
Options and Mathematics: Lecture 21

December 8, 2020

Black-Scholes price of European call and put

options

In this lecture we focus the discussion on call/put options. We then assume
that the pay-off of the derivative is given by

Y = (S(T )−K)+, i.e., Y = g(S(T )), g(z) = (z −K)+, for a call option,

Y = (K − S(T ))+, i.e., Y = g(S(T )), g(z) = (K − z)+, for a put option.

As usual, we denote by C(t, S(t), K, T ) the value at time t of the call op-
tion with strike K and maturity T and by P (t, S(t), K, T ) the value of the
corresponding put option.

Recall that the Black-Scholes price at time t of the standard European deriva-
tive with payoff function g and maturity T is

ΠY (t) = v(t, S(t)), v(t, x) =
e−rτ√

2π

∫
R
g
(
xe(r−

σ2

2
)τeσ

√
τ y
)
e−

y2

2 dy τ = T−t.
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Theorem 6.14

The Black-Scholes price at time t of the European call option with strike
price K > 0 and maturity T > 0 is given by C(t, S(t), K, T ), where

�� ��C(t, x,K, T ) = xΦ(d(+))−Ke−rτΦ(d(−))

�
�

�

d(±) =

log
(
x
K

)
+
(
r ± 1

2
σ2
)
τ

σ
√
τ

and where

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
y2 dy

is the standard normal distribution.

The Black-Scholes price of the corresponding put option is given by P (t, S(t), K, T ),
where

�� ��P (t, x,K, T ) = Φ(−d(−))Ke−rτ − Φ(−d(+))x

Moreover the put-call parity identity holds:

C(t, S(t), K, T )− P (t, S(t), K, T ) = S(t)−Ke−rτ .
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Proof. We derive the Black-Scholes price of call options only, the argument
for put options being similar. We substitute g(z) = (z−K)+ into v(t, x) and
obtain

v(t, x) = C(t, x,K, T ) =
e−rτ√

2π

∫
R

(
xe(r−

1
2
σ2)τeσ

√
τy −K

)
+
e−

y2

2 dy.

Now we use that

xe(r−
1
2
σ2)τeσ

√
τy > K if and only if y > −d(−).

Hence

C(t, x,K, T ) =
e−rτ√

2π

[∫ ∞
−d(−)

xe(r−
1
2
σ2)τeσ

√
τye−

y2

2 −K
∫ ∞
−d(−)

e−
y2

2 dy

]
.

Using

−1

2
y2 + σ

√
τy = −1

2
(y − σ

√
τ)2 +

σ2

2
τ

and changing variable in the integrals we obtain

C(t, x,K, T ) =
e−rτ√

2π

[
xerτ

∫ ∞
−d(−)

e−
1
2
(y−σ

√
τ)2 dy −K

∫ ∞
−d(−)

e−
y2

2 dy

]

=
e−rτ√

2π

[
xerτ

∫ d(−)+σ
√
τ

−∞
e−

1
2
y2 dy −K

∫ d(−)

−∞
e−

y2

2 dy

]
= xΦ(d(+))−Ke−rτΦ(d(−)),

where we used that d(+) = d(−) + σ
√
τ .
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As to the put-call parity, we have

C(t, x,K, T )− P (t, x,K, T ) = xΦ(d(+))−Ke−rτΦ(d(−))− Φ(−d(−))Ke−rτ + xΦ(−d(+))

= x(Φ(d(+)) + Φ(−d(+)))−Ke−rτ (Φ(d(−)) + Φ(−d(−))).

As Φ(z) + Φ(−z) = 1, the claim follows.

Next we construct replicating, and thus hedging, portfolio processes for call
and put options.

Theorem 6.15

The following are self-financing replicating portfolio processes for European
call/put options on Black-Scholes markets:

hS(t) = Φ(d(+)), hB(t) = −
Ke−rτΦ(d(−))

B(t)
for call options

hS(t) = −Φ(−d(+)), hB(t) =
Ke−rτΦ(−d(−))

B(t)
for put options.

The greeks

The Black-Scholes price of call and put options depends on the price of the
underlying stock, the time to maturity, the strike price, as well as on the
(constant) market parameters r, σ (it does not depend on α).

The partial derivatives of the pricing function with respect to these variables
are called greeks. We collect the most important ones (for call options) in
the following theorem.
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Theorem 6.16 (the greeks)

The pricing function C(t, x,K, T ) of call options satisfies the following:

∆ := ∂xC = Φ(d(+)),

Γ := ∂2xC =
φ(d(+))

xσ
√
τ
,

ρ := ∂rC = Kτe−rτΦ(d(−)),

Θ := ∂tC = −
xφ(d(+))σ

2
√
τ

− rKe−rτΦ(d(−)),

ν := ∂σC = xφ(d(+))
√
τ (called “vega”),

where we recall that φ(z) = Φ′(z) = (
√

2π)−1e−
z2

2 . In particular:

• ∆ > 0, i.e., the price of a call is increasing on the price of the underlying
stock;

• Γ > 0, i.e., the price of a call is convex on the price of the underlying
stock;

• ρ > 0, i.e., the price of the call is increasing on the interest rate of the
risk-free asset;

• Θ < 0, i.e., the price of the call is decreasing in time;

• ν > 0, i.e., the price of the call is increasing on the volatility of the
stock.

