
Options and Mathematics: Lecture 15

November 26, 2020

Review of finite probability theory

Let Ω be a set containing a finite number of elements ω1, ω2, . . . , ωM .

We denote Ω as

Ω = {ω1, . . . , ωM}, or Ω = {ωi}i=1,...,M

and call it a sample space.

The elements ωi ∈ Ω, i = 1, . . . ,M , are called sample points. The sample
points identify the possible outcomes of an experiment.

Examples

For the experiment “rolling a die” we have

Ω = {1, 2, 3, 4, 5, 6} (M = 6),
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For the experiment “tossing a coin once”, we have

Ω = Ω1 := {H,T} (M = 2),

where H stands for “Head” and T for “Tail”.

In the experiment “tossing a coin twice” we have

Ω = Ω2 := {(H,H), (H,T ), (T,H), (T, T )} (M = 22 = 4)

and in the experiment “tossing a coin N times” we have

Ω = ΩN := {ω = (γ1, γ2, . . . , γN); γj = H or T, j = 1, . . . , N} = {H,T}N (M = 2N).

We denote by 2Ω the power set of Ω, i.e., the set of all subsets of Ω.

2Ω consists of the empty set ∅, the subsets containing one element, i.e.,
{ω1}, {ω2}, . . . , {ωM}, which are called atomic sets, the subsets contain-
ing two elements, i.e.,

{ω1, ω2}, . . . , {ω1, ωM}, {ω2, ω3}, . . . , {ω2, ωM}, . . . , {ωM−1, ωM},

the subsets containing 3 elements and so on, and the set Ω = {ω1, . . . , ωM}
itself. Thus 2Ω contains 2M elements.

For instance
2Ω1 = {∅, {H}, {T}, {H,T} = Ω1}.

The elements of 2Ω (i.e., the subsets of Ω) are called events. They identify
possible events that occur in the experiment.

For example

{2, 4, 6} ≡ [the result of throwing a die is an even number],
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{(H,H), (T, T )} ≡ [tossing a coin twice gives the same outcome in both tosses].

Let A,B ∈ 2Ω are events.

A ∪B is the event that A or B happens

A ∩B is the event that both A and B happen.

If the sets A,B ⊂ Ω are disjoint, i.e., A∩B = ∅, the events A and B cannot
occur simultaneously.

Probability of events

The atomic set {ωi} identifies the event that the outcome of the experiment
is exactly ωi.

We want to assign a probability P to such special events. To this purpose we
introduce M real numbers p1, p2, . . . , pM such that

0 < pi < 1, for all i = 1, . . . ,M , and
M∑
i=1

pi = 1.

The M -dimensional vector (p1, p2, . . . , pM) is called a probability vector.

We define pi to be the probability of the event {ωi}, that is

P({ωi}) = pi, i = 1, . . . ,M.

Any event A ∈ 2Ω can be written as the disjoint union of atomic events, e.g.,

{ω1, ω3, ω6} = {ω1} ∪ {ω3} ∪ {ω6}.

This leads to define the probability of the event A ∈ 2Ω as
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P(A) =
∑

i:ωi∈A

P({ωi}) =
∑

i:ωi∈A

pi.

We shall also write the definition of P(A) as

�� ��P(A) =
∑

ω∈A P({ω})

In particular

P(Ω) =
∑
ω∈Ω

P({ω}) =
M∑
i=1

pi = 1.

We also set
P(∅) = 0,

which means that it is impossible that the experiment gives no outcome.

The empty set ∅ is the only event with zero probability: any other such event
is excluded a priori by the sample space.

At this point every event has been assigned a probability.

Definition 5.1

Given a probability vector (p1, . . . , pM) and a set Ω = {ω1, . . . , ωM}, the
function P : 2Ω → [0, 1] defined by P(∅) = 0 and

P(A) =
∑

i:ωi∈A

pi.

is called a probability measure. The pair (Ω,P), is called a finite prob-
ability space.
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Example

Definition 5.2

Given 0 < p < 1, the pair (ΩN ,Pp) given by ΩN = {H,T}N and

�
�

�
�Pp(A) =

∑
ω∈A p

NH(ω)(1− p)NT (ω), for all A ∈ 2ΩN ,

is called the N-coin toss probability space. Here NH(ω) is the number
of H in the sample ω and NT (ω) = N −NH(ω) is the number of T .

