
Options and Mathematics: Lecture 20

December 3, 2020

Black-Scholes markets

Definition 6.7 Let {W (t)}t≥0 be a Brownian motion, α ∈ R, σ > 0 and
S0 > 0 be constants. The positive stochastic process {S(t)}t≥0 given by

�
�

�
�S(t) = S0e

αt+σW (t)

is called a geometric Brownian motion (GBM).

We shall use geometric Brownian motions to model the dynamics of stock
prices in the time-continuum case.

More precisely, a Black-Scholes market is a market that consists of a stock
with price given by a GBM, and a risk-free asset with constant interest rate
r; in particular, the value of the risk-free asset at time t is given by

B(t) = B0e
rt B0 = B(0) > 0
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We assume throughout that t ∈ [0, T ], where T > 0 could be for instance the
time of maturity of a financial derivative on the stock.

The probability P with respect to which {W (t)}t≥0 is Brownian motion is
the physical (or real-world) probability of the Black-Scholes market.

α is the instantaneous mean of log-return, σ is the instantaneous
volatility and σ2 is the instantaneous variance of the geometric Brownian
motion.

To justify this terminology we now show that α and σ satisfy the analogous
interpretations as in the binomial model. Namely, for all t ∈ [0, T ] and h > 0
such that t+ h ≤ T we have

α =
1

h
E[logS(t+ h)− logS(t)], σ2 =

1

h
Var[logS(t+ h)− logS(t)].

In fact, since W (t) ∈ N (0, t), we have

E[logS(t+ h)− logS(t)] = E[αh+ σW (t+ h)− σW (t)]

= αh+ σ(E[W (t+ h)]− E[W (t)]) = αh.

Similarly

Var[logS(t+ h)− logS(t)] = Var[αh+ σW (t+ h)− σW (t)]

= σ2Var[W (t+ h)−W (t)] = σ2h,

where we used that the increment W (t+ h)−W (t) belongs to N (0, h).

Next we derive the density function of the geometric Brownian motion.

Theorem 6.10

The density of the random variable S(t) is given by

fS(t)(x) =
H(x)√
2πσ2t

1

x
exp

(
−(log x− logS(0)− αt)2

2σ2t

)
,

where H(x) is the Heaviside function.
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Proof. The density of S(t) is given by

fS(t)(x) =
d

dx
FS(t)(x),

where FS(t) is the distribution of S(t), i.e.,

FS(t)(x) = P(S(t) ≤ x).

Clearly, fS(t)(x) = FS(t)(x) = 0, for x ≤ 0. For x > 0 we use that

S(t) ≤ x if and only if W (t) ≤ 1

σ

(
log

x

S(0)
− αt

)
:= A(x).

Thus, using W (t) ∈ N (0, t),

P(S(t) ≤ x) = P(−∞ < W (t) ≤ A(x)) =
1√
2πt

∫ A(x)

−∞
e−

y2

2t dy,

where for the second equality we used that W (t) ∈ N (0, t). Hence

fS(t)(x) =
d

dx

(
1√
2πt

∫ A(x)

−∞
e−

y2

2t dy

)
=

1√
2πt

e−
A(x)2

2t
dA(x)

dx
,

for x > 0, that is

fS(t)(x) =
1√

2πσ2t

1

x
exp

{
−(log x− logS(0)− αt)2

2σ2t

}
, x > 0.

The proof is complete.
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The risk-neutral pricing formula in Black-Scholes

markets

The purpose of this section is to introduce the definition of Black-Scholes
price of European derivatives from a probability theory point of view.

Recall that the probabilistic interpretation of the binomial price is encoded
in the risk-neutral pricing formula.

Our goal is to derive a similar risk-neutral pricing formula (at time t = 0)
for the time-continuum Black-Scholes model.

Motivated by the approach for the binomial model, we first look for a prob-
ability measure in which the the discounted stock price in Black-Scholes
markets is a martingale (martingale probability measure).

