Options and Mathematics: Lecture 9

November 17, 2020

Binomial price of European derivatives

Consider a European derivative on the stock expiring at time $T=N$.
Recall that European derivatives can be exercised only at maturity.
The derivative will be called standard if its pay-off depends only on the price of the stock at maturity, i.e., $Y=g(S(N))$, for some function $g:(0, \infty) \rightarrow \mathbb{R}$, which is called the pay-off function of the derivative.

The derivative will be called non-standard if the pay-off is a (deterministic) function of the stock price at time $t=N$ and at times earlier than maturity, i.e., $Y=g(S(0), \ldots, S(N))$, where now $g:(0, \infty)^{N+1} \rightarrow \mathbb{R}$.

In both cases the pay-off depends on the path $x=\left(x_{1}, \ldots, x_{N}\right) \in\{u, d\}^{N}$ followed by the stock price

Assume that a European derivative is sold at time $t<T$ for the price $\Pi_{Y}(t)$.
The first concern of the seller is to hedge the derivative, i.e., to invest the premium $\Pi_{Y}(t)$ in such a way that the seller portfolio value at the expiration date is enough to pay-off the buyer of the derivative.

We assume that the seller invests the premium in the binomial market consisting of the underlying stock and the risk-free asset (delta-hedging).

Definition 3.2

An hedging portfolio process for the European derivative with pay-off Y and maturity $T=N$ is a predictable portfolio process $\left\{\left(h_{S}(t), h_{B}(t)\right)\right\}_{t \in \mathcal{I}}$ invested in the underlying stock and the risk-free asset such that its value $V(t)$ satisfies $V(N)=Y$.

If $V(t)=\Pi_{Y}(t)$ holds for all $t=0, \ldots, N$, and not only at maturity, we say that $\left\{h_{S}(t), h_{B}(t)\right\}_{t \in \mathcal{I}}$ is a replicating portfolio process for the given derivative.

The value $V(t)$ of any self-financing hedging portfolio at time t is given by

$$
\begin{aligned}
V(t) & =e^{-r(N-t)} \sum_{\left(x_{t+1}, \ldots, x_{N}\right) \in\{u, d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_{N}} V(N, x) \\
& =e^{-r(N-t)} \sum_{\left(x_{t+1}, \ldots, x_{N}\right) \in\{u, d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_{N}} Y\left(x_{1}, \ldots, x_{N}\right) .
\end{aligned}
$$

Definition 3.3

The binomial (fair) price at time $t=0, \ldots, N-1$ of the European derivative with pay-off Y and maturity $T=N$ is given by

$$
\Pi_{Y}(t):=e^{-r(N-t)} \sum_{\left(x_{t+1}, \ldots, x_{N}\right) \in\{u, d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_{N}} Y\left(x_{1}, \ldots, x_{N}\right)
$$

while $\Pi_{Y}(N):=Y$. In particular at time $t=0$,

$$
\Pi_{Y}(0)=e^{-r N} \sum_{x \in\{u, d\}^{N}}\left(q_{u}\right)^{N_{u}(x)}\left(q_{d}\right)^{N_{d}(x)} Y(x)
$$

where $N_{u}(x)$ in the number of u 's in x and $N_{d}(x)=N-N_{u}(x)$ the number of d 's.

Remarks:

1. The binomial price at time t of the European derivative equals the value required to open at time t a self-financing hedging portfolio process for the derivative. In particular, self-financing hedging portfolios of European derivatives in a binomial market are also replicating portfolios.
2. Note carefully that we have not proved yet that hedging self-financing portfolios exist. The existence of self-financing hedging portfolios is proved in later.

Note that

$$
\Pi_{Y}(t)=e^{-r(N-t)} \sum_{\left(x_{t+1}, \ldots, x_{N}\right) \in\{u, d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_{N}} Y\left(x_{1}, \ldots, x_{N}\right)=\Pi_{Y}\left(t, x_{1}, \ldots, x_{t}\right)
$$

hence the binomial price of the derivative at time t depends only on the information available at time tand not on the uncertain future.

