Options and Mathematics: Lecture 8

November 13, 2020

The Binomial Model

Portfolio generating a cash flow

When some cash is added or removed from the portfolio $\left\{h_{S}(t), h_{B}(t)\right\}_{t \in \mathcal{I}}$, we say that the portfolio generates a cash flow.

Let $\left(h_{S}(t-1), h_{B}(t-1)\right)$ be the investor position on the stock and the riskfree asset during the time interval $(t-2, t-1]$. The portfolio value at time $t-1$ is

$$
V(t-1)=h_{S}(t-1) S(t-1)+h_{B}(t-1) B(t-1)
$$

Suppose that at the time $t-1$, the investor sells/buys shares of the two assets.

Let $\left(h_{S}(t), h_{B}(t)\right)$ be the new position on the stock and the risk-free asset in the interval $(t-1, t]$.

Then the value of the portfolio process immediately after changing the position at time $t-1$ is given by

$$
V^{\prime}(t-1)=h_{S}(t) S(t-1)+h_{B}(t) B(t-1)
$$

The cash flow $C(t)$ is defined as

$$
V^{\prime}(t-1)-V(t-1)=-C(t-1)
$$

and corresponds to cash withdrawn (if $C(t-1)>0$) or added (if $C(t-1)<0$) to the portfolio as a result of changing the position on the assets

This leads to the following definition.

Definition 2.6

A portfolio process $\left\{\left(h_{S}(t), h_{B}(t)\right)\right\}_{t \in \mathcal{I}}$ is said to generate the cash flow $\{C(t), t=0, \ldots, N-1\}$, if, for $t \in \mathcal{I}$,

$$
h_{S}(t) S(t-1)+h_{B}(t) B(t-1)=h_{S}(t-1) S(t-1)+h_{B}(t-1) B(t-1)-C(t-1)
$$

or, equivalently, letting $\Delta f(t)=f(t)-f(t-1)$,

$$
\Delta V(t)=h_{S}(t) \Delta S(t)+h_{B}(t) \Delta B(t)-C(t-1)
$$

In particular: if $C(t-1)>0$, then the cash is withdrawn from the portfolio, causing a decrease of its value
if $C(t-1)<0$, then the cash is added to the portfolio, causing an increasing of its value.

Remarks

- As we assume $h_{S}(0)=h_{S}(1)$ and $h_{B}(0)=h_{B}(1)$, then $C(0)=0$. Therefore the first time at which the investor can add/remove cash from the portfolio is after changing the position (instantaneously) at time $t=1$, i.e., when passing from $\left(h_{S}(1), h_{B}(1)\right)$ to $\left(h_{S}(2), h_{B}(2)\right)$, generating the cash flow $C(1)$.
- The cash flow is not defined at time $t=N$, as the portfolio process has no value "immediately after" time N.
- Like portfolio positions and portfolio values, the cash flow generated by a portfolio process is also in general path dependen. As usual, we assume that the cash flow $C(t)$ depends only on the information available at, and no later than, time t. Equivalently, $C(t)=C\left(t, x_{1}, x_{2}, \ldots, x_{t}\right)$.
- The total cash flow generated by the portfolio along the path $x \in$ $\{u, d\}^{N}$ is given by

$$
C_{\mathrm{tot}}(x)=\sum_{t=1}^{N-1} C\left(t, x_{1}, \ldots, x_{t}\right) .
$$

Exercise 2.6

Consider a 3-period binomial model with the following parameters:

$$
u=\log \frac{5}{4}, \quad d=\log \frac{1}{2}, \quad r=\log \frac{3}{4}, \quad S(0)=B(0)=64
$$

and the portfolio process in this market given by

$$
\begin{aligned}
& h_{S}(1)=1, \quad h_{B}(1)=-1 \\
& h_{S}(2, u)=-2, \quad h_{B}(2, u)=3, \quad h_{S}(2, d)=2, \quad h_{B}(2, d)=-1, \\
& h_{S}(3, u, u)=2, \quad h_{B}(3, u, u)=2, \quad h_{S}(3, d, d)=-1, \quad h_{B}(3, d, d)=-2, \\
& h_{S}(3, u, d)=h_{S}(3, d, u)=3, \quad h_{B}(3, u, d)=h_{B}(3, d, u)=0 .
\end{aligned}
$$

Compute the cash flow generated by this portfolio process and express the result with a binomial tree.

ANSWER: $C(0)=0$ (which is always true by definition of cash flow), $C(1, u)=48, C(1, d)=-32, C(2, u, u)=-364, C(2, u, d)=-92, C(2, d, u)=$ $-76, C(2, d, d)=84$. Since $C(2, u, d) \neq C(2, d, u)$, the binomial tree of the cash flow generated by this portfolio process is not recombining.

Arbitrage portfolio

Next we prove that the binomial market does not admit self-financing arbitrage portfolio processes, provided the market parameters satisfy $d<r<u$ (no condition is required on the probability p).