It is natural to seek such martingale probability within the class of Girsanov
probabilities {Pθ}θ∈R; recall that Pθ is equivalent to the physical probability
P = P0 for all θ ∈ R.

We shall need the form of the density function of the geometric Brownian
motion in the probability measure Pθ.

Theorem 6.11

Let θ ∈ R and {W (t)}t≥0 be a P-Brownian motion. The geometric Brownian
motion has the following density in the probability measure Pθ:

f
(θ)
S(t)(x) =

H(x)√
2πσ2t

1

x
exp

(
−(log x− logS0 − (α− θσ)t)2

2σ2t

)
.

Proof. Since

S(t) = S0e
αt+σW (t) = S0e

(α−θσ)t+σW (θ)(t), W (θ)(t) = W (t) + θt

and since {W (θ)(t)}t≥0 is a Brownian motion in the probability measure Pθ
(by Girsanov’s Theorem), then the density f

(θ)
S(t) is the same as in Theorem

6.10 with α replaced by α− θσ.
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Let Eθ[·] denote the expectation in the measure Pθ. Recall that martingales
have constant expectation. Hence in the martingale (or risk-neutral) prob-
ability measure the expectation of the discounted value of the stock must
be constant, i.e., Eθ[S(t)] = S0e

rt. We now show that this condition alone
suffices to single out a unique possible value of θ, namely

The identity Eθ[S(t)] = S0e
rt holds if and only if θ = q, where

q =
α− r
σ

+
σ

2
.

In fact, using the density of S(t) in the probability Pθ we have

Eθ[S(t)] =

∫
R
xf

(θ)
S(t)(x) dx =

1√
2πσ2t

∫ ∞
0

exp

(
−(log x− logS0 − (α− θσ)t)2

2σ2t

)
dx.

With the change of variable

y =
log x− logS0 − (α− θσ)t

σ
√
t

, dx = xσ
√
t dy,

we obtain

Eθ[S(t)] =
S0√
2π
e(α−θσ)t

∫
R
e−

y2

2
+σ
√
ty dy = S0e

(α−θσ+σ2

2
)t 1√

2π

∫
R
e−

(y+σ
√
t)2

2 dy.

As 1√
2π

∫
R e
−x

2

2 dx = 1, the claim follows.

Even though the validity of Eθ[S(t)] = S0e
rt is only necessary for the dis-

counted geometric Brownian motion to be a martingale, one can show that
the following result holds.

Theorem 6.12 The discounted value of the geometric Brownian motion
stock price is a martingale in the Girsanov probability measure Pθ if and
only if θ = q, where q is given as above.
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The probability measure Pq is called the martingale probability, or risk-
neutral probability, of the Black-Scholes market. Replacing α = r+ qσ−
1
2
σ2 in the the GBM we may rewrite the stock price as

�



�
	S(t) = S(0)e(r−

σ2

2
)t+σW (q)(t)

where we recall that W (q)(t) = W (t) + qt and, by Girsanov’s theorem,
{W (q)(t)}t≥0 is a Brownian motion in the risk-neutral probability.

It follows that in the probability measure Pq, S(t) is a geometric Brownian
motion with volatility σ and mean of log return µ = r − 1

2
σ2.

At this point we have all we need to define the Black-Scholes price of Euro-
pean derivatives at time t = 0 using the risk-neutral pricing formula.

Definition 6.18

The Black-Scholes price at time t = 0 of the European derivative with pay-off
Y at maturity T is given by the risk-neutral pricing formula

�� ��ΠY (0) = e−rTEq[Y ]

i.e., it equals the expected value of the discounted pay-off in the risk-neutral
probability measure of the Black-Scholes market.

