
Options and Mathematics: Lecture 9

November 17, 2020

Binomial price of European derivatives

Consider a European derivative on the stock expiring at time T = N .

Recall that European derivatives can be exercised only at maturity.

The derivative will be called standard if its pay-off depends only on the price
of the stock at maturity, i.e., Y = g(S(N)), for some function g : (0,∞)→ R,
which is called the pay-off function of the derivative.

The derivative will be called non-standard if the pay-off is a (deterministic)
function of the stock price at time t = N and at times earlier than maturity,
i.e., Y = g(S(0), . . . , S(N)), where now g : (0,∞)N+1 → R.

In both cases the pay-off depends on the path x = (x1, . . . , xN) ∈ {u, d}N
followed by the stock price
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Assume that a European derivative is sold at time t < T for the price ΠY (t).

The first concern of the seller is to hedge the derivative, i.e., to invest the
premium ΠY (t) in such a way that the seller portfolio value at the expiration
date is enough to pay-off the buyer of the derivative.

We assume that the seller invests the premium in the binomial market con-
sisting of the underlying stock and the risk-free asset (delta-hedging).

Definition 3.2

An hedging portfolio process for the European derivative with pay-off Y
and maturity T = N is a predictable portfolio process {(hS(t), hB(t))}t∈I
invested in the underlying stock and the risk-free asset such that its value
V (t) satisfies V (N) = Y .

If V (t) = ΠY (t) holds for all t = 0, . . . , N , and not only at maturity, we
say that {hS(t), hB(t)}t∈I is a replicating portfolio process for the given
derivative.

The value V (t) of any self-financing hedging portfolio at time t is given by

V (t) = e−r(N−t)
∑

(xt+1,...,xN )∈{u,d}N−t

qxt+1 · · · qxN
V (N, x)

= e−r(N−t)
∑

(xt+1,...,xN )∈{u,d}N−t

qxt+1 · · · qxN
Y (x1, . . . , xN).
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Definition 3.3

The binomial (fair) price at time t = 0, . . . , N − 1 of the European deriva-
tive with pay-off Y and maturity T = N is given by

�
�

�


ΠY (t) := e−r(N−t)
∑

(xt+1,...,xN )∈{u,d}N−t

qxt+1 · · · qxN
Y (x1, . . . , xN)

while ΠY (N) := Y . In particular at time t = 0,

�
�

�


ΠY (0) = e−rN
∑

x∈{u,d}N
(qu)Nu(x)(qd)

Nd(x)Y (x)

where Nu(x) in the number of u’s in x and Nd(x) = N −Nu(x) the number
of d’s.

Remarks:

1. The binomial price at time t of the European derivative equals the value
required to open at time t a self-financing hedging portfolio process for
the derivative. In particular, self-financing hedging portfolios of Euro-
pean derivatives in a binomial market are also replicating portfolios.

2. Note carefully that we have not proved yet that hedging self-financing
portfolios exist. The existence of self-financing hedging portfolios is
proved in later.
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Note that

ΠY (t) = e−r(N−t)
∑

(xt+1,...,xN )∈{u,d}N−t

qxt+1 · · · qxN
Y (x1, . . . , xN) = ΠY (t, x1, . . . , xt)

hence the binomial price of the derivative at time t depends only on the
information available at time tand not on the uncertain future.

Example

Recall that

S(N, x) = S0 exp(x1 + · · ·+ xN), S(t, x1, . . . , xt) = S0 exp(x1 + · · ·+ xt)

hence

S(N, x) = S(t, x1, . . . , xt) exp(xt+1 + · · ·+ xN),

and therefore the binomial fair price for the standard European derivative
with pay-off Y = g(S(N)) can be written as

ΠY (t, x1, . . . , xt) = e−r(N−t)
∑

(xt+1,...,xN )∈{u,d}N−t

qxt+1 · · · qxN
g(S(t, x1, . . . , xt)e

xt+1+···+xN ).

This shows that the binomial price at time t of standard European derivatives
is a deterministic function of S(t), namely

�� ��ΠY (t) = vt(S(t))

where
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vt(z) = e−r(N−t)
∑

(xt+1,...,xN )∈{u,d}N−t

qxt+1 · · · qxN
g(z exp(xt+1 + · · ·+ xN))

is called the pricing function of the derivative (at time t).

