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Introduction

I We now consider general continuous-time discrete state space
Markov chains.

I Comparing to the discrete-time Markov chains we studied before:
We now model that we stay in each state for some real-valued
amount of time.

I The Markov property is a type of “memoryless-ness”: The property
will imply that the amount of time in each state is Exponentially
distributed.

I Very useful tool, can be used to model for example queues.
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Example

I We have previously discussed modelling the weather as a discrete
time Markov chain where the weather each day is “rain”, “snow”, or
“clear”, with transition matrix for example

P =

0.2 0.6 0.2
0.1 0.8 0.1
0.1 0.6 0.3

 .

I A more realistic model is that each weather type lasts some length
of time, before changing to a different weather type:

I Let’s say the time each weather type lasts is Exponentially
distributed with parameters qr , qs and qc (so that expected
durations of weather types are 1/qr , 1/qs , 1/qc , respectively).

I Transitions after this time would happen according to a transition
matrix

P̃ =

 0 1/2 1/2
3/4 0 1/4
1/4 3/4 0

 .
I Note that the process is completely described by parameters

qr , qs , qc and pij , where P̃ij = pij . Note that pii = 0 for all i .
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Continuous time Markov chains

I A continuous time stochastic process {Xt}t≥0 with discrete state
space S is a continuous time Markov chain if

P(Xt+s = j | Xs = i ,Xu, 0 ≤ u < s) = P(Xt+s = j | Xs = i)

where s, t ≥ 0 and i , j , xu ∈ S .

I The process is time-homogeneous if for s, t ≥ 0 and all i , j ∈ S

P(Xt+s = j | Xs = i) = P(Xt = j | X0 = i)

.

I We then define the transition function as the matrix function P(t)
with the entries of the matrix given by

P(t)ij = P(Xt = j | X0 = i)
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The Chapman-Kolmogorov Equations

For the transition function P(t) we have

I P(s + t) = P(s)P(t)

I P(0) = I

I Note similarity to the properties of the exponential function!
However, P(t) is a matrix, not a number.

I Example:
I A Poisson process with parameter λ is a continuous time

time-homogeneous Markov chain.
I We get

P(t) =


e−λt (λt)e−λt (λt)2e−λt/2! (λt)3e−λt/3! . . .

0 e−λt (λt)e−λt (λt)2e−λt/2! . . .

0 0 e−λt (λt)e−λt . . .

0 0 0 e−λt . . .
...

...
...

...
. . .


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Holding times are exponentially distributed

I Define Ti as the time the continuous-time Markov chain started in i
stays in i before moving to a different state, so that for any s > 0

P(Ti > s) = P(Xu = i , 0 ≤ u ≤ s)

I The distribution of Ti is memoryless and thus exponential.

I We define qi so that

Ti ∼ Exponential(qi )

I Remember that this means that the average time the process stays
in i is 1/qi . The rate of transition out of the state is qi .

I Note that we can have qi = 0 meaning that the state i is absorbing:
P(Ti > s) = 1 .
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The embedded chain

I Define a new stochastic process by listing the states the chain visits.
This will be a discrete time Markov chain.

I It is called the embedded chain; transition matrix is denoted P̃.

I Note that P̃ has zeros along its diagonal!

I Note that the continuous time Markov chain is completely
determined by the expected holding times (1/q1, . . . , 1/qk) and the
transition matrix P̃ of the embedded chain. We write pij for its
entries.
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Describing the chain using transition rates

A way to describe a continuous-time Markov chain is to describe
k × (k − 1) independent “alarm clocks”:

I For states i and j so that i 6= j , let qij be the parameter of an
Exponentially distributed random variable representing the time until
an “alarm clock” rings.

I When in state i , wait until the first alarm clock rings, then move to
the state given by the index j of that alarm clock. This defines a
continuous-time Markov chain.

I The time until the first alarmclock rings is Exponentially distributed
with parameter given by

qi = qi1 + qi2 + · · ·+ qi,i−1 + qi,i+1 + · · ·+ qik (1)

i.e., the parameter of the holding time distribution at i .
I We will se below: The chain is completely described by the rates qij ,

i 6= j .
I We saw above: The chain is also completely determined by the pij

and the qi . The relationship is Equation 1 and, for i 6= j ,

pij · qi = qij .
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The derivative of P(t) at zero

I To relate P(t) to the qij ’s, we first relate them to P ′(0).

