
Options and Mathematics: Lecture 14

November 25, 2020

Computation of the binomial price of

European/American derivatives

Computation of the binomial stock price

In this section it is shown how to compute the binomial stock price with
Matlab.

Our goal is to construct a binomial tree for the stock price in some interval
[0, T ], with T > 0 measured in fraction of years.

Let us start by dividing the interval [0, T ] into N subintervals of length
h = T/N , i.e.,

0 = t1 < t2 < · · · < tN+1 = T, ti+1 = ti + h, i = 1, . . . , N.

Let S(i) = S(ti). We define the binomial stock price on the given partition
of [0, T ] as

S(i+ 1) =

{
S(i)eu, with probability p

S(i)ed, with probability 1− p
, i ∈ I.
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The following code defines the Matlab function BinomialStock which gener-
ates the binomial tree for the stock price on the partition Q = {t1, . . . , tN+1}
of the interval [0, T ]:

function [Q,S]=BinomialStock(p,alpha,sigma,s,T,N)

h=T/N;

u=alpha*h+sigma*sqrt(h)*sqrt((1-p)/p);

d=alpha*h-sigma*sqrt(h)*sqrt(p/(1-p));

Q=zeros(N+1,1);

S=zeros(N+1);

Q(1)=0;

S(1,1)=s;

for j=1:N

Q(j+1)=j*h;

S(1,j+1)=S(1,j)*exp(u);

for i=1:j

S(i+1,j+1)=S(i,j)*exp(d);

end

end
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For example, by running the command

[Q,S]=BinomialStock(0.5,0.01,0.2,10,1/12,5)

we get the output

Q =

0
0.0167
0.0333
0.0500
0.0667
0.0833

S =

10.0000 10.2633 10.5335 10.8108 11.0954 11.3875
0 9.7467 10.0033 10.2667 10.5370 10.8144
0 0 9.4999 9.7500 10.0067 10.2701
0 0 0 9.2593 9.5030 9.7532
0 0 0 0 9.0248 9.2624
0 0 0 0 0 8.7962
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Random paths of the binomial stock price

Recall that in the applications to real-word problems the number N should
be chosen sufficiently large (i.e., h should be small compared to T ), which
makes it practically impossible to generate all possible 2N paths of the stock
price.

The following code computes a set of M random paths of the stock price,
where M ≤ 2N

function [Rp,Nu]=RandomPathsBinomial(S,M)

N=length(S)-1;

rng shuffle;

r = randi(2,M,N) - 1;

Nu=sum(r==0,2);

Rp=zeros(M,N+1);

rows=zeros(M,N+1);

rows(:,1)=1;

columns=transpose(ones(1,M))*[1:N+1];

for j=1:N

rows(:,j+1)=rows(:,j)+r(:,j);

end

idx = sub2ind(size(S), rows, columns);

Rp=S(idx);

[Q, S] = BinomialStock(1/2, 0, 0.5, 10, 1, 100);

[Rp, Nu] = RandomPathsBinomial(S, 100);

we generate 100 random paths of the binomial stock price with α = 0, σ =
50%, S(0) = 10 in the time interval [0, 1] divided in 100 points. A graphical
representation of these paths is shown in Figure 1 .
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Figure 1: 100 random paths of a binomial stock price

Computation of the binomial price of standard Euro-
pean derivatives

In this section we discuss the numerical implementation of the binomial op-
tions pricing model with Matlab.

Consider a partition 0 = t1 < t2 < · · · < tN+1 = T of the interval [0, T ] and
the binomial stock price

S(i+ 1) =

{
S(i)eu, with probability p

S(i)ed, with probability 1− p
, i ∈ I = {1, . . . , N},

where S(i) = S(ti) and
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u = αh+ σ

√
1− p
p

√
h, d = αh− σ

√
p

1− p
√
h, h =

T

N
.

The value of the risk-free asset at time ti is given by

B(ti) = B0e
rti = B0e

(rh)i := B(i).

Hence the pair (S(i), B(i)) defines a binomial marke with parameters u, d
given as above and risk-free rate rh.

Since

αh− σ
√

p

1− p
√
h < rh < αh+ σ

√
1− p
p

√
h

holds for h small, hence the condition for the non-existence of self-financing
arbitrage portfolios in the market is satisfied provided we take our time par-
tition to be sufficiently fine.

The recurrence formula for the price of the European option with pay-off Y
at maturity T becomes

ΠY (N +1) = Y, and ΠY (i) = e−rh[quΠ
u
Y (i+1)+qdΠ

d
Y (i+1)], for i ∈ I,

where ΠY (i) = ΠY (ti) and

qu =
erh − eαh−σ

√
p

1−p

√
h

e
αh+σ

√
1−p
p

√
h − eαh−σ

√
p

1−p

√
h
, qd = 1− qu.

