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Introduction

» We now consider general continuous-time discrete state space
Markov chains.

» Comparing to the discrete-time Markov chains we studied before:
We now model that we stay in each state for some real-valued
amount of time.

» The Markov property is a type of “memoryless-ness”: The property
will imply that the amount of time in each state is Exponentially
distributed.

» Very useful tool, can be used to model for example queues.
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» We have previously discussed modelling the weather as a discrete
time Markov chain where the weather each day is “rain”, “snow", or
“clear”, with transition matrix for example

0.2 06 0.2
P=101 08 0.1
0.1 0.6 0.3

> A more realistic model is that each weather type lasts some length
of time, before changing to a different weather type:
> Let's say the time each weather type lasts is Exponentially
distributed with parameters g, gs and gc (so that expected
durations of weather types are 1/q,, 1/gs, 1/qc, respectively).
> Transitions after this time would happen according to a transition

matrix
. 0 1/2 1/2
P=1(3/4 0 1/4
1/4 3/4 0

> Note that the process is completely described by parameters
Gr,qs, qc and pj;;, where P = p;;. Note that p; = 0 for all /.
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Continuous time Markov chains

» A continuous time stochastic process {X;}:>o with discrete state
space S is a continuous time Markov chain if

P(Xevs =j | Xs =, X0, 0 < < 8) = P(Xews = j | Xs = i)

where s, t > 0and i,j,x, €S.
» The process is time-homogeneous if for s, t > 0 and all i,j € S

PXizs=Jj | Xs=0)=P(Xe =4 | Xo=1)

» We then define the transition function as the matrix function P(t)
with the entries of the matrix given by

P(t)j = P(Xe = | Xo = 1)
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The Chapman-Kolmogorov Equations

For the transition function P(t) we have

P(s+t) = P(s)P(t)

> P0) =1

Note similarity to the properties of the exponential function!
However, P(t) is a matrix, not a number.

v

v

» Example:
> A Poisson process with parameter A is a continuous time
time-homogeneous Markov chain.
> We get

e (A)e (At)le /2l (At)demM/3!
0 e M (At)e ™ (At)’e /2!
— At — At
P(r)=| O 0 e (At)e
® 0 0 0 e M
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Holding times are exponentially distributed

» Define T; as the time the continuous-time Markov chain started in /
stays in i/ before moving to a different state, so that for any s > 0

P(Ti>s)=P(X,=i,0<u<s)

» The distribution of T; is memoryless and thus exponential.
» We define g; so that

T; ~ Exponential(q;)

» Remember that this means that the average time the process stays
in i is 1/q;. The rate of transition out of the state is g;.

» Note that we can have g; = 0 meaning that the state / is absorbing:
P(Ti>s)=1.

6/10



The embedded chain

» Define a new stochastic process by listing the states the chain visits.
This will be a discrete time Markov chain.

> It is called the embedded chain; transition matrix is denoted P.
» Note that P has zeros along its diagonall

» Note that the continuous time Markov chain is completely
determined by the expected holding times (1/qi,...,1/qx) and the
transition matrix P of the embedded chain. We write p; for its
entries.
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Describing the chain using transition rates

A way to describe a continuous-time Markov chain is to describe
k x (k — 1) independent “alarm clocks":

> For states i and j so that i # j, let g;; be the parameter of an
Exponentially distributed random variable representing the time until
an “alarm clock” rings.

» When in state /, wait until the first alarm clock rings, then move to
the state given by the index j of that alarm clock. This defines a
continuous-time Markov chain.

» The time until the first alarmclock rings is Exponentially distributed
with parameter given by

9i =9qin+ g2+ -+ qii-1+ Giiv1+ o+ Gk (1)

i.e., the parameter of the holding time distribution at /.
» We will se below: The chain is completely described by the rates gj;,

> We saw above: The chain is also completely determined by the pj;
and the g;. The relationship is Equation 1 and, for i # j,
pij - 9i = qij-
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The derivative of P(t) at zero

> To relate P(t) to the gj;'s, we first relate them to P’(0).
» Assuming P(t) is differentiable we get

—q1 Q12 qiz  --.  Qik

g1 —q2 Q3 ... Q2
P'(0)= |91 91 —G - Bk | =Q

dk1 qk2 qk3 ... —Qk

where the g; and the gj; are those defined earlier.

