
Options and Mathematics: Lecture 19

December 3, 2020

General probability spaces

We consider briefly probability spaces consisting of an infinite number of
sample points.

Assume first that Ω is a countable set. This means that

Ω = {ωn}n∈N.

For countable sample spaces the definitions given for finite sets extend straight-
forwardly. Precisely, given a sequence

p = (pn)n∈N such that 0 < pn < 1,
∑
n∈N

pn = 1,

we define the probability of the atomic events as

P({ωn}) = pn.
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If A ∈ 2Ω, then we define

P(A) =
∑
i:ωi∈A

pi =
∑
ω∈A

P({ω}).

If X : Ω→ R is a random variable, then

E[X] =
∑
n∈N

X(ωn)pn =
∑
ω∈Ω

X(ω)P({ω}).

The remaining definitions introduced in the finite case (variance, covariance,
independent random variables, etc.) continue to be valid for countable prob-
ability spaces.

In the rest of the lecture we assume that Ω is uncountable (e.g., Ω = R).

In this case there is no general procedure to construct a probability space,
but only an abstract definition. In particular a probability measure P on
events A ⊆ Ω is defined only axiomatically by requiring that

0 ≤ P(A) ≤ 1, P(∅) = 0

and that, for any sequence of disjoint events A1, A2, . . . , it should hold

P(A1 ∪ A2 ∪ . . . ) = P(A1) + P(A2) + . . .

Moreover it is not necessary—and almost never convenient—to assume that
P is defined for all events A ⊂ Ω.

We denote by F the set of events (i.e., subsets of Ω) which have a well defined
probability satisfying the properties above.
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Example.

Let Ω = R. We say that A ⊆ R is a Borel set if it can be written as the
union (or intersection) of countably many open (or closed) intervals.

Let F be the collection of all Borel sets. Given a continuous, non-negative
function p : R→ [0,∞) such that

∫
R
p(x) dx = 1,

we define P : F → [0, 1] as

P(A) =

∫
A

p(ω) dω.

If X : R→ R is a random variable, the expectation of X in this probability
measure is given by

E[X] =

∫
R
X(ω)p(ω) dω,

provided the integral is finite.

For most applications the knowledge of the full probability space is not nec-
essary.

We are only interested in assigning a probability to events of the form

{X ∈ I}

where X is a random variable on the sample space Ω and I ⊂ R is a Borel
set (e.g., an interval), that is to say, events which can be resolved by one (or
more) random variables.

The probability P(X ∈ I) can be computed explicitly when X has a density.
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Definition 6.1

A random variable X : Ω → R is said to have probability density fX if
fX : R→ [0,∞) is continuous and

P(X ∈ A) =

∫
A

fX(x) dx,

for all Borel sets A ⊆ R.

Note that the density fX satisfies

∫
R
fX(x) dx = 1

and the cumulative distribution FX(x) = P(X ≤ x) satisfies

FX(x) =

∫ x

−∞
fX(y) dy, for all x ∈ R, hence fX =

dFX
dx

.

Example:

A random variable X : Ω → R is said to be a normal random variable
with mean m ∈ R and variance σ2 > 0 if it admits the density

fX(x) =
1√

2πσ2
exp

(
−|x−m|

2

2σ2

)
.

We denote by N (m,σ2) the set of all such random variables. A variable X ∈
N (0, 1) is called a standard normal random variable. The cumulative
distribution of standard normal random variables is denoted by Φ(x) and is
called the standard normal distribution, i.e.,

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
y2 dy.
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Moreover we denote by φ(x) the standard normal (probability) density,
that is

φ(x) = Φ′(x) =
1√
2π
e−

x2

2 .

