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Overview

I Definition. Visualization.

I Simulation. Fractal simulation.

I Basic computational rules. Examples.

I Random walks. Donsker invariance.

I Nowhere differentiable paths.
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Continuous-time continuous state space processes

I Having looked at
I Discrete-time discrete state space processes. (Discrete Markov

chains and Branching processes).
I Discrete-time continuous state space processes (not so much but we

had some MCMC examples).
I Continuous-time discrete state space processes (Poisson processes

and more generally continuous-time Markov chains).
I we now look at continuous-time continuous state space processes.

I We will look at two examples:
I Brownian motion.
I More generally, Gaussian processes.
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Brownian motion

I In a gas, atoms bump into each other and change course. Over
time, how does a single atom move, on average?

I If f (x , t) represents the probability density for the position x of an
atom at time t, Einstein showed that

∂

∂t
f (x , t) =

1

2

∂2

∂x2
f (x , t).

I The solution is

f (x , t) =
1√
2πt

e−x
2/2t .

So x ∼ Normal(0, t) at time t.
I It turns out a single atom will move as simulated below. These

paths are sampled from a model called Brownian motion.
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Definition of standard Brownian motion

Standard Brownian motion is a continuous-time stochastic process
{Bt}t≥0 with the following properties:

1. B0 = 0.

2. For t > 0, Bt ∼ Normal(0, t) (so the variance is t, not the standard
deviation).

3. For s, t > 0, Bt+s − Bs ∼ Normal(0, t).

4. For 0 ≤ q < r ≤ s < t, Bt − Bs is independent from Br − Bq.

5. The function t 7→ Bt is continuous with probability 1.
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Simulation of Brownian motion

I Given time points t1 < t2 < · · · < tn, we can write

Bti = Bti−1 + (Bti − Bti−1) = Bti−1 + Zi

where Zi ∼ Normal(0, ti − ti−1).
I Writing t0 = 0, we get for independent Z1, . . . ,Zn,

Btn =
n∑

i=1

Zi .

I A good way to simulate the path t 7→ Bt on t ∈ [0, a] is to set
ti = ai/n, simulate independently

Zi ∼ Normal(0, a/n)

and compute

Bti =
i∑

j=1

Zj .

I Note that we can also write Zi =
√

a/nYi , where Yi ∼ Normal(0, 1).
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Zooming in on a Brownian motion realization

I What if we have a Brownian motion path simulated above, and want
to zoom in one some detail?

I The difference Zi between the value at ti and ti+1 can be written as
a sum

Zi = Zi0 + Zi1

where Zi0,Zi1 ∼ Normal(0, a/2n) independently.

I We get the value at midpoint between ti and ti+1 by adding only Zi0

to the value at ti .

I The simulated path follows the original model, but with a replaced
by a/2.

I This shows that the path is a fractal, i.e., invariant under scaling.

7 / 10



Computing with Brownian motion

I To compute probabilities for Brownian motion, we generally use the
properties in the definition, e.g.,

I Bt+s − Bs ∼ Normal(0, t)
I For 0 ≤ q < r ≤ s < t, Bt − Bs is independent from Br − Bq.

I Example: Show that B1 + B3 + 2B7 ∼ Normal(0, 50).

I Example: Show that P(B2 > 0 | B1 = 1) = 0.8413.

I Example: Show that Cov(Bs ,Bt) = min{s, t}.
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Connection to random walks

I Consider a symmetric random walk: A discrete time Markov chain
S0,S1,S2, . . . where

Sn = X1 + X2 + · · ·+ Xn

where X1,X2, . . . are independent random variables with expectation
zero.

I If we assume Var(Xi ) = 1 we get Var(Sn) = n.

I Interpolating between the values Sn we can make this into a
continuous time process St (see Dobrow). Var(St) ≈ t.

I We may scale with an s > 0 to get processes S
(s)
t = Sst/

√
s where

we get lims→∞ Var(S
(s)
t ) = t.

I It turns out that the processes S
(s)
t when s →∞ are exactly

Brownian motion, no matter what type of Xi we start with.

I This is the Donsker’s invariance principle.

I We can see this effect in simulations.

I We can use this to find approximate properties of random walks.
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Nowhere differentiable paths

I We have seen in our simulations that paths of Brownian motion are
“jagged”.

I We have also seen that this quality is unchanged if we change the
scale, i.e., look at smaller intervals.

I Formally note that Bt+h − Bt ∼ Normal(0, h) so that

Bt+h − Bt

h
∼ Normal(0, 1/h)

I Using these observations as starting points, one may show that the
path (i.e., the function t 7→ Bt) of a Brownian motion is nowehere
differentiable, even though it is everywhere continuous.
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Overview

I Gaussian processes: Definition.

