Options and Mathematics: Lecture 15

November 26, 2020

Review of finite probability theory

Let Ω be a set containing a finite number of elements $\omega_{1}, \omega_{2}, \ldots, \omega_{M}$.
We denote Ω as

$$
\Omega=\left\{\omega_{1}, \ldots, \omega_{M}\right\}, \quad \text { or } \quad \Omega=\left\{\omega_{i}\right\}_{i=1, \ldots, M}
$$

and call it a sample space.
The elements $\omega_{i} \in \Omega, i=1, \ldots, M$, are called sample points. The sample points identify the possible outcomes of an experiment.

Examples

For the experiment "rolling a die" we have

$$
\Omega=\{1,2,3,4,5,6\} \quad(M=6),
$$

For the experiment "tossing a coin once", we have

$$
\Omega=\Omega_{1}:=\{H, T\} \quad(M=2),
$$

where H stands for "Head" and T for "Tail".
In the experiment "tossing a coin twice" we have

$$
\Omega=\Omega_{2}:=\{(H, H),(H, T),(T, H),(T, T)\} \quad\left(M=2^{2}=4\right)
$$

and in the experiment "tossing a coin N times" we have

$$
\Omega=\Omega_{N}:=\left\{\omega=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}\right) ; \gamma_{j}=H \text { or } T, j=1, \ldots, N\right\}=\{H, T\}^{N} \quad\left(M=2^{N}\right) .
$$

We denote by 2^{Ω} the power set of Ω, i.e., the set of all subsets of Ω.
2^{Ω} consists of the empty set \emptyset, the subsets containing one element, i.e., $\left\{\omega_{1}\right\},\left\{\omega_{2}\right\}, \ldots,\left\{\omega_{M}\right\}$, which are called atomic sets, the subsets containing two elements, i.e.,

$$
\left\{\omega_{1}, \omega_{2}\right\}, \ldots,\left\{\omega_{1}, \omega_{M}\right\},\left\{\omega_{2}, \omega_{3}\right\}, \ldots,\left\{\omega_{2}, \omega_{M}\right\}, \ldots,\left\{\omega_{M-1}, \omega_{M}\right\}
$$

the subsets containing 3 elements and so on, and the set $\Omega=\left\{\omega_{1}, \ldots, \omega_{M}\right\}$ itself. Thus 2^{Ω} contains 2^{M} elements.

For instance

$$
2^{\Omega_{1}}=\left\{\emptyset,\{H\},\{T\},\{H, T\}=\Omega_{1}\right\}
$$

The elements of 2^{Ω} (i.e., the subsets of Ω) are called events. They identify possible events that occur in the experiment.

For example

$$
\{2,4,6\} \equiv[\text { the result of throwing a die is an even number }]
$$

$\{(H, H),(T, T)\} \equiv[$ tossing a coin twice gives the same outcome in both tosses $]$.

Let $A, B \in 2^{\Omega}$ are events.
$A \cup B$ is the event that A or B happens
$A \cap B$ is the event that both A and B happen.
If the sets $A, B \subset \Omega$ are disjoint, i.e., $A \cap B=\emptyset$, the events A and B cannot occur simultaneously.

Probability of events

The atomic set $\left\{\omega_{i}\right\}$ identifies the event that the outcome of the experiment is exactly ω_{i}.

We want to assign a probability \mathbb{P} to such special events. To this purpose we introduce M real numbers $p_{1}, p_{2}, \ldots, p_{M}$ such that

$$
0<p_{i}<1, \text { for all } i=1, \ldots, M, \quad \text { and } \quad \sum_{i=1}^{M} p_{i}=1
$$

The M-dimensional vector $\left(p_{1}, p_{2}, \ldots, p_{M}\right)$ is called a probability vector.
We define p_{i} to be the probability of the event $\left\{\omega_{i}\right\}$, that is

$$
\mathbb{P}\left(\left\{\omega_{i}\right\}\right)=p_{i}, \quad i=1, \ldots, M
$$

Any event $A \in 2^{\Omega}$ can be written as the disjoint union of atomic events, e.g.,

$$
\left\{\omega_{1}, \omega_{3}, \omega_{6}\right\}=\left\{\omega_{1}\right\} \cup\left\{\omega_{3}\right\} \cup\left\{\omega_{6}\right\}
$$

