_1 whether the derivative transforms (at zero cost) into a call or a put option with strike K and maturity T_2 .

Write down the pay-off Y of the chooser option.

Let $r \in \mathbb{R}$ be constant. Show that the value of the chooser option is given by the formula

$$\Pi_Y(t) = C(t, S(t), K, T_2) + P(t, S(t), Ke^{-r(T_2 - T_1)}, T_1), \quad t \le T_1.$$

HINT: You need the result of Exercise 1.16 and the put-call parity.

Find, if possible, constant portfolios consisting of European calls and/or puts that replicate the European derivatives with maturity T and pay-off Y depicted in the following figure.

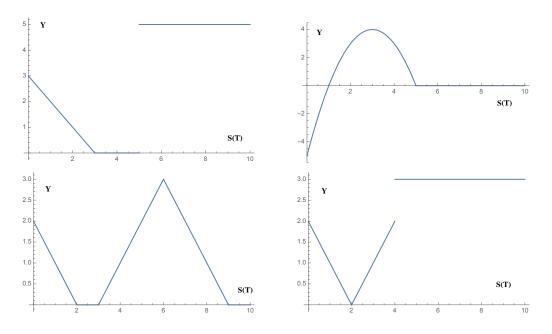


Figure 1: Remark: For S(T) > 10 the pay-off is identically zero

Decide whether the following statements are true and motivate your answer:

- (a) The value of the European put option is non-decreasing with maturity;
- (b) The value of the American put option is non-decreasing with maturity.