Options and Mathematics: Lecture 24

December 11, 2020

Standard European derivatives on a dividendpaying stock

In this llecture we compute the Black-Scholes price of standard European derivatives on a dividend-paying stock.

In a frictionless market this means that the price of the stock drops at some time $t_{0} \in(0, T)$ of a quantity $D<S\left(t_{0}\right)$, which is deposited in the account of the shareholders.

Letting $S\left(t_{0}^{-}\right)=\lim _{t \rightarrow t_{0}^{-}} S(t)$, we then have

$$
S\left(t_{0}\right)=S\left(t_{0}^{-}\right)-D
$$

We assume that on each of the intervals $\left[0, t_{0}\right),\left[t_{0}, T\right]$, the stock price follows a geometric Brownian motion.

In the risk-neutral probability \mathbb{P}_{q} this means that

$$
\begin{aligned}
& S(s)=S(t) e^{\left(r-\frac{1}{2} \sigma^{2}\right)(s-t)+\sigma\left(W^{(q)}(s)-W^{(q)}(t)\right)}, \quad t \in\left[0, t_{0}\right), s \in\left[t, t_{0}\right) \\
& S(s)=S(u) e^{\left(r-\frac{1}{2} \sigma^{2}\right)(s-u)+\sigma\left(W^{(q)}(s)-W^{(q)}(u)\right)}, \quad u \in\left[t_{0}, T\right], s \in[u, T] .
\end{aligned}
$$

To simplify the discussion we consider the case in which the dividend D is expressed as percentage of the stock price just before the dividend is paid, i.e., $D=a S\left(t_{0}^{-}\right)$, for some $a \in(0,1)$.

Note that this means that we do not know at time $t=0$ what amount the dividend will pay at time $t_{0}>0$, but we known for sure that $D<S\left(t_{0}^{-}\right)$.

Theorem 6.18

Consider the standard European derivative with pay-off $Y=g(S(T))$ and maturity T. Let $\Pi_{Y}^{\left(a, t_{0}\right)}(0)$ be the Black-Scholes price of the derivative at time $t=0$ assuming that the underlying stock pays the dividend $a S\left(t_{0}^{-}\right)$at time $t_{0} \in(0, T)$, where $a \in(0,1)$. Then

$$
\Pi_{Y}^{\left(a, t_{0}\right)}(0)=v_{0}\left((1-a) S_{0}\right)
$$

where $v_{0}(x)$ is the pricing function in the absence of dividends.

Exercise 6.28[?]

Use the previous result to show that the call option is less valuable at time $t=$ 0 if the stock pays a dividend at time $t_{0}>0$. Give an intuitive explanation for this property.

Exercise 6.29

A standard European derivative pays the amount $Y=(S(T)-S(0))_{+}$at time of maturity T. Find the Black-Scholes price $\Pi_{Y}(0)$ of this derivative at time $t=0$ assuming $r>0$ and that the underlying stock pays the dividend $\left(1-e^{-r T}\right) S\left(\frac{T}{2}-\right)$ at time $t=\frac{T}{2}$. Compute the probability of positive return for a constant portfolio which is short 1 share of the derivative and short $S(0) e^{-r T}$ shares of the risk-free asset (assume $B(0)=1$).