This leads to define the probability of the event $A \in 2^{\Omega}$ as

$$
\mathbb{P}(A)=\sum_{i: \omega_{i} \in A} \mathbb{P}\left(\left\{\omega_{i}\right\}\right)=\sum_{i: \omega_{i} \in A} p_{i}
$$

We shall also write the definition of $\mathbb{P}(A)$ as

$$
\mathbb{P}(A)=\sum_{\omega \in A} \mathbb{P}(\{\omega\})
$$

In particular

$$
\mathbb{P}(\Omega)=\sum_{\omega \in \Omega} \mathbb{P}(\{\omega\})=\sum_{i=1}^{M} p_{i}=1
$$

We also set

$$
\mathbb{P}(\emptyset)=0
$$

which means that it is impossible that the experiment gives no outcome.
The empty set \emptyset is the only event with zero probability: any other such event is excluded a priori by the sample space.

At this point every event has been assigned a probability.

Definition 5.1

Given a probability vector $\left(p_{1}, \ldots, p_{M}\right)$ and a set $\Omega=\left\{\omega_{1}, \ldots, \omega_{M}\right\}$, the function $\mathbb{P}: 2^{\Omega} \rightarrow[0,1]$ defined by $\mathbb{P}(\emptyset)=0$ and

$$
\mathbb{P}(A)=\sum_{i: w_{i} \in A} p_{i}
$$

is called a probability measure. The pair (Ω, \mathbb{P}), is called a finite probability space.

Example

Definition 5.2

Given $0<p<1$, the pair $\left(\Omega_{N}, \mathbb{P}_{p}\right)$ given by $\Omega_{N}=\{H, T\}^{N}$ and

$$
\mathbb{P}_{p}(A)=\sum_{\omega \in A} p^{N_{H}(\omega)}(1-p)^{N_{T}(\omega)}, \text { for all } A \in 2^{\Omega_{N}},
$$

is called the N-coin toss probability space. Here $N_{H}(\omega)$ is the number of H in the sample ω and $N_{T}(\omega)=N-N_{H}(\omega)$ is the number of T.

Conditional probability

It is possible that the occurrence of an event A affects the probability that a second event B occurred. For instance, for a fair coin we have $\mathbb{P}_{p}(\{H, H\})=$ $1 / 4$, but if we know that the first toss is a tail, then $\mathbb{P}_{p}(\{H, H\})=0$. This simple remark leads to the definition of conditional probability.

Definition 5.3

Given two events A, B such that $\mathbb{P}(B)>0$, the conditional probability of A given B is defined as

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Similarly, if $B_{1}, B_{2}, \ldots, B_{n}$ are events such that $\mathbb{P}\left(B_{1} \cap \cdots \cap B_{n}\right)>0$, the conditional probability of A given B_{1}, \ldots, B_{n} is

$$
\mathbb{P}\left(A \mid B_{1}, \ldots, B_{n}\right)=\frac{\mathbb{P}\left(A \cap B_{1} \cap \cdots \cap B_{n}\right)}{\mathbb{P}\left(B_{1} \cap \cdots \cap B_{n}\right)} .
$$

If the occurrence of B does not affect the probability of occurrence of A, i.e., if $\mathbb{P}(A \mid B)=\mathbb{P}(A)$, we say that the two events are independent. By the previous definition, the independence property is equivalent to the following.

Definition 5.4

Two events A, B are said to be independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

Similarly, n events A_{1}, \ldots, A_{n} are said to be independent if

$$
\mathbb{P}\left(A_{k_{1}} \cap \cdots \cap A_{k_{m}}\right)=\mathbb{P}\left(A_{k_{1}}\right) \cdot \ldots \cdot \mathbb{P}\left(A_{k_{m}}\right)
$$

for all $1 \leq k_{1}<k_{2}<\cdots<k_{m} \leq n$.

Random Variables

In general the purpose of an experiment is to determine the value of quantities which depend on the outcome of the experiment (e.g., the velocity of a particle, which is determined by successive measurements of its position). We call such quantities random variables.

Definition 5.5

Let (Ω, \mathbb{P}) be a finite probability space. A random variable is a function $X: \Omega \rightarrow \mathbb{R}$.

If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then the random variable $Y=g\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is said to be measurable with respect to the random variables X_{1}, \ldots, X_{n}.