Example

Recall that

$$
S(N, x)=S_{0} \exp \left(x_{1}+\cdots+x_{N}\right), \quad S\left(t, x_{1}, \ldots, x_{t}\right)=S_{0} \exp \left(x_{1}+\cdots+x_{t}\right)
$$

hence

$$
S(N, x)=S\left(t, x_{1}, \ldots, x_{t}\right) \exp \left(x_{t+1}+\cdots+x_{N}\right)
$$

and therefore the binomial fair price for the standard European derivative with pay-off $Y=g(S(N))$ can be written as

$$
\Pi_{Y}\left(t, x_{1}, \ldots, x_{t}\right)=e^{-r(N-t)} \sum_{\left(x_{t+1}, \ldots, x_{N}\right) \in\{u, d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_{N}} g\left(S\left(t, x_{1}, \ldots, x_{t}\right) e^{x_{t+1}+\cdots+x_{N}}\right)
$$

This shows that the binomial price at time t of standard European derivatives is a deterministic function of $S(t)$, namely

$$
\Pi_{Y}(t)=v_{t}(S(t))
$$

where

$$
v_{t}(z)=e^{-r(N-t)} \sum_{\left(x_{t+1}, \ldots, x_{N}\right) \in\{u, d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_{N}} g\left(z \exp \left(x_{t+1}+\cdots+x_{N}\right)\right)
$$

is called the pricing function of the derivative (at time t).
In the particular case of the European call, respectively put, with strike K and maturity $T=N$, the binomial price at time $t=0, \ldots, N-1$ can be written in the form $C(t, S(t), K, N)$, respectively $P(t, S(t), K, N)$, where
$C(t, S(t), K, T)=e^{-r(T-t)} \sum_{\left(x_{t+1}, \ldots, x_{T}\right) \in\{u, d\}^{T-t}} q_{x_{t+1}} \cdots q_{x_{T}}\left(S(t) e^{x_{t+1}+\cdots+x_{T}}-K\right)_{+}$,
$P(t, S(t), K, T)=e^{-r(T-t)} \sum_{\left(x_{t+1}, \ldots, x_{T}\right) \in\{u, d\}^{T-t}} q_{x_{t+1}} \cdots q_{x_{T}}\left(K-S(t) e^{x_{t+1}+\cdots+x_{T}}\right)_{+}$.

Remark:

These explicit formulas can be used to give an alternative proof of the properties on European call/put options derived in the first week, see Theorem 3.1 in the lecture notes.

Recurrence formula for the binomial price

Let $\Pi_{Y}^{u}(t)$ denote the binomial fair price of the European derivative at time t assuming that the stock price goes up at time t (i.e., $S(t)=S(t-1) e^{u}$, or equivalently, $x_{t}=u$)

Note that

$$
\Pi_{Y}^{u}(t)=\Pi_{Y}^{u}\left(t, x_{1}, \ldots, x_{t-1}\right)=\Pi_{Y}\left(t, x_{1}, \ldots, x_{t-1}, u\right) .
$$

Similarly define $\Pi_{Y}^{d}(t)$, with "up" replaced by "down".
By the proven recurrence formula for the value of self-financing portfolios we have the following important result.

The binomial price of European derivatives satisfies the recurrence formula

$$
\Pi_{Y}(N)=Y
$$

$$
\Pi_{Y}(t)=e^{-r}\left[q_{u} \Pi_{Y}^{u}(t+1)+q_{d} \Pi_{Y}^{d}(t+1)\right], \text { for } t \in\{0, \ldots, N-1\}
$$

Example: A standard European derivative

Consider the standard European derivative with pay-off $Y=(\sqrt{S(2)}-1)_{+}$ at maturity time $T=2$.

Assume that the market parameters are given by

$$
u=\log 2, \quad d=0, \quad r=\log (4 / 3), \quad p=1 / 4
$$

Assume also $S_{0}=1$.
In this example we compute the possible paths for the binomial price $\Pi_{Y}(t)$ of the derivative and the probability that the derivative expires in the money.