Theorem 6.1

The following holds for all sufficiently regular functions g : R→ R:

(i) Let X : Ω → R be a random variable with density fX . Then for all
Borel sets A ⊆ R,

P(g(X) ∈ A) =

∫
x:g(x)∈A

fX(x) dx,

(ii) Let X : Ω→ R be a random variable with density fX . Then

E[g(X)] =

∫
R
g(y)fX(y) dy,

Moreover the properties 1,2,3 in Theorem 5.2 still hold for continuum random
variables.
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Example

As an example of application of (i), suppose X ∈ N (0, 1). Then

P(X2 ≤ 1) =
1√
2π

∫ 1

−1

e−
x2

2 dx ≈ 0.683,

that is to say, a standard normal random variable has about 68,3% probability
to take value on the interval (−1, 1).

By (ii) in Theorem 6.1, the expectation and the variance of a continuum
random variable X with density fX are given by

E[X] =

∫
R
xfX(x) dx, Var[X] = E[X2]−E[X]2 =

∫
R
x2fX(x) dx−

(∫
R
xfX(x) dx

)2

.

In particular, for normal variables we obtain

X ∈ N (m,σ2) =⇒ E[X] = m, Var[X] = σ2.
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Stochastic processes. Martingales

Let {X(t)}t≥0 be a stochastic process, i.e., a one parameter family of (contin-
uum) random variables and denote by FX(t) the information accumulated by
“looking” at the stochastic process up to time t, i.e., the collection of events
resolved by X(s) for 0 ≤ s ≤ t.

Intuitively, the stochastic process {X(t)}t≥0 is a martingale if, based on the
information contained in FX(s), our “best estimate” on X(t) for t > s is
X(s), i.e., we are not able to estimate whether the process will raise or fall
in the interval [s, t] with the information available at time s.

This intuitive definition is encoded in the formula

E[X(t)|FX(s)] = X(s), 0 ≤ s ≤ t,

which generalizes the definition of martingales in finite probability theory.

The left hand side of the previous formula is the conditional expectation of
X(t) with respect to the information FX(s), whose precise definition is not
needed here.

It can be shown that martingales have constant expectation.
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Brownian motion

Next we define the most important of all stochastic processes.

Definition 6.3

A Brownian motion, or Wiener process, is a stochastic process {W (t)}t≥0

with the following properties:

1. For all ω ∈ Ω, the paths are continuous (i.e., t→ W (t, ω) is a continu-
ous function) and W (0, ω) = 0;

2. For all 0 = t0 < t1 < t2 < . . . , the increments

W (t1) = W (t1)−W (t0), W (t2)−W (t1), . . . ,

are independent random variables and

E[W (ti+1)−W (ti)] = 0, Var[W (ti+1)−W (ti)] = ti+1−ti, for all i = 0, 1, . . . ;

3. The increments are normally distributed, that is to say, for all 0 ≤ s <
t,

P(W (t)−W (s) ∈ A) =
1√

2π(t− s)

∫
A

e−
y2

2(t−s) dy,

for all Borel sets A ⊆ R.

It can be shown that Brownian motions exist, yet a formal construction is
technically quite difficult and beyond the purpose of this course

It is useful to think of Brownian motions as time-continuum generalizations
of the symmetric random walk.

Remarks.

• Since the definition of Brownian motion depends on the probability
measure P, then a stochastic process {W (t)}t≥0 which is a Brownian
motion in the probability measure P will in general not be a Brownian
motion in another probability measure P̃. When we want to emphasize
that {W (t)}t≥0 is a Brownian motion in the probability measure P, we
shall say that {W (t)}t≥0 is a P-Brownian motion.
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• Letting s = 0 in property 3 in Definition 6.3 we obtain that W (t) ∈
N (0, t), for all t > 0. In particular, W (t) has zero expectation for all
times. It can also be shown that Brownian motions are martingales.

Equivalent probability measures. Girsanov theorem

One further technical complication arising for uncountable sample spaces
is the existence of non-trivial events with zero probability, e.g., the event
{W (1) = 0}.

We shall need to consider the concept of equivalent probability measures.

Definition 6.4

Two probability measure P, P̃ are said to be equivalent if P(A) = 0⇔ P̃(A) =
0 for all events A ∈ F .