In the particular case of the European call, respectively put, with strike K
and maturity T = N , the binomial price at time t = 0, . . . , N − 1 can be
written in the form C(t, S(t), K,N), respectively P (t, S(t), K,N), where

C(t, S(t), K, T ) = e−r(T−t)
∑

(xt+1,...,xT )∈{u,d}T−t

qxt+1 · · · qxT
(S(t)ext+1+···+xT −K)+,

P (t, S(t), K, T ) = e−r(T−t)
∑

(xt+1,...,xT )∈{u,d}T−t

qxt+1 · · · qxT
(K − S(t)ext+1+···+xT )+.

Remark:

These explicit formulas can be used to give an alternative proof of the prop-
erties on European call/put options derived in the first week, see Theorem
3.1 in the lecture notes.
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Recurrence formula for the binomial price

Let Πu
Y (t) denote the binomial fair price of the European derivative at time

t assuming that the stock price goes up at time t (i.e., S(t) = S(t− 1)eu, or
equivalently, xt = u)

Note that

Πu
Y (t) = Πu

Y (t, x1, . . . , xt−1) = ΠY (t, x1, . . . , xt−1, u).

Similarly define Πd
Y (t), with “up” replaced by “down”.

By the proven recurrence formula for the value of self-financing portfolios we
have the following important result.

The binomial price of European derivatives satisfies the recurrence formula

�� ��ΠY (N) = Y

�� ��ΠY (t) = e−r[quΠu
Y (t + 1) + qdΠ

d
Y (t + 1)], for t ∈ {0, . . . , N − 1}
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Example: A standard European derivative

Consider the standard European derivative with pay-off Y = (
√
S(2)− 1)+

at maturity time T = 2.

Assume that the market parameters are given by

u = log 2, d = 0, r = log(4/3), p = 1/4.

Assume also S0 = 1.

In this example we compute the possible paths for the binomial price ΠY (t)
of the derivative and the probability that the derivative expires in the money.

The stock price and the risk-free asset satisfy

S(t) =

{
S(t− 1)eu

S(t− 1)ed
, B(t) = B0e

rt t ∈ {1, 2},

where

eu = 2, ed = 1, er = 4/3.

Hence

qu =
er − ed

eu − ed
=

1

3
, qd = 1− qu =

2

3
.
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Now, let us write the binomial tree of the stock price, including the possible
values of the derivative at the expiration time T = 2 (where we use that
ΠY (2) = Y ):

S(2) = 4⇒ ΠY (2) = (
√

4− 1)+ = 1

S(1) = 2

u
22

d

,,

S0 = 1

u
99

d

%%

S(2) = 2⇒ ΠY (2) = (
√

2− 1)+ =
√

2− 1

S(1) = 1

u
22

d

,,

S(2) = 1⇒ ΠY (2) = (
√

1− 1)+ = 0

Using the recurrence formula

ΠY (t) = e−r(quΠu
Y (t + 1) + qdΠ

d
Y (t + 1))

we have, at time t = 1,

S(1) = S(1, u) = 2⇒ ΠY (1) = ΠY (1, u) = e−r(quΠu
Y (2, u) + qdΠ

d
Y (2, u))

= e−r(quΠY (2, u, u) + qdΠY (2, u, d))

=
3

4
(
1

3
· 1 +

2

3
(
√

2− 1)) =
1

4
(2
√

2− 1)

S(1) = S(1, d) = 1⇒ ΠY (1) = ΠY (1, d) = e−r(quΠu
Y (2, d) + qdΠ

d
Y (2, d))

= e−r(quΠY (2, d, u) + qdΠY (2, d, d))

=
3

4
(
1

3
(
√

2− 1) +
2

3
· 0) =

1

4
(
√

2− 1)
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while at time t = 0 we have

ΠY (0) = e−r(quΠu
Y (1) + qdΠ

d
Y (1))

= e−r(quΠY (1, u) + qdΠY (1, d))

=
3

4
(
1

3
· 1

4
(2
√

2− 1) +
2

3
· 1

4
(
√

2− 1)) =
1

4
(
√

2− 3

4
).

Hence we have found the following diagram for the binomial price of the
derivative

ΠY (2) = 1

ΠY (1) = 1
4
(2
√

2− 1)

u
44

d

**

ΠY (0) = 1
4
(
√

2− 3
4
)

u
44

d

**

ΠY (2) =
√

2− 1

ΠY (1) = 1
4
(
√

2− 1)

u

44

d

**
ΠY (2) = 0

As to the probability that the derivative expires in the money, i.e., P(Y > 0),
we see from the above diagram that this happens along the paths (u, u), (u, d), (d, u),
hence

P(Y > 0) = P(S(u,u)) + P(S(u,d)) + P(S(d,u)) =

(
1

4

)2

+
1

4
· 3

4
+

3

4
· 1

4
=

7

16
,

which corresponds to 43, 75%.