The greeks measure the sensitivity of option prices with respect to the market
conditions. This information can be used to draw some important conclu-
sions.

For instance, since vega is positive, then the wish of an investor with a
long position on a call option is that the volatility of the underlying stock
increased. As usual, since this might not happen, the buyer of the call may
incur in a loss if the stock volatility decreases (since the call option will loose
value). This exposure to volatility can be secured by adding volatility swaps
into the portfolio.
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Implied volatility

Let C(t, S(t), K, T ) denote the Black-Scholes price of the European call with
strike price K, maturity time T on a stock with price S(t) at time t.

Recall that in the derivation of the Black-Scholes price it is assumed that the
price of the stock follows the geometric Brownian motion

S(t) = S(0)eαt+σW (t),

where {W (t)}t∈[0,T ] is a Brownian motion stochastic process, σ > 0 is the
instantaneous volatility and α ∈ R is the instantaneous mean of log-return.
The function C(t, x,K, T ) is given by

C(t, x,K, T ) = xΦ(d(+))−Ke−rτΦ(d(−)),

where r > 0 is the (constant) risk-free rate of the money market, τ = T − t
is the time left to the expiration of the call,

d(±) =
log x

K
+ (r ± σ2

2
)τ

σ
√
τ

,

and Φ denotes the standard normal distribution,

Φ(z) =

∫ z

−∞
e−

y2

2
dy√
2π
.

Remarkably, C(t, S(t), K, T ) does not depend on the mean of log-return α of
the stock price.
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However it depends on the parameters (σ, r) and since here we are particu-
larly interested in the dependence on the volatility, we re-denote the Black-
Scholes price of the call as

C(t, S(t), K, T, σ).

Moreover

∂C

∂σ
= vega = xφ(d(+))

√
τ > 0.

Hence the Black-Scholes price of the option is an increasing function of the
volatility. Furthermore,

lim
σ→0+

C(t, S(t), K, T, σ) = (S(t)−Ke−rτ )+, lim
σ→+∞

C(t, S(t), K, T, σ) = S(t),

see Exercise 6.12.

Therefore the function C(t, S(t), K, T, ·) is a one-to-one map from (0,∞) into
the interval ((S(t) −Ke−rτ )+, S(t)), see Figure 6.1. This property makes it
possible to define the concept of implied volatility as follows.

Defintion 6.19 (implied volatility)

Let C̃(t) be the market price at time t < T of the European call with strike

K and maturity T . If C̃(t) ∈ ((S(t)−Ke−rτ )+, S(t)), the implied volatility
σimp of the call option is the unique value of the volatility parameter σ such
that

�
�

�
�C(t, S(t), K, T, σimp) = C̃(t)

The implied volatility must be computed numerically (for instance with the
function blsimpv in Matlab), since there is no close formula for it.
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Figure 1: We fix S(t) = 10, K = 12, r = 0.01, τ = 1/12 and depict the
Black-Scholes price of the call as a function of the volatility.

The implied volatility of an option (in this example of a call option) is a very
important parameter and it is usually quoted together with the price of the
option.

If the market followed exactly the assumptions in the Black-Scholes theory,
then the implied volatility would be constant (independent of time) and it
would be the same for all call options on the same stock with the same strike
and maturity.

However for real market options this turns out to be false, i.e., the implied
volatility depends on time, K and T . In this respect, σimp may be viewed as
a quantitative measure of how real markets deviate from ideal Black-Scholes
markets.
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Volatility smile

As mentioned before, the implied volatility in real markets depends on the
parameters K,T . Here we are particularly interested in the dependence on
the strike price, hence we re-denote the implied volatility as σimp(K).

If the market behaved exactly as in the Black-Scholes theory, then σimp(K) =
σ for all values of K, hence the graph of the function K → σimp(K) would
be a straight horizontal line.

Given that real markets do not satisfy exactly the assumptions in the Black-
Scholes theory, what can we say about the graph of the function K →
σimp(K)?

Remarkably, it has been found that there exists recurrent convex shapes
for the graph of this function, which are known as volatility smile and
volatility skew, see Figures 2-3.

The minimum of the volatility smile is reached at the strike price K ≈ S(t),
i.e., when the call is nearly at the money.

This behavior indicates that the more the call is far from being at the money,
the more it will be overpriced. Volatility smiles and skews have been found
in the market especially after the crash in 1987 (Black Monday), indicating
that this event led investors to be more cautious when trading on options
that are in or out of the money.

Devise mathematical models of stochastic volatility and asset prices able
to reproduce volatility curves is an active research topic in mathematical
finance.
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Figure 2: Volatility Smile of a call option on Apple expiring May 15th, 2015.
The data were taken on May 12th, when the Apple stock quoted 126.34
dollars.
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Figure 3: Volatility skews (not from real data!)
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