Hence equivalent probability measures agree on which events are impossible.

Note that in a finite probability space all probability measures are equivalent,
as in the finite case the empty set is the only event with zero probability.

9



The main question we now want to answer is the following: Given a prob-
ability measure P, how can we find all probability measures P̃ equivalent to
P̃?

The answer to this question is given in the Radon-Nikodým theorem.

Theorem 6.7 (Radon-Nikodým theorem)

Let P : F → [0, 1] be a probability measure. Then P̃ : F → [0, 1] is a
probability measure equivalent to P if and only if there exists a random
variable Z : Ω→ R such that Z > 0 (with probability 1), E[Z] = 1 and

P̃(A) = E[ZIA], for all A ∈ F , where IA(ω) =

{
1 if ω ∈ A
0 otherwise

.

Examples

• Assume Ω = R and that P and P̃ are defined as in the example on page
3, namely

P(A) =

∫
A

p(ω) dω, P̃(A) =

∫
A

p̃(ω) dω,

for all Borel sets A and for some given continuous non-negative func-
tions p, p̃ such that ∫

R
p(ω) dω =

∫
R
p̃(ω) dω = 1.

Then, according to Theorem 6.7, P and P̃ are equivalent if and only if
there exists a function Z : R→ R such that Z > 0 and

P̃(A) =

∫
A

p̃(ω) dω =

∫
R
Z(ω)IA(ω)p(ω) dω

that is ∫
A

p̃(ω) dω =

∫
A

Z(ω)p(ω) dω

It can be shown that the latter equality is satisfied for all Borel sets
A ⊂ R if and only if p̃(ω) = Z(ω)p(ω) (with probability 1).
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• Let {W (t)}t≥0 be a P-Brownian motion, θ ∈ R and T > 0. Define

Zθ = e−θW (T )− 1
2
θ2T .

Clearly Zθ > 0 and moreover

E[Zθ] = E[e−θW (T )− 1
2
θ2T ] =

∫
R
e−θx−

1
2
θ2T e−

x2

2T

√
2πT

dx = 1,

where we used the density of the normal random variable W (T ) ∈
N (0, T ) to compute the expectation of Zθ in the probability measure
P. Thus, according to the Radon-Nikodým theorem, Pθ(A) = E[ZθIA]
is a probability measure equivalent to P, for all θ ∈ R.

As the last example will play a crucial role in the discussion on Black-Scholes
theory, it deserves a proper definition.

Definition 6.5

Let {W (t)}t≥0 be a P-Brownian motion, θ ∈ R, T > 0 and Zθ be the random
variable

Zθ = e−θW (T )− 1
2
θ2T .

The probability measure Pθ(A) = E[ZθIA] is called Girsanov probability
with parameter θ.

Note that the Girsanov probability measure Pθ depends also on T , but this
is not reflected in our notation.

In the following we denote by Eθ[·] the expectation computed in the proba-
bility measure Pθ. When θ = 0 we have P0 = P, in which case we denote the
expectation as usual by E[·].
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Now we can state a fundamental theorem in probability theory with deep
applications in financial mathematics, namely Girsanov’s theorem.

Theorem 6.7 (Girsanov theorem)

Let {W (t)}t≥0 be a P-Brownian motion. Given θ ∈ R, define the stochastic
process {W (θ)(t)}t≥0 by

W (θ)(t) = W (t) + θt.

Then {W (θ)(t)}t≥0 is a Pθ-Brownian motion.

Note carefully that {W (θ)(t)}t≥0 is not a P-Brownian motion for θ 6= 0,
because E[W (θ)(t)] = θt 6= 0.

In particular, according to the probability measure P, the stochastic process
{W (θ)(t)}t≥0 has a drift, i.e., a tendency to move up (if θ > 0) or down (if
θ < 0). However in the Girsanov probability Pθ this drift is removed, because
Eθ[W (θ)(t)] = 0.
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