Definition 2.7

A portfolio process $\left\{\left(h_{S}(t), h_{B}(t)\right\}_{t \in \mathcal{I}}\right.$ invested in a binomial market is called an arbitrage portfolio process if it is predictable and if its value $V(t)$ satisfies

1) $V(0)=0$;
2) $V(N, x) \geq 0$, for all $x \in\{u, d\}^{N}$;
3) There exists $y \in\{u, d\}^{N}$ such that $V(N, y)>0$.

Comments

- Condition 1) means that no initial wealth is required to set up the portfolio, i.e., the long and short positions on the two assets are perfectly balanced.
- Condition 2) means that the investor is sure not to loose money with this investment: regardless of the path followed by the stock price, the return of the portfolio is always non-negative.
- Condition 3) means that there is a strictly positive probability to make a profit, since along at least one path of the stock price the return of the portfolio is strictly positive.

Theorem 2.4

There exists a self-financing arbitrage portfolio in the binomial market if and only if $r \notin(d, u)$

Proof for $N=1$
We have

$$
h_{S}(0)=h_{S}(1)=h_{S}, \quad h_{B}(0)=h_{B}(1)=h_{B},
$$

i.e., the portfolio position in the 1-period model is constant (and thus predictable and self-financing) over the interval $[0,1]$.

The value of the portfolio at time $t=0$ is

$$
V(0)=h_{S} S_{0}+h_{B} B_{0}
$$

while at time $t=1$ it is given by one of the following:

$$
V(1)=V(1, u)=h_{S} S_{0} e^{u}+h_{B} B_{0} e^{r},
$$

if the stock price goes up at time $t=1$, or

$$
V(1)=V(1, d)=h_{S} S_{0} e^{d}+h_{B} B_{0} e^{r}
$$

if the stock price goes down at time $t=1$.
Thus the portfolio is an arbitrage if $V(0)=0$, i.e.,

$$
h_{S} S_{0}+h_{B} B_{0}=0,
$$

if $V(1) \geq 0$, i.e.,

$$
\begin{aligned}
& h_{S} S_{0} e^{u}+h_{B} B_{0} e^{r} \geq 0 \\
& h_{S} S_{0} e^{d}+h_{B} B_{0} e^{r} \geq 0
\end{aligned}
$$

and if at least one of these inequalities is strict.
Now assume that $\left(h_{S}, h_{B}\right)$ is an arbitrage portfolio.

Then $V(0)=0$ implies $h_{B} B_{0}=-h_{S} S_{0}$ and therefore the inequalities become

$$
\begin{aligned}
& h_{S} S_{0}\left(e^{u}-e^{r}\right) \geq 0 \\
& h_{S} S_{0}\left(e^{d}-e^{r}\right) \geq 0
\end{aligned}
$$

Since at least one of the inequalities must be strict, then $h_{S} \neq 0$.
If $h_{S}>0$, then the first of the previous inequalities gives $u \geq r$, while the second gives $d \geq r$.

As $u>d$, the last two inequalities are equivalent to $r \leq d$.
Similarly, for $h_{S}<0$ we obtain $u \leq r$ and $d \leq r$ which, again due to $u>d$, are equivalent to $r \geq u$.

We conclude that the existence of an arbitrage portfolio implies $r \leq d$ or $r \geq u$, that is $r \notin(d, u)$, which proves the "only if" part of the theorem.

To establish the "if" part we construct an arbitrage portfolio when $r \notin(d, u)$.
Assume $r \leq d$. Let us pick $h_{S}=1$ and $h_{B}=-S_{0} / B_{0}$. Then $V(0)=0$ and

$$
h_{S} S_{0} e^{d}+h_{B} B_{0} e^{r}=S_{0}\left(e^{d}-e^{r}\right) \geq 0
$$

Moreover, since $u>d$,

$$
h_{S} S_{0} e^{u}+h_{B} B_{0} e^{r}=S_{0}\left(e^{u}-e^{r}\right)>S_{0}\left(e^{d}-e^{r}\right) \geq 0,
$$

This shows that one can construct an arbitrage portfolio if $r \leq d$ and a similar argument can be used to find an arbitrage portfolio when $r \geq u$.

The proof of the theorem for the 1-period model is complete

Very important remark!

The condition $d<r<u$ for the absence of self-financing arbitrage portfolios in the binomial market is equivalent to

$$
q_{u} \in(0,1), \quad q_{d}=1-q_{u} \in(0,1)
$$

where we recall that

$$
q_{u}=\frac{e^{r}-e^{d}}{e^{u}-e^{d}}
$$

Hence a binomial market is (self-financing) arbitrage-free if and only if the pair $\left(q_{u}, q_{d}\right)$ defines a probability vector, which is called risk-neutral, or martingale probability vector of the binomial market.

The reason for this terminology will be explained later in the course.