The recurrence formula for pricing standard European options is imple-
mented by the following Matlab function
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function Price=BinomialEuropean(Q,S,r,g)

h=Q(2)-Q(1);

N=length(Q)-1;

expu=S(1,2)/S(1,1);

expd=S(2,2)/S(1,1);

qu=(exp(r*h)-expd)/(expu-expd);

qd=(expu-exp(r*h))/(expu-expd);

if (qu<0 || qd<0)

display(’Error: the market is not arbitrage free.’);

Price=0;

return

end

Price=zeros(N+1);

Price(:,N+1)=g(S(:,N+1));

for j=N:-1:1

for i=1:j

Price(i,j)=exp(-r*h)*(qu*Price(i,j+1)+qd*Price(i+1,j+1));

end

end
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For example, let S be the binomial tree constructed before and run the
command

Price=BinomialEuropean(Q,S,0.01,@(x)max(x-10,0))

which computes the binomial price of a European call with strike K = 10.
The result is

Price =

0.2461 0.3817 0.5705 0.8141 1.0971 1.3875
0 0.1140 0.1978 0.3333 0.5387 0.8144
0 0 0.0325 0.0658 0.1333 0.2701
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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Figure 2: Initial binomial price C(0) = Price(1, 1) of the call computed for
increasing values of N (S0 = 10, K = 10.5, T = 1/2, α = 0.1, σ = 0.2, r =
0.01, p = 1/2). The red line indicates the Black-Scholes price of the call. The
binomial price stabilizes around the Black-Scholes price for N & 100.
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Parameters sensitivity analysis

An important application of the binomial model, as of any other options
pricing model, is the study of how the value of an option depends on the
market parameters.

In this section we perform this parameters sensitivity analysis for the
call option using the Matlab code given above.

In the subsequent discussion the numbers of periods N is fixed to N = 10000.
With such a large number of steps, and for realistic values of the market
parameters, the binomial price and the Black-Scholes price of the call option
are practically the same.
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Figure 3: Initial binomial price C(0) = Price(1, 1) of the call computed for
different values of p ∈ (0, 1) (blue line) and α ∈ [−0.1, 0.1] (yellow line).
The red line indicates the Black-Scholes price (S0 = 10, K = 10.5, T =
1, σ = 0.1, r = 0.01). This picture clearlt indicates that the binomial price is
weakly dependent on the parameter α, p and that the best approximation to
the Black-Scholes price is obtained for p = 1/2.

From now on we assume p = 1/2 and α = 0. This choice is justifed if N is
sufficiently large
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(b) Dependence on K
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Figure 4: Sensitivity of the call option binomial price with respect to the
parameters (r,K, T, σ).

Computation of the binomial price of non-standard Eu-
ropean derivatives

The algorithm used for standard European derivatives cannot be applied to
non-standard derivatives, because in the latter case one has to compute the
pay-off long each of the 2N paths of the stock price, which is possible by
today’s computers only for N / 20.

We use a different numerical method, called Monte Carlo.

Recall that the binomial price at time t = 0 of the European derivative with
pay-off Y and maturity T = Nh is given by
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ΠY (0) = e−rhN
∑

x∈{u,d}N
(qu)

Nu(x)(1− qu)Nd(x)Y (x),

Now, let O be a set of M randomly chosen paths of the binomial stock price,
where M ≤ 2N .

Our approximation for ΠY (0) is

ΠY (0) ≈ 2N

M
e−rhN

∑
x∈O

(qu)
Nu(x)(qd)

Nd(x)Y (x),

that is to say, we restrict the sum to the paths in the set O and multiply
further by the factor 2N/M , which is the total number of paths divided by
the number of sample paths.

Consider for instance the Asian option. The pay-off is

Y (x) =

(
1

N + 1

N∑
t=0

S(t)−K

)
+

,

The following code computes the Monte Carlo approximation of the price at
time t = 0
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function P=AsianCallBinomialMC(Q,S,r,K,M)

h=Q(2)-Q(1);

N=length(Q)-1; expu=S(1,2)/S(1,1);

expd=S(2,2)/S(1,1);

qu=(exp(r*h)-expd)/(expu-expd);

qd=(expu-exp(r*h))/(expu-expd);

if (qu<0 || qd<0)

display(’Error: the market is not arbitrage free’);

P=0;

return

end

[R,Nu]=RandomPathsBinomial(S,M);

payoff=max((1/(N+1)*sum(R,2))-K,0);

terms=(qu.^Nu).*(qd.^(N-Nu)).*payoff;

P=exp(-r*h*N)*sum(terms)*2^N/M;
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For example, upon writing

[Q, S] = BinomialStock(1/2, 0, 0.3, 10, 1/2, 100);

P = AsianCallBinomialMC(Q, S, 0.01, 11, 1000000)

we compute the price at time t = 0 of the Asian call with strike K = 11
and maturity T = 1/2 on a stock with initial price S(0) = 10 and volatility
σ = 0.2; the risk-free rate is r = 0.01 and the number of sample paths is
M = 106 of the 2N = 2100 possible paths of the binomial stock price.