In the case of standard European derivatives we can use the density of the
geometric Brownian motion in the risk-neutral probability measure to write
the Black-Scholes price in the following integral form.
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Theorem 6.13

For the standard European derivative with pay-off Y = g(S(T )) at maturity
T > 0, the Black-Scholes price at time t = 0 can be written as

�� ��ΠY (0) = v0(S0)

where S0 is the price of the underlying stock at time t = 0 and v0 : (0,∞)→ R
is the pricing function of the derivative at time t = 0, which is given by

�
�

�
v0(x) = e−rT

∫
R
g(xe(r−

σ2

2
)T+σ

√
Ty)e−

1
2
y2 dy√

2π

Proof. Replacing θ = q in the density of GBM in the risk-neutral probability
we obtain that the geometric Brownian motion has the following density in
the probability Pq:

f
(q)
S(t)(x) =

H(x)√
2πσ2t

1

x
exp

(
−

(log x− logS0 − (r − σ2

2
)t)2

2σ2t

)
.

Using this density for t = T in the risk-neutral pricing formula we obtain

ΠY (0) = e−rTEq[Y ] = e−rTEq[g(S(T ))] =

∫
R
g(x)f

(q)
S(T )(x) dx

=
e−rT√
2πσ2t

∫ ∞
0

g(x)

x
exp

(
−

(log x− logS0 − (r − σ2

2
)t)2

2σ2t

)
dx.

With the change of variable y = log x−logS0−(α−θσ)t
σ
√
t

we obtain

ΠY (0) = e−rT
∫
R
g(S0e

(r−σ
2

2
)T+σ

√
Ty)e−

1
2
y2 dy√

2π
= v0(S0),

as claimed.
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The risk-neutral pricing formula for t > 0 is

ΠY (t) = e−rTEq[Y |FS(t)],

The right hand side of is the expectation of the discounted pay-off in the
risk-neutral probability measure conditional to the information available at
time t, which in a Black-Scholes market is determined by the history of the
stock price up to time t.

It can be shown that in the case of the standard European derivative with
pay-off Y = g(S(T )) and maturity T , the risk-neutral pricing formula at time
t > 0 entails that the Black-Scholes price at time t ∈ [0, T ] can be written in
the integral form

�� ��ΠY (t) = v(t, S(t))

where

�
�

�
v(t, x) =

e−rτ√
2π

∫
R
g
(
xe(r−

σ2

2
)τeσ

√
τ y
)
e−

y2

2 dy τ = T − t.

Hence the pricing function v(t, x) of the derivative at time t is the same as
the pricing function at time t = 0 but with maturity T replaced by the time
τ left to maturity, which is rather intuitive.
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Hedging portfolio

A portfolio process {hS(t), hB(t)}t∈[0,T ] invested in a Black-Scholes market
is said to be hedging the European derivative with pay-off Y and maturity
T > 0 if

V (T ) = Y

where
V (t) = hS(t)S(t) + hB(t)B(t)

is the value of the portfolio process at time t ∈ [0, T ].

The portfolio process is said to be replicating the derivative if V (t) = ΠY (t),
for all t ∈ [0, T ], where ΠY (t) is the Black-Scholes price of the derivative.

It can be shown that the Black-Scholes price ΠY (t) coincides with the value at
time t ∈ [0, T ] of any self-financing portfolio processes hedging the derivative,
precisely as in the binomial model. However the definition of self-financing
portfolio in Black-Scholes markets requires the use of stochastic calculus and
it is therefore beyond the purpose of this course.

Moreover it can be shown that in the case of standard European derivatives
the portfolio process {(hS(t), hB(t))}t∈[0,T ] given by

�� ��hS(t) = ∆(t, S(t)), ∆(t, x) = ∂xv(t, x)

�
�

�
hB(t) =

1

B(t)
(ΠY (t)− hS(t)S(t))

is self-financing and hedges the derivative. Here v denotes the Black-Scholes
pricing function and ∂xv the partial derivative of v in the second variable
(i.e., the derivative in x assuming that t is constant).

Note that the formula for hB(t) is equivalent to the replicating condition
V (t) = ΠY (t) of the portfolio process {hS(t), hB(t)}t∈[0,T ].
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