
Options and Mathematics: Lecture 16

November 27, 2020

Review of finite probability theory

Expectation and Variance

We may think of the expectation of X as an estimate on the average value
of X and the variance of X as a measure of how far is this estimate from to
the precise value of X.

Definition 5.9

Let (Ω,P) be a finite probability space and X : Ω → R a random variable.
The expectation (or expected value) of X is defined by

E[X] =
M∑
i=1

X(ωi)P(ωi).

We shall write the definition of E[X] also as

�� ��E[X] =
∑

ω∈Ω X(ω)P({ω})
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Example In the N -coin toss probability space (ΩN ,Pp) we have

Ep[X] =
∑
ω∈ΩN

X(ω)pNH(ω)(1− p)NT (ω),

where NH(ω) is the number of heads and NT (ω) = N−NH(ω) is the number
of tails in the N -toss ω ∈ ΩN .

We can rewrite the definition of expectation as

E[X] =
∑

x∈Im(X)

xP(X = x),

or equivalently

�
�

�
�E[X] =

∑
x∈Im(X) xfX(x)

The importance of the previous formula is that it allows to compute the
expectation of X from its distribution, without any reference to the original
probability space.

Example

If we are told that a random variable X takes the following values:

X =


1 with probability 1/4
2 with probability 1/4
−1 with probability 1/2

,

then we can compute E[X] as

E[X] = 1 · 1

4
+ 2 · 1

4
− 1 · 1

2
=

1

4
.
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Some simple properties of the expectation are collected in the following the-
orem.

Theorem 5.2

Let X, Y be random variables on a finite probability space (Ω,P), g : R→ R,
a, b ∈ R. The following holds:

1. E[aX + bY ] = aE[X] + bE[Y ] (linearity).

2. If X ≥ 0 and E[X] = 0, then X = 0.

3. If X, Y are independent, then E[XY ] = E[X]E[Y ].

4. If Y = g(X), i.e., if Y is X-measurable, then

E[Y ] =
∑

x∈Im(X)

g(x)fX(x). (1)

Definition 5.10

Let (Ω,P) be a finite probability space. The variance of a random variable
X : Ω→ R is defined by

Var[X] = E[(E[X]−X)2].

Using the linearity of the expectation, we obtain easily the formula

�� ��Var[X] = E[X2]− E[X]2
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Remarks

• The variance of a random variable is always non-negative and it is zero
if and only if the random variable is a deterministic constant. Hence
we may also interpret the variance as a measure of the “randomness”
of a random variable.

• Var[aX] = a2Var[X] holds for all constants a ∈ R, and

Var[X+Y ] = E[(X+Y )2]−E[X+Y ]2 = Var[X]+Var[Y ]+2(E[XY ]−E[X]E[Y ]).

It follows by Theorem 3(3) that the variance of the sum of two inde-
pendent random variables is the sum of their variance

Using (3) in Theorem 5.2 with g(x) = x2, we can rewrite the definition of
variance in terms of the distribution function of X as

Var[X] =
∑

x∈Im(X)

x2fX(x)−

 ∑
x∈Im(X)

xfX(x)

2

,

which allows to compute Var[X] without any reference to the original prob-
ability space.

For instance for the random variable on page 2 we find

Var[X] = 1 · 1

4
+ 4 · 1

4
+ 1 · 1

2
−
(

1

4

)2

=
27

16
.

4



Example: mean of log return and volatility of the binomial stock
price

Let 0 = t0 < t1 < · · · < tN = T be a partition of the interval [0, T ] with
ti − ti−1 = h, for all i = 1, . . . , N .

Given u > d and p ∈ (0, 1), consider a random variable X such that X = u
with probability p and X = d with probability 1− p.

We may think of X as being defined on Ω1 = {H,T}, with X(H) = u and
X(T ) = d.

The binomial stock price at time ti can be written as S(ti) = S(ti−1) exp(X).

Hence the log-return R of the stock in the interval [ti−1, ti] is

R = logS(ti)− logS(ti−1) = log
S(ti)

S(ti−1)
= X.

It follows that the expectation and the variance of the log-return of the stock
in the interval [ti−1, ti] are

E[R] = E[X] = (pu+ (1− p)d),

Var[R] = Var[X] = [pu2 + (1− p)d2 − (pu+ (1− p)d)2)] = p(1− p)(u− d)2.