Conditional probability

It is possible that the occurrence of an event A affects the probability that a
second event B occurred. For instance, for a fair coin we have Pp({H,H}) =
1/4, but if we know that the first toss is a tail, then Pp({H,H}) = 0. This
simple remark leads to the definition of conditional probability.

Definition 5.3

Given two events A,B such that P(B) > 0, the conditional probability of
A given B is defined as

�
�

�

P(A|B) =

P(A ∩B)

P(B)

Similarly, if B1, B2, . . . , Bn are events such that P(B1 ∩ · · · ∩ Bn) > 0, the
conditional probability of A given B1, . . . , Bn is

P(A|B1, . . . , Bn) =
P(A ∩B1 ∩ · · · ∩Bn)

P(B1 ∩ · · · ∩Bn)
.

If the occurrence of B does not affect the probability of occurrence of A,
i.e., if P(A|B) = P(A), we say that the two events are independent. By the
previous definition, the independence property is equivalent to the following.
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Definition 5.4

Two events A,B are said to be independent if

�� ��P(A ∩B) = P(A)P(B)

Similarly, n events A1, . . . , An are said to be independent if

P(Ak1 ∩ · · · ∩ Akm) = P(Ak1) · . . . · P(Akm),

for all 1 ≤ k1 < k2 < · · · < km ≤ n.

Random Variables

In general the purpose of an experiment is to determine the value of quan-
tities which depend on the outcome of the experiment (e.g., the velocity of
a particle, which is determined by successive measurements of its position).
We call such quantities random variables.

Definition 5.5

Let (Ω,P) be a finite probability space. A random variable is a function
X : Ω→ R.

If g : Rn → R, then the random variable Y = g(X1, X2, . . . , Xn) is said to be
measurable with respect to the random variables X1, . . . , Xn.

Example

Given A ⊂ Ω, the random variable IA : Ω→ {0, 1} given by

IA(ω) =

{
1 if ω ∈ A
0 if ω /∈ A

is called the indicator function of the event A.
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Since Ω = {ω1, . . . , ωM}, then a random variable X on a finite probability
space is necessarily a finite random variable, i.e., it can attain only a finite
number of values x1, . . . , xM , namely

X(ωi) = xi, i = 1, . . . ,M.

The values x1, . . . , xM need not be distinct.

If X(ωi) = c, for all i = 1, . . . ,M , we say that X is a deterministic con-
stant (the value of X is independent of the outcome of the experiment).

The image of X is the finite set defined as

Im(X) = {x ∈ R such that X(ω) = x, for some ω ∈ Ω},

i.e., Im(X) is the set of possible values attainable by X.

Notation

Given a ∈ R, we denote

{X = a} = {ω ∈ Ω : X(ω) = a},

which is the event that X attains the value a. Of course, {X = a} = ∅ if
a /∈ Im(X). In general, given I ⊆ R, we denote

{X ∈ I} = {ω ∈ Ω : X(ω) ∈ I},

which is the event that the value attained by X lies in the set I.

Moreover we denote

{X = a, Y = b} = {X = a}∩{Y = b}, {X ∈ I1, Y ∈ I2} = {X ∈ I1}∩{Y ∈ I2}.

The probability that X takes value a is given by
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P(X = a) = P({X = a}) =
∑

i:X(ωi)=a

pi.

If a /∈ Im(X), then P(X = a) = P(∅) = 0.

More generally, given any open subset I of R, we write

P(X ∈ I) = P({X ∈ I}) =
∑

i:X(ωi)∈I

pi,

which is the probability that the value of X belongs to I.

Example

In the probability space of a fair die consider the random variable

X(ω) = (−1)ω, ω ∈ {1, 2, 3, 4, 5, 6}.