Example

Given $A \subset \Omega$, the random variable $\mathbb{I}_{A}: \Omega \rightarrow\{0,1\}$ given by

$$
\mathbb{I}_{A}(\omega)=\left\{\begin{array}{cc}
1 & \text { if } \omega \in A \\
0 & \text { if } \omega \notin A
\end{array}\right.
$$

is called the indicator function of the event A.

Since $\Omega=\left\{\omega_{1}, \ldots, \omega_{M}\right\}$, then a random variable X on a finite probability space is necessarily a finite random variable, i.e., it can attain only a finite number of values x_{1}, \ldots, x_{M}, namely

$$
X\left(\omega_{i}\right)=x_{i}, \quad i=1, \ldots, M
$$

The values x_{1}, \ldots, x_{M} need not be distinct.
If $X\left(\omega_{i}\right)=c$, for all $i=1, \ldots, M$, we say that X is a deterministic constant (the value of X is independent of the outcome of the experiment).

The image of X is the finite set defined as

$$
\operatorname{Im}(X)=\{x \in \mathbb{R} \text { such that } X(\omega)=x, \text { for some } \omega \in \Omega\}
$$

i.e., $\operatorname{Im}(X)$ is the set of possible values attainable by X.

Notation

Given $a \in \mathbb{R}$, we denote

$$
\{X=a\}=\{\omega \in \Omega: X(\omega)=a\}
$$

which is the event that X attains the value a. Of course, $\{X=a\}=\emptyset$ if $a \notin \operatorname{Im}(X)$. In general, given $I \subseteq \mathbb{R}$, we denote

$$
\{X \in I\}=\{\omega \in \Omega: X(\omega) \in I\}
$$

which is the event that the value attained by X lies in the set I.
Moreover we denote
$\{X=a, Y=b\}=\{X=a\} \cap\{Y=b\}, \quad\left\{X \in I_{1}, Y \in I_{2}\right\}=\left\{X \in I_{1}\right\} \cap\left\{Y \in I_{2}\right\}$.

The probability that X takes value a is given by

$$
\mathbb{P}(X=a)=\mathbb{P}(\{X=a\})=\sum_{i: X\left(\omega_{i}\right)=a} p_{i} .
$$

If $a \notin \operatorname{Im}(X)$, then $\mathbb{P}(X=a)=\mathbb{P}(\emptyset)=0$.
More generally, given any open subset I of \mathbb{R}, we write

$$
\mathbb{P}(X \in I)=\mathbb{P}(\{X \in I\})=\sum_{i: X\left(\omega_{i}\right) \in I} p_{i},
$$

which is the probability that the value of X belongs to I.

Example

In the probability space of a fair die consider the random variable

$$
X(\omega)=(-1)^{\omega}, \quad \omega \in\{1,2,3,4,5,6\} .
$$

Then $X(\omega)=1$ if ω is even and $X(\omega)=-1$ is ω is odd. Moreover

$$
\mathbb{P}(X=1)=\mathbb{P}(\{2,4,6\})=1 / 2, \quad \mathbb{P}(X=-1)=\mathbb{P}(\{1,3,5\})=1 / 2
$$

whereas

$$
\mathbb{P}(X \neq \pm 1)=\mathbb{P}(\emptyset)=0 .
$$

The event $A=\{2,4,6\}$ is said to be resolved by X, because the occurrence of the event A (i.e., the fact that the outcome of the throw is an even number) is equivalent to X taking value 1 .

In general, given a random variable $X: \Omega \rightarrow \mathbb{R}$, the events resolved by X are the sets of the form $\{X \in I\}$, for some $I \subseteq \mathbb{R}$. These events comprise the so called information carried by X.