Thus the parameters α, σ2 in the binomial model can be rewritten as

�
�

�
α =

1

h
E[R], σ2 =

1

h
Var[R]

It is part of our assumptions on the binomial model that the parameters α
and σ are the same for every interval [ti−1, ti] of the partition.
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Conditional expectation

If X, Y are independent random variables, knowing the value of Y does not
help to estimate the random variable X.

However if X, Y are not independent, then we can use the information carried
by Y to find an estimate of X which is better than E[X]. This leads to the
important concept of conditional expectation.

Definition 5.14

Let (Ω,P) be a finite probability space, X, Y : Ω→ R random variables and
y ∈ Im(Y ). The expectation of X conditional to Y = y (or given the event
{Y = y}) is defined as

�
�

�
�E[X|Y = y] =

∑
x∈Im(X) P(X = x|Y = y)x

where P(X = x|Y = y) is the conditional probability of the event {X = x},
given the event {Y = y}.

The random variable

E[X|Y ] : Ω→ R, E[X|Y ](ω) = E[X|Y = Y (ω)]

is called the expectation of X conditional to Y .

In a similar fashion one defines the conditional expectation with respect
to several random variables, i.e., E[X|Y1 = y1, Y2 = y2, . . . , YN = yN ] and
E[X|Y1, . . . , YN ].
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Example

In the probability space of a fair die, consider

X(ω) = (−1)ω, Y (ω) = (ω − 1)(ω − 2)(ω − 3), ω ∈ {1, 2, 3, 4, 5, 6}.

Note that Im(Y ) = {0, 6, 24, 60}. Then we compute

E[X|Y = 0] = P(X = 1|Y = 0)− P(X = −1|Y = 0)

=
P(X = 1, Y = 0)

P(Y = 0)
− P(X = −1, Y = 0)

P(Y = 0)

=
P({2})

P({1, 2, 3})
− P({1, 3})

P({1, 2, 3})
= −1/3.

Similarly we find

E[X|Y = 6] = 1, E[X|Y = 24] = −1, E[X|Y = 60] = 1,

hence E[X|Y ] is the random variable

E[X|Y ](ω) =


−1/3 if ω = 1, 2 or 3

1 if ω = 4 or 6
−1 if ω = 5.
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The following theorem collects a few important properties of the conditional
expectation that will be used later on.

Theorem 5.3

Let X, Y, Z : Ω → R be random variables on the finite probability space
(Ω,P). Then

(0) The random variable E[X|Y ] is Y -measurable;

(1) The conditional expectation is a linear operator, i.e.,

E[αX + βY |Z] = αE[X|Z] + βE[Y |Z],

for all α, β ∈ R;

(2) If X is independent of Y , then E[X|Y ] = E[X];

(3) If X is measurable with respect to Y , i.e., X = g(Y ) for some function
g, then E[X|Y ] = X;

(4) E[E[X|Y ]] = E[X];

(5) If X is measurable with respect to Z, then E[XY |Z] = XE[Y |Z];

(6) If Z is measurable with respect to Y then E[E[X|Y ]|Z] = E[X|Z].

These properties remain true if the conditional expectation is taken with
respect to several random variables.

Remarks

• The interpretation of (2) is the following: If X is independent of Y , then
the information carried by Y does not help to improve our estimate on
X and thus our best estimate for X remains E[X].

• The interpretation of (3) is the following: if X is measurable with
respect of Y , then by knowing Y we also know X and thus our best
estimate on X is X itself.
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Stochastic processes

Let (Ω,P) be a finite probability space and T > 0.

A one parameter family of random variables, X(t) : Ω → R, t ∈ [0, T ], is
called a stochastic process.

We denote the stochastic process by {X(t)}t∈[0,T ] and by X(t, ω) the value
of the random variable X(t) on the sample ω ∈ Ω.

For each fixed ω ∈ Ω, the curve t→ X(t, ω), is called a path of the stochastic
process.

We shall refer to the parameter t as the time variable, as this is what it
represents in most applications.

If X(t, ω) = C(t), for all ω ∈ Ω, i.e., if the paths are the same for all sample
points, we say that the stochastic process is a deterministic function of
time.

If t runs over a (possibly finite) discrete set {t0, t1, . . . } ⊂ [0, T ], then we say
that the stochastic process is discrete.

Note that a discrete stochastic process is equivalent to a sequence of random
variables:

{X0, X1, . . . }, where Xi = X(ti), i = 0, 1, . . . .

If the discrete stochastic process is finite, i.e., if it runs only for a finite number
N of time steps, we shall denote it by {Xn}n=0,...,N and call it a N-period
process. If it runs for infinitely many steps we denote it by {Xn}n∈N.
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Definition 5.15

Let {Xn}n∈N and {Yn}n∈N be two discrete stochastic processes on a finite
probability space.