Then X(ω) = 1 if ω is even and X(ω) = −1 is ω is odd. Moreover

P(X = 1) = P({2, 4, 6}) = 1/2, P(X = −1) = P({1, 3, 5}) = 1/2,

whereas

P(X 6= ±1) = P(∅) = 0.

The event A = {2, 4, 6} is said to be resolved by X, because the occurrence
of the event A (i.e., the fact that the outcome of the throw is an even number)
is equivalent to X taking value 1.

In general, given a random variable X : Ω → R, the events resolved by X
are the sets of the form {X ∈ I}, for some I ⊆ R. These events comprise
the so called information carried by X.
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Definition 5.6

Let (Ω,P) be a finite probability space and X : Ω → R a random variable.
The function fX : R→ [0, 1] defined by

�� ��fX(x) = P(X = x)

is called the probability distribution of X (or probability mass func-
tion), while FX : R→ [0, 1] given by

�� ��FX(x) = P(X ≤ x), x ∈ R

is called the cumulative distribution of X.

Note that fX(x) is non-zero if only if x ∈ Im(X), and that FX is a non-
decreasing function satisfying

0 ≤ FX(x) ≤ 1, lim
x→−∞

FX(x) = 0, lim
x→∞

FX(x) = 1.

For example, for the random variable X(ω) = (−1)ω defined on the proba-
bility space of a fair die we have

FX(x) =


0, x < −1,
1/2, x ∈ [−1, 1),
1, x ≥ 1.
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For the applications to the binomial options pricing model, the following
probability distribution plays a fundamental role.

Definition 5.6

Given N ∈ N, N ≥ 1, and p ∈ (0, 1), a finite random variable X is said to
be binomially distributed if Im(X) = {0, 1, . . . , N} and if the probability
distribution of X is given by the binomial distribution

fX(k) = φN,p(k) :=

(
N

k

)
pk(1− p)N−k, k = 0, . . . , N.

For instance, the random variable X(ω) = NH(ω) in the N -coin toss proba-
bility space is binomially distributed.

The probability that a random variable X takes value in the interval [a, b]
can be written in terms of the distribution of X as

P(a ≤ X ≤ b) =
∑

i:X(ωi)=xi∈[a,b]

P(X = xi) =
∑

i:a≤xi≤b

fX(xi).

In a similar fashion, if g : R→ R then

P(a ≤ g(X) ≤ b) =
∑

i:g(X(ωi))=g(xi)∈[a,b]

P(X = xi) =
∑

i:a≤g(xi)≤b

fX(xi).
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Independent random variables

We have seen before that a random variable X carries information.

If Y = g(X) for some (non-constant) function g : R→ R, then Y carries no
more information than X: any event resolved by knowing the value of Y is
also resolved by knowing the value of X.

The other extreme case is when two random variables carry independent
information.

Definition 5.8

Let (Ω,P) be a finite probability space.

Two random variables X1, X2 : Ω → R are said to be independent if
the events {X1 ∈ I1}, {X2 ∈ I2} are independent events, for all sets I1 ⊆
Im(X1), I2 ⊆ Im(X2). This means that

P(X ∈ I1, X2 ∈ I2) = P(X1 ∈ I1)P(X2 ∈ I2).

More generally, n random variables X1, . . . , Xn : Ω → R are independent if
the events {X1 ∈ I1}, {X2 ∈ I2}, . . . , {Xn ∈ In} are independent for all sets
I1, I2, . . . , In such that Ij ⊆ Im(Xj).

The independence property is linked to the probability defined on the sam-
ple space: two random variables may be independent with respect to some
probability and not-independent with respect to another. We shall use later
the following important result:

Theorem 5.1

Let X1, X2, . . . , Xn be independent random variables, k ∈ {1, . . . , n− 1} and
g : Rk → R, f : Rn−k → R. Then the random variables

Y = g(X1, X2, . . . , Xk), Z = f(Xk+1, · · · , Xn)

are independent.
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