I Gaussian processes and Brownian motion.

I First hitting time

I Maximum of Brownian motion
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The multivariate normal distribution

I Definition (one of many): A set of random variables X1, . . . ,Xk has
a multivariate normal distribution if, for all real a1, . . . , ak ,
a1X1 + · · ·+ akXk is normally distributed.

I It is completely determined by the expectation vector
µ = (E(X1), . . . ,E(Xk)) and the (k × k) covariance matrix Σ, where
Σij = Cov(Xi ,Xj).

I The joint density function on the vector x = (x1, . . . , xk) is

π(x) =
1

|2πΣ|1/2
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
.

where |2πΣ| is the determinant of the matrix 2πΣ.

I All marginal distributions and all conditional distributions are also
multivariate normal.
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Gaussian processes

I A Gaussian process is a continuous-time stochastic process {Xt}t≥0

with the property that for all n ≥ 1 and 0 ≤ t1 < t2 < · · · < tn,
X1, . . . ,Xn has a multivariate normal distribution.

I Thus, a Gaussian process is completely determined by its mean
function E(Xt) and its covariance function Cov(Xs ,Xt).

I Gaussian processes are extremely versatile as models. One may
generalize for example so that the index set (the t’s) is Rn.
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Brownian motion and Gaussian processes

I Brownian motion is a Gaussian process, as we can show that any
a1Bt1 + · · ·+ akBtk is normally distributed.

I A Gaussian process {Xt}t≥0 is Brownian motion if and only if

1. X0 = 0.
2. E(Xt) = 0 for all t.
3. Cov(Xs ,Xt) = min{s, t} for all s, t.
4. The function t 7→ Xt is a continuous with probability 1.

I The proof is fairly straightforward (see Dobrow).

I One may use the above for example when proving that something is
Brownian motion, if it is easier than using the definition directly.
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Transformations of Brownian motion

I The following transformations of Brownian motion are again
Brownian motion:

I {−Bt}t≥0.
I (Bt+s − Bs)t≥0 for any s ≥ 0.

I

{
1√
a
Bat

}
t≥0

for any a > 0.

I The process {Xt}t≥0 where X0 = 0 and Xt = tB1/t for t > 0.

I The proofs are fairly straightforward.

I The process Xt = x + Bt where Bt is Brownian motion and x is
some real number is called “Brownian motion started at x”.
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First hitting time as a stopping time

I For any fixed t, (Bt+s − Bt)s≥0 is Brownian motion.

I Does this also happen if we start the chain anew from T when T is
random? It depends.

I If T is the largest value less than 1 where BT = 0, is BT+s − BT

Brownian motion?

I No!

I If T is the smallest value where BT = a for some constant a, is
BT+s − BT Brownian motion?

I Yes! The reason is that the event T = t can be determined based
on Br where 0 ≤ r ≤ t.

I Random T ’s that have this property are called stopping times. For
these BT+s − BT is Brownian motion.
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The distribution of the first hitting time

I Given a 6= 0 what is the distribution of the first hitting time
Ta = min {t : Bt = a}?

I It turns out that
1

Ta
∼ Gamma

(
1

2
,
a2

2

)
I We prove this below, using that Ta is a stopping time!
I Assuming below that a > 0, we get

Pr (Bt > a | Ta < t) = Pr (Bt−Ta > 0) = 1
2 .

I We also have

Pr (Bt > a | Ta < t) =
Pr (Bt > a,Ta < t)

Pr (Ta < t)
=

Pr (Bt > a)

Pr (Ta < t)
.

I It follows that

Pr (Ta < t) = 2 Pr (Bt > a) = 2−2 Pr (Bt ≤ a) = 2−2 Pr
(
B1 ≤ at−1/2

)
.

I Taking the derivative w.r.t. t, using the normal density formula, and
cleaning up, we get the density

π(t) =
a√
2π

(
1

t

) 1
2−1

exp

(
−a2

2
· 1

t

)
.
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Maximum of Brownian motion

I Define Mt = max0≤s≤t Bs .

I We may compute for a > 0 (using results from previous page)

Pr (Mt > a) = Pr (Ta < t) = 2 Pr (Bt > a) = Pr (|Bt | > a)

I Thus Mt has the same distribution as |Bt |, the absolute value of Bt .

I Example: What is the probability that M3 > 5?

I Example: Find t such that Pr (Mt ≤ 4) = 0.9.
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