Definition 5.6

Let (Ω, \mathbb{P}) be a finite probability space and $X: \Omega \rightarrow \mathbb{R}$ a random variable. The function $f_{X}: \mathbb{R} \rightarrow[0,1]$ defined by

$$
f_{X}(x)=\mathbb{P}(X=x)
$$

is called the probability distribution of X (or probability mass function), while $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
F_{X}(x)=\mathbb{P}(X \leq x), \quad x \in \mathbb{R}
$$

is called the cumulative distribution of X.
Note that $f_{X}(x)$ is non-zero if only if $x \in \operatorname{Im}(X)$, and that F_{X} is a nondecreasing function satisfying

$$
0 \leq F_{X}(x) \leq 1, \quad \lim _{x \rightarrow-\infty} F_{X}(x)=0, \quad \lim _{x \rightarrow \infty} F_{X}(x)=1 .
$$

For example, for the random variable $X(\omega)=(-1)^{\omega}$ defined on the probability space of a fair die we have

$$
F_{X}(x)= \begin{cases}0, & x<-1 \\ 1 / 2, & x \in[-1,1) \\ 1, & x \geq 1\end{cases}
$$

For the applications to the binomial options pricing model, the following probability distribution plays a fundamental role.

Definition 5.6

Given $N \in \mathbb{N}, N \geq 1$, and $p \in(0,1)$, a finite random variable X is said to be binomially distributed if $\operatorname{Im}(X)=\{0,1, \ldots, N\}$ and if the probability distribution of X is given by the binomial distribution

$$
f_{X}(k)=\phi_{N, p}(k):=\binom{N}{k} p^{k}(1-p)^{N-k}, \quad k=0, \ldots, N .
$$

For instance, the random variable $X(\omega)=N_{H}(\omega)$ in the N-coin toss probability space is binomially distributed.

The probability that a random variable X takes value in the interval $[a, b]$ can be written in terms of the distribution of X as

$$
\mathbb{P}(a \leq X \leq b)=\sum_{i: X\left(\omega_{i}\right)=x_{i} \in[a, b]} \mathbb{P}\left(X=x_{i}\right)=\sum_{i: a \leq x_{i} \leq b} f_{X}\left(x_{i}\right) .
$$

In a similar fashion, if $g: \mathbb{R} \rightarrow \mathbb{R}$ then

$$
\mathbb{P}(a \leq g(X) \leq b)=\sum_{i: g\left(X\left(\omega_{i}\right)\right)=g\left(x_{i}\right) \in[a, b]} \mathbb{P}\left(X=x_{i}\right)=\sum_{i: a \leq g\left(x_{i}\right) \leq b} f_{X}\left(x_{i}\right) .
$$

Independent random variables

We have seen before that a random variable X carries information.
If $Y=g(X)$ for some (non-constant) function $g: \mathbb{R} \rightarrow \mathbb{R}$, then Y carries no more information than X : any event resolved by knowing the value of Y is also resolved by knowing the value of X.

The other extreme case is when two random variables carry independent information.

Definition 5.8

Let (Ω, \mathbb{P}) be a finite probability space.
Two random variables $X_{1}, X_{2}: \Omega \rightarrow \mathbb{R}$ are said to be independent if the events $\left\{X_{1} \in I_{1}\right\},\left\{X_{2} \in I_{2}\right\}$ are independent events, for all sets $I_{1} \subseteq$ $\operatorname{Im}\left(X_{1}\right), I_{2} \subseteq \operatorname{Im}\left(X_{2}\right)$. This means that

$$
\mathbb{P}\left(X \in I_{1}, X_{2} \in I_{2}\right)=\mathbb{P}\left(X_{1} \in I_{1}\right) \mathbb{P}\left(X_{2} \in I_{2}\right)
$$

More generally, n random variables $X_{1}, \ldots, X_{n}: \Omega \rightarrow \mathbb{R}$ are independent if the events $\left\{X_{1} \in I_{1}\right\},\left\{X_{2} \in I_{2}\right\}, \ldots,\left\{X_{n} \in I_{n}\right\}$ are independent for all sets $I_{1}, I_{2}, \ldots, I_{n}$ such that $I_{j} \subseteq \operatorname{Im}\left(X_{j}\right)$.

The independence property is linked to the probability defined on the sample space: two random variables may be independent with respect to some probability and not-independent with respect to another. We shall use later the following important result:

Theorem 5.1

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables, $k \in\{1, \ldots, n-1\}$ and $g: \mathbb{R}^{k} \rightarrow \mathbb{R}, f: \mathbb{R}^{n-k} \rightarrow \mathbb{R}$. Then the random variables

$$
Y=g\left(X_{1}, X_{2}, \ldots, X_{k}\right), \quad Z=f\left(X_{k+1}, \cdots, X_{n}\right)
$$

are independent.