9



Example: A non-standard European derivative

Consider a 3-period binomial market with the parameters eu = 4
3
, ed = 2

3
,

p = 3
4
, S0 = 2 and r = 0.

In this example we shall compute the binomial price at time t = 0 of the
European derivative with pay-off

Y =
(11

9
−min(S0, S(1), S(2), S(3))

)
+
, (z)+ = max(0, z),

and time of maturity T = 3.

This is an example of lookback option. We will also compute the prob-
ability that the derivative expires in the money and the probability that
the return of a constant portfolio with a long position on this derivative be
positive.

To compute the initial binomial price we use the formula

ΠY (0) = e−rN
∑

x∈{u,d}N
(qu)Nu(x)(qd)

Nd(x)Y (x),

Here Y (x) denotes the pay-off as a function of the path of the stock price,
Nu(x) is the number of times that the stock price goes up in the path x and
Nd(x) = N−Nu(x) is the number of times that it goes down. In this example
we have N = 3, r = 0 and

qu = qd =
1

2
.

So, it remains to compute the pay-off for all possible paths of the binomial
stock price, where

Y =

(
11

9
−min(S0, S(1), S(2), S(3))

)
+

, (z)+ = max(0, z).
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The binomial tree of the stock price is

S(3) = 128
27

S(2) = 32
9

u
88

d

&&
S(1) = 8

3

u
88

d

&&

S(3) = 64
27

S0 = 2

u
88

d

&&

S(2) = 16
9

u
88

d

&&
S(1) = 4

3

u
88

d

&&

S(3) = 32
27

S(2) = 8
9

u
88

d

&&
S(3) = 16

27

From this we compute
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Y (u, u, u) =

(
11

9
−min(2, 8/3, 32/9, 128/27)

)
+

=

(
11

9
− 2

)
+

= max(0,−7

9
) = 0

Y (u, u, d) =

(
11

9
−min(2, 8/3, 32/9, 64/27)

)
+

= 0

Y (u, d, u) =

(
11

9
−min(2, 8/3, 16/9, 64/27)

)
+

= 0

Y (u, d, d) =

(
11

9
−min(2, 8/3, 16/9, 32/27)

)
+

= 1/27

Y (d, u, u) =

(
11

9
−min(2, 4/3, 16/9, 64/27)

)
+

= 0

Y (d, u, d) =

(
11

9
−min(2, 4/3, 16/9, 32/27)

)
+

= 1/27

Y (d, d, u) =

(
11

9
−min(2, 4/3, 8/9, 32/27)

)
+

= 1/3

Y (d, d, d) =

(
11

9
−min(2, 4/3, 8/9, 16/27)

)
+

= 17/27
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Replacing in the formula for ΠY (0) we obtain

ΠY (0) = qu(qd)
2Y (u, d, d)+(qd)

2quY (d, u, d)+(qd)
2quY (d, d, u)+(qd)

3Y (d, d, d),

the other terms being zero. Hence

ΠY (0) =
1

8

( 1

27
+

1

27
+

1

3
+

17

27

)
=

7

54
.

The probability that the derivative expires in the money is the probability
that Y > 0. Hence we just sum the probabilities of the paths which lead to
a positive pay-off:

P(Y > 0) = P(S(u,d,d)) + P(S(d,u,d)) + P(S(d,d,u)) + P(S(d,d,d))

= p(1− p)2 + (1− p)2p + (1− p)2p + (1− p)3

= 3(1− p)2p + (1− p)3 = 3

(
1

4

)2
3

4
+

(
1

4

)3

=
5

32
≈ 15, 6%

Next consider a constant portfolio with a long position on the derivative.
This means that the investor buys the derivative at time t = 0 and waits
(without changing the portfolio) until the expiration time t = 3. The return
will be positive (i.e., the buyer makes a profit) if and only if ΠY (3) > ΠY (0).
But ΠY (3) = Y , which, according to the computations above, is greater than
ΠY (0) = 7/54 only when the binomial stock price follows one of the paths
(d, d, u) or (d, d, d). Hence

P(R > 0) = P(S(d,d,u))+P(S(d,d,d)) = (1−p)2p+(1−p)3 = (1−p)2 =
1

16
≈ 6, 2%

13