> In fact we don't need to require a finite state space; discrete is
enough.

> Q is called the (infinitesimal) generator of the chain.
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Kolmogorov Forward Backward

» Prove: We get that for all t > 0,
P'(t) = P(t)Q = QP(t)

» Note what this means in terms of the components of P(t):

Pl(t)y = —Py(t)g+)_ Pu(t)ay
Py

Pl(t)y = —aiP(t)+)_ quPy(t)
K£i

» The equations above define a set of differential equations which the
components of the matrix function P(t) needs to fulfill.
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Review / motivation

For continuous time time-homogeneous Markov chains with discrete state
space:

> Let P(t) be the matrix of probabilities for changing from state / to
state j after time t.

» We found that

—q1  q12 g1z ... Qik

1 —Qq2 Q3 ... Q2
P'(0)= |91 91 —G - @Bk | =Q

dk1 k2 Gqks ... —Qqk

where the gj; are (“alarm clock”) rates and the rows of Q sum to 0.
We know these rates, i.e., @, determine the whole process!

> We found that P'(t) = QP(t) = P(t)Q.
> It seems tempting to define P(t) = e*?. But can we do that when
Q is a matrix?
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The matrix exponential

» For any square matrix A define the matrix exponential as

oo

1 1 1 1
A_Z n_ a2 a3 4
e —nzon!A —/+A+2A +6A —|—24A +

v

The series converges for all square matrices A (we don't show this).
» Some important properties:

» el =1
> efe =1,
> e(s+t)A _ esAetA
> If AB = BA then e*8 = e%ef = efe?.
> gt tA — Ae tA — etAA
» P(t) = e'? is the unique solution to the differential equations
P’(t) = QP(t) for all t > 0 and P(0) = /.
> In R you may use expm from R package expm to compute

exponential matrices.
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Computing the matrix exponential

» Assume there exists an invertible matrix S and a matrix D such that
Q = SDS™!. Then (show!)

etQ _ SetDs—l

A1 0 0
A2 ... O
» IfD=| . . .| is a diagonal matrix, then (show!)
0 0 . Ak
et 0 0
0 eth 0
otD —
0 0 et

» Recall that if Q is diagonalizable it can be written as @ = SDS™!
where D is diagonal with the eigenvalues along the diagonal, and S
has the corresponding eigenvectors as columns.
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Limiting and stationary distributions

A probability vector v represents a limiting distribution if, for all
states / and J,

v

lim Pj(t) =v,.

t—o0
> A probability vector v represents a stationary distribution, if, for all
t>0,
v = vP(t)
» Note: This happens if and only if 0 = vQ.

» A limiting distribution is a stationary distribution but not necessarily
vice versa.

» A continuous-time Markov chain is irreducible if for all i and j there
exists a t > 0 such that Pj(t) > 0.

» However, periodic continuous-time Markov chains do not exist: If
Pjj(t) > 0 for some t > 0 then Pj(t) > 0 for all t > 0.
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The fundamental limit theorem

» An absorbing communication class is one where there is zero
probability (i.e., zero rate) of leaving it to other commuication
classes.

> For a finite-state continuous-time Markov chain with finite holding
time parameters, there are two possibilities:

> The process is irreducible, and P;(t) > 0 for all t > 0 and all i,;.
> The process contains one or more absorbing communication classes.

» Fundamental Limit Theorem: Let {X;}:>o be a finite, irreducible,
continuous-time Markov chain with transition funciton P(t). Then
there exists a unique stationary distribution vector v which is also
the limiting distribution.

» The limiting distribution of such a chain can be found as the unique
v satisfying vQ = 0.
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Stationary distribution of the embedded chain

> Recall the embedded chain of a continuous-time Markov chain.
» Stationary distributions for the embedded chain and for the
continuous-time chain are generally not the same!

» However, there is a simple relationship: A probability vector 7 is a
stationary distribution for a continuous-time Markov chain if and
only if 9 is a stationary distribution for the embedded chain, where
1; = Cm;q; for the appropriate constant C.
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