The stock price and the risk-free asset satisfy

$$
S(t)=\left\{\begin{array}{l}
S(t-1) e^{u} \\
S(t-1) e^{d}
\end{array}, \quad B(t)=B_{0} e^{r t} \quad t \in\{1,2\}\right.
$$

where

$$
e^{u}=2, \quad e^{d}=1, \quad e^{r}=4 / 3 .
$$

Hence

$$
q_{u}=\frac{e^{r}-e^{d}}{e^{u}-e^{d}}=\frac{1}{3}, \quad q_{d}=1-q_{u}=\frac{2}{3} .
$$

Now, let us write the binomial tree of the stock price, including the possible values of the derivative at the expiration time $T=2$ (where we use that $\left.\Pi_{Y}(2)=Y\right):$

Using the recurrence formula

$$
\Pi_{Y}(t)=e^{-r}\left(q_{u} \Pi_{Y}^{u}(t+1)+q_{d} \Pi_{Y}^{d}(t+1)\right)
$$

we have, at time $t=1$,

$$
\begin{aligned}
S(1)=S(1, u)=2 \Rightarrow \Pi_{Y}(1) & =\Pi_{Y}(1, u)=e^{-r}\left(q_{u} \Pi_{Y}^{u}(2, u)+q_{d} \Pi_{Y}^{d}(2, u)\right) \\
& =e^{-r}\left(q_{u} \Pi_{Y}(2, u, u)+q_{d} \Pi_{Y}(2, u, d)\right) \\
& =\frac{3}{4}\left(\frac{1}{3} \cdot 1+\frac{2}{3}(\sqrt{2}-1)\right)=\frac{1}{4}(2 \sqrt{2}-1) \\
S(1)=S(1, d)=1 \Rightarrow \Pi_{Y}(1) & =\Pi_{Y}(1, d)=e^{-r}\left(q_{u} \Pi_{Y}^{u}(2, d)+q_{d} \Pi_{Y}^{d}(2, d)\right) \\
& =e^{-r}\left(q_{u} \Pi_{Y}(2, d, u)+q_{d} \Pi_{Y}(2, d, d)\right) \\
& =\frac{3}{4}\left(\frac{1}{3}(\sqrt{2}-1)+\frac{2}{3} \cdot 0\right)=\frac{1}{4}(\sqrt{2}-1)
\end{aligned}
$$

while at time $t=0$ we have

$$
\begin{aligned}
\Pi_{Y}(0) & =e^{-r}\left(q_{u} \Pi_{Y}^{u}(1)+q_{d} \Pi_{Y}^{d}(1)\right) \\
& =e^{-r}\left(q_{u} \Pi_{Y}(1, u)+q_{d} \Pi_{Y}(1, d)\right) \\
& =\frac{3}{4}\left(\frac{1}{3} \cdot \frac{1}{4}(2 \sqrt{2}-1)+\frac{2}{3} \cdot \frac{1}{4}(\sqrt{2}-1)\right)=\frac{1}{4}\left(\sqrt{2}-\frac{3}{4}\right) .
\end{aligned}
$$

Hence we have found the following diagram for the binomial price of the derivative

As to the probability that the derivative expires in the money, i.e., $\mathbb{P}(Y>0)$, we see from the above diagram that this happens along the paths $(u, u),(u, d),(d, u)$, hence

$$
\mathbb{P}(Y>0)=\mathbb{P}\left(S^{(u, u)}\right)+\mathbb{P}\left(S^{(u, d)}\right)+\mathbb{P}\left(S^{(d, u)}\right)=\left(\frac{1}{4}\right)^{2}+\frac{1}{4} \cdot \frac{3}{4}+\frac{3}{4} \cdot \frac{1}{4}=\frac{7}{16},
$$

which corresponds to $43,75 \%$.

Example: A non-standard European derivative

Consider a 3 -period binomial market with the parameters $e^{u}=\frac{4}{3}, e^{d}=\frac{2}{3}$, $p=\frac{3}{4}, S_{0}=2$ and $r=0$.

In this example we shall compute the binomial price at time $t=0$ of the European derivative with pay-off

$$
Y=\left(\frac{11}{9}-\min \left(S_{0}, S(1), S(2), S(3)\right)\right)_{+}, \quad(z)_{+}=\max (0, z)
$$

and time of maturity $T=3$.
This is an example of lookback option. We will also compute the probability that the derivative expires in the money and the probability that the return of a constant portfolio with a long position on this derivative be positive.