I Assuming P(t) is differentiable we get

P ′(0) =


−q1 q12 q13 . . . q1k
q21 −q2 q23 . . . q2k
q31 q31 −q3 . . . q3k

...
...

...
. . .

...
qk1 qk2 qk3 . . . −qk

 = Q

where the qi and the qij are those defined earlier.

I In fact we don’t need to require a finite state space; discrete is
enough.

I Q is called the (infinitesimal) generator of the chain.
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Kolmogorov Forward Backward

I Prove: We get that for all t ≥ 0,

P ′(t) = P(t)Q = QP(t)

I Note what this means in terms of the components of P(t):

P ′(t)ij = −Pij(t)qj +
∑
k 6=j

Pik(t)qkj

P ′(t)ij = −qiPij(t) +
∑
k 6=i

qikPkj(t)

I The equations above define a set of differential equations which the
components of the matrix function P(t) needs to fulfill.
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Review / motivation

For continuous time time-homogeneous Markov chains with discrete state
space:

I Let P(t) be the matrix of probabilities for changing from state i to
state j after time t.

I We found that

P ′(0) =


−q1 q12 q13 . . . q1k
q21 −q2 q23 . . . q2k
q31 q31 −q3 . . . q3k

...
...

...
. . .

...
qk1 qk2 qk3 . . . −qk

 = Q

where the qij are (“alarm clock”) rates and the rows of Q sum to 0.
We know these rates, i.e., Q, determine the whole process!

I We found that P ′(t) = QP(t) = P(t)Q.

I It seems tempting to define P(t) = etQ . But can we do that when
Q is a matrix?
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The matrix exponential

I For any square matrix A define the matrix exponential as

eA =
∞∑
n=0

1

n!
An = I + A +

1

2
A2 +

1

6
A3 +

1

24
A4 + . . .

I The series converges for all square matrices A (we don’t show this).

I Some important properties:
I e0 = I .
I eAe−A = I .
I e(s+t)A = esAetA.
I If AB = BA then eA+B = eAeB = eBeA.
I ∂

∂t
etA = AetA = etAA.

I P(t) = etQ is the unique solution to the differential equations
P ′(t) = QP(t) for all t ≥ 0 and P(0) = I .

I In R you may use expm from R package expm to compute
exponential matrices.
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Computing the matrix exponential

I Assume there exists an invertible matrix S and a matrix D such that
Q = SDS−1. Then (show!)

etQ = SetDS−1

I If D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk

 is a diagonal matrix, then (show!)

etD =


etλ1 0 . . . 0

0 etλ2 . . . 0
...

...
. . .

...
0 0 . . . etλk

.

I Recall that if Q is diagonalizable it can be written as Q = SDS−1

where D is diagonal with the eigenvalues along the diagonal, and S
has the corresponding eigenvectors as columns.
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Limiting and stationary distributions

I A probability vector v represents a limiting distribution if, for all
states i and j ,

lim
t→∞

Pij(t) = vj .

I A probability vector v represents a stationary distribution, if, for all
t ≥ 0,

v = vP(t)

I Note: This happens if and only if 0 = vQ.

I A limiting distribution is a stationary distribution but not necessarily
vice versa.

I A continuous-time Markov chain is irreducible if for all i and j there
exists a t > 0 such that Pij(t) > 0.

I However, periodic continuous-time Markov chains do not exist: If
Pij(t) > 0 for some t > 0 then Pij(t) > 0 for all t > 0.
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The fundamental limit theorem

I An absorbing communication class is one where there is zero
probability (i.e., zero rate) of leaving it to other commuication
classes.

I For a finite-state continuous-time Markov chain with finite holding
time parameters, there are two possibilities:

I The process is irreducible, and Pij(t) > 0 for all t > 0 and all i , j .
I The process contains one or more absorbing communication classes.

I Fundamental Limit Theorem: Let {Xt}t≥0 be a finite, irreducible,
continuous-time Markov chain with transition funciton P(t). Then
there exists a unique stationary distribution vector v which is also
the limiting distribution.

I The limiting distribution of such a chain can be found as the unique
v satisfying vQ = 0.
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Stationary distribution of the embedded chain

I Recall the embedded chain of a continuous-time Markov chain.

I Stationary distributions for the embedded chain and for the
continuous-time chain are generally not the same!

I However, there is a simple relationship: A probability vector π is a
stationary distribution for a continuous-time Markov chain if and
only if ψ is a stationary distribution for the embedded chain, where
ψj = Cπjqj for the appropriate constant C .
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