The process {Yn}n∈N is said to be measurable with respect to {Xn}n∈N
if for all n ∈ N there exists a function gn : Rn+1 → R such that Yn =
gn(X0, X1, . . . , Xn).

If Yn = hn(X0, . . . , Xn−1) for some function hn : Rn → R, then {Yn}n∈N is
said to be predictable from the process {Xn}n∈N.

Example: The random walk.

Consider the following (discrete and finite) stochastic process {Xn}n=1,...,N

defined on the N -coin toss probability space (ΩN ,Pp):

ω = (γ1, . . . , γN) ∈ ΩN , Xn(ω) =

{
1 if γn = H
−1 if γn = T

Clearly, the random variables X1, . . . , XN are independent and identically
distributed (i.i.d), namely

Pp(Xn = 1) = p, Pp(Xn = −1) = 1− p, for all n = 1, . . . , N.

Hence

E[Xn] = 2p− 1, Var[Xn] = 4p(1− p), for all n = 1, . . . , N .

Now, for n = 1, . . . , N , let

M0 = 0, Mn =
n∑

i=1

Xi.

The stochastic process {Mn}n=0,...,N is called the (N-period) random walk.
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It satisfies

E[Mn] = n(2p− 1), for all n = 0, . . . , N.

Moreover, being the sum of independent random variables, the random walk
has variance given by

Var[M0] = 0, Var[Mn] = Var(X1+X2+· · ·+Xn) =
n∑

i=1

Var[Xi] = 4np(1−p).

When p = 1/2, the random walk is said to be symmetric. In this case
{Mn}n=0,...,N satisfies E[Mn] = 0, n = 0, . . . , N and Var[Mn] = n. When
p 6= 1/2, {Mn}n=0,...,N is called asymmetric random walk, or random walk
with drift.

If Mn = k then Mn+1 is either k + 1 (with probability p), or k − 1 (with
probability 1− p). Hence we can represent the paths of the random walk by
using a binomial tree, as in the following example for N = 3:

M3 = 3

M2 = 2

p
77

1−p

''
M1 = 1

p
77

1−p

''

M3 = 1

M0 = 0

p
77

1−p

''

M2 = 0

p
77

1−p

''
M1 = −1

p
77

1−p

''

M3 = −1

M2 = −2

p
77

1−p

''
M3 = −3
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Martingales

A martingale is a stochastic process which has no tendency to rise or fall.
The precise definition is the following.

Definition 5.16

A discrete stochastic process {Xn}n∈N on the finite probability space (Ω,P)
is called a martingale if

E[Xn+1|X0, X1, . . . , Xn] = Xn, for all n ∈ N.

Interpretation: The variables X0, X1, . . . , Xn contains the information ob-
tained by “looking” at the stochastic process up to the step n. For a mar-
tingale process, this information is not enough to estimate whether, in the
next step, the process will raise or fall.

Remarks

1. The martingale property depends on the probability being used: if
{Xn}n∈N is a martingale in the probability P and P̃ is another prob-
ability measure on the sample space Ω, then {Xn}n∈N need not be a

martingale with respect to P̃.

2. Using property 4 in Theorem 5.3 we obtain

E[Xn+1] = E[Xn], for all n ∈ N.

Thus, iterating, E[Xn] = E[X0], for all n ∈ N, i.e., martingales have
constant expectation.

12



Example

Next we show that the symmetric random walk is a martingale.

Using the linearity of the conditional expectation we have, for all n =
0, . . . , N − 1,

E[Mn+1|M0, . . . ,Mn] = E[Mn +Xn+1|M0, . . . ,Mn]

= E[Mn|M0, . . . ,Mn] + E[Xn+1|M0, . . . ,Mn].

As Mn is measurable with respect to M0, . . . ,Mn, then

E[Mn|M0, . . . ,Mn] = Mn

see Theorem 5.3(3).

Moreover, as Xn+1 is independent of M0, . . . ,Mn, Theorem 5.3(2) gives

E[Xn+1|M0, . . . ,Mn] = E[Xn+1] = 0

It follows that E[Mn+1|M0, . . . ,Mn] = Mn, i.e., the symmetric random walk
is a martingale.

However the asymmetric random walk (p 6= 1/2) is not a martingale, as it
follows by the fact that its expectation E[Mn] = n(2p− 1) is not constant (it
depends on n ∈ N).
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