To compute the initial binomial price we use the formula

$$
\Pi_{Y}(0)=e^{-r N} \sum_{x \in\{u, d\}^{N}}\left(q_{u}\right)^{N_{u}(x)}\left(q_{d}\right)^{N_{d}(x)} Y(x),
$$

Here $Y(x)$ denotes the pay-off as a function of the path of the stock price, $N_{u}(x)$ is the number of times that the stock price goes up in the path x and $N_{d}(x)=N-N_{u}(x)$ is the number of times that it goes down. In this example we have $N=3, r=0$ and

$$
q_{u}=q_{d}=\frac{1}{2} .
$$

So, it remains to compute the pay-off for all possible paths of the binomial stock price, where

$$
Y=\left(\frac{11}{9}-\min \left(S_{0}, S(1), S(2), S(3)\right)\right)_{+}, \quad(z)_{+}=\max (0, z)
$$

The binomial tree of the stock price is

From this we compute

$$
\begin{aligned}
& Y(u, u, u)=\left(\frac{11}{9}-\min (2,8 / 3,32 / 9,128 / 27)\right)_{+}=\left(\frac{11}{9}-2\right)_{+}=\max \left(0,-\frac{7}{9}\right)=0 \\
& Y(u, u, d)=\left(\frac{11}{9}-\min (2,8 / 3,32 / 9,64 / 27)\right)_{+}=0 \\
& Y(u, d, u)=\left(\frac{11}{9}-\min (2,8 / 3,16 / 9,64 / 27)\right)_{+}=0 \\
& Y(u, d, d)=\left(\frac{11}{9}-\min (2,8 / 3,16 / 9,32 / 27)\right)_{+}=1 / 27 \\
& Y(d, u, u)=\left(\frac{11}{9}-\min (2,4 / 3,16 / 9,64 / 27)\right)_{+}=0 \\
& Y(d, u, d)=\left(\frac{11}{9}-\min (2,4 / 3,16 / 9,32 / 27)\right)_{+}=1 / 27 \\
& Y(d, d, u)=\left(\frac{11}{9}-\min (2,4 / 3,8 / 9,32 / 27)\right)_{+}=1 / 3 \\
& Y(d, d, d)=\left(\frac{11}{9}-\min (2,4 / 3,8 / 9,16 / 27)\right)_{+}=17 / 27
\end{aligned}
$$

Replacing in the formula for $\Pi_{Y}(0)$ we obtain
$\Pi_{Y}(0)=q_{u}\left(q_{d}\right)^{2} Y(u, d, d)+\left(q_{d}\right)^{2} q_{u} Y(d, u, d)+\left(q_{d}\right)^{2} q_{u} Y(d, d, u)+\left(q_{d}\right)^{3} Y(d, d, d)$,
the other terms being zero. Hence

$$
\Pi_{Y}(0)=\frac{1}{8}\left(\frac{1}{27}+\frac{1}{27}+\frac{1}{3}+\frac{17}{27}\right)=\frac{7}{54} .
$$

The probability that the derivative expires in the money is the probability that $Y>0$. Hence we just sum the probabilities of the paths which lead to a positive pay-off:

$$
\begin{aligned}
\mathbb{P}(Y>0) & =\mathbb{P}\left(S^{(u, d, d)}\right)+\mathbb{P}\left(S^{(d, u, d)}\right)+\mathbb{P}\left(S^{(d, d, u)}\right)+\mathbb{P}\left(S^{(d, d, d)}\right) \\
& =p(1-p)^{2}+(1-p)^{2} p+(1-p)^{2} p+(1-p)^{3} \\
& =3(1-p)^{2} p+(1-p)^{3}=3\left(\frac{1}{4}\right)^{2} \frac{3}{4}+\left(\frac{1}{4}\right)^{3}=\frac{5}{32} \approx 15,6 \%
\end{aligned}
$$

Next consider a constant portfolio with a long position on the derivative. This means that the investor buys the derivative at time $t=0$ and waits (without changing the portfolio) until the expiration time $t=3$. The return will be positive (i.e., the buyer makes a profit) if and only if $\Pi_{Y}(3)>\Pi_{Y}(0)$. But $\Pi_{Y}(3)=Y$, which, according to the computations above, is greater than $\Pi_{Y}(0)=7 / 54$ only when the binomial stock price follows one of the paths (d, d, u) or (d, d, d). Hence
$\mathbb{P}(R>0)=\mathbb{P}\left(S^{(d, d, u)}\right)+\mathbb{P}\left(S^{(d, d, d)}\right)=(1-p)^{2} p+(1-p)^{3}=(1-p)^{2}=\frac{1}{16} \approx 6,2 \%$