The computation gives the result P = 0.1677.

Now, the crucial question is: how reliable is this result? That is to say, how
close is this value to the exact binomial price of the Asian call?

In the following we present an experimental analysis of this problem.

We begin by repeating the above calculation n times to produce the values
P1, . . . , Pn for the price of the Asian call and pick, as our best estimate for
the exact value of the price, the sample average

P =
1

n

n∑
i=1

Pi.

To measure how reliable is the approximation P , we compute the so called
standard error of the mean

Err =
s√
n
, where s =

√√√√ 1

n− 1

n∑
i=1

(Pi − P )2

is the standard deviation of the sample P1, . . . , Pn.
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In the figure below the prices P1, . . . Pn computed for n = 50 trials are de-
picted using M = 100, 1000, 10000 sample paths. The average P and the
error Err are given in the following table.

M (number of paths) P (average price) Err (standard error of the mean)
100 0.1725 0.0067
1000 0.1659 0.0020
10000 0.1678 0.0005
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Figure 5: Monte Carlo approximation of the Asian call price for n = 50
different trials using 100 paths (blue line), 1000 paths (orange line) and
10000 paths (yellow line). Market parameters: T = 1/2, K = 11, S(0) = 10,
σ = 0.3, r = 0.01.
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Computation of the binomial price of standard Ameri-
can derivatives

We work under the same set-up as before. Namely we consider a partition
0 = t1 < t2 < · · · < tN+1 = T of the interval [0, T ] and the binomial stock
price

S(i+ 1) =

{
S(i)eu, with probability p

S(i)ed, with probability 1− p
, i ∈ I = {1, . . . , N},

where S(i) = S(ti) and

u = αh+ σ

√
1− p
p

√
h, d = αh− σ

√
p

1− p
√
h.

The value of the risk-free asset at time ti is given by B(ti) = B0e
rti =

B0e
(rh)i := B(i).

Hence the pair (S(i), B(i)) defines a binomial market with parameters u, d
given and interest rate rh.

The definition of binomial price of American derivative becomes

Π̂Y (N + 1) = Y (N + 1) Π̂Y (i) = max(Y (i), e−rh(quΠ̂
u
Y (i+ 1)) + qdΠ̂

d
Y (i+ 1)), i ∈ I,

where Π̂Y (i) = Π̂Y (ti) and

qu =
erh − eαh−σ

√
p

1−p

√
h

e
αh+σ

√
1−p
p

√
h − eαh−σ

√
p

1−p

√
h
, qd = 1− qu.

Moreover Y (i) = g(S(i)), i = 1, . . . , N + 1, is the intrinsic value of the
American derivative.
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function [Price,C]=BinomialAmerican(Q,S,r,g)

h=Q(2)-Q(1);

N=length(Q)-1;

expu=S(1,2)/S(1,1);

expd=S(2,2)/S(1,1);

qu=(exp(r*h)-expd)/(expu-expd);

qd=(expu-exp(r*h))/(expu-expd);

if (qu<0 || qd<0)

display(’Error: the market is not arbitrage free.’);

P=0;

return

end

Price=zeros(N+1);

Price(:,N+1)=g(S(:,N+1));

C(:,N+1)=0;

Y=g(S);

for j=N:-1:1

for i=1:j

Price(i,j)=max(Y(i,j),exp(-r*h)*(qu*Price(i,j+1)+qd*Price(i+1,j+1)));

C(i,j)=Price(i,j)-exp(-r*h)*(qu*Price(i,j+1)+qd*Price(i+1,j+1));

end

end
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For example, using as inputs the binomial stock price computed at the be-
ginning of the lecture, the interest rate r = 0.01 and the pay-off function of
the put with strike 10, i.e., g(x) = (10− x)+, we obtain the output

Price =

0.2385 0.1120 0.0320 0 0 0
0 0.3619 0.1899 0.0633 0 0
0 0 0.5297 0.3133 0.1250 0
0 0 0 0.7407 0.4970 0.2468
0 0 0 0 0.9752 0.7376
0 0 0 0 0 1.2038

C =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0.0017 0.0017 0
0 0 0 0 0.0017 0

Remarks

• Using the pay-off of the call, g(x) = (x−10)+, we obtain that the price
of the American call is exactly the same as the corresponding European
call, while C ≡ 0. This of course is consistent with the proven fact that,
in the absence of dividends, it is never optimal to exercise an American
call prior to expire.

• The non-zero entries of C identify the optimal exercise times
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