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Overview

Definition. Visualization.
Simulation. Fractal simulation.
Basic computational rules. Examples.

Random walks. Donsker invariance.
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Nowhere differentiable paths.
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Continuous-time continuous state space processes

» Having looked at

> Discrete-time discrete state space processes. (Discrete Markov
chains and Branching processes).

» Discrete-time continuous state space processes (not so much but we
had some MCMC examples).

» Continuous-time discrete state space processes (Poisson processes
and more generally continuous-time Markov chains).

> we now look at continuous-time continuous state space processes.

» We will look at two examples:

> Brownian motion.
> More generally, Gaussian processes.
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Brownian motion

» In a gas, atoms bump into each other and change course. Over
time, how does a single atom move, on average?
> If f(x,t) represents the probability density for the position x of an
atom at time t, Einstein showed that
0 1 02

—f =_-———f .
ot (x.t) 2 Ox? (x. )
» The solution is

1
)“()(7 t) = \/ﬁe /2t.

So x ~ Normal(0, t) at time t.
» It turns out a single atom will move as simulated below. These

paths are sampled from a model called Brownian motion.

T T T T T T T T T T T T T T T T T T T T T T T T
00 02 04 o085 08 10 00 02 04 08 08 10 00 02 04 08 08 10 00 02 04 06 08 10

06 02 02 08
00 05 10 15 20

06 -02 02 08

4/10



Definition of standard Brownian motion

Standard Brownian motion is a continuous-time stochastic process
{B:}+>0 with the following properties:

1. Bp=0.

2. For t > 0, B; ~ Normal(0, t) (so the variance is t, not the standard

deviation).

3. Fors,t >0, Birs — Bs ~ Normal(0, t).

4. For0<g<r<s<t, B, — Bsis independent from B, — B,.

5. The function t +— B; is continuous with probability 1.
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Simulation of Brownian motion

» Given time points t; < tp < --- < t,, we can write
By, =B, + (Bfi - Bti—l) =B, ,+7Z

where Z; ~ Normal(0, t; — tj_1).
» Writing tg = 0, we get for independent 73, ..., Z,,

n
B, =Y Z.
i=1
> A good way to simulate the path t — B; on t € [0, 3] is to set
t; = ai/n, simulate independently
Z; ~ Normal(0, a/n)

and compute
i
B,=>_ Z.
j=1

» Note that we can also write Z; = \/a/nY;, where Y; ~ Normal(0, 1).
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Zooming in on a Brownian motion realization

What if we have a Brownian motion path simulated above, and want
to zoom in one some detail?

The difference Z; between the value at t; and t; 1 can be written as
a sum

Zi=Zio+ Zix
where Zj, Ziy ~ Normal(0, a/2n) independently.

We get the value at midpoint between t; and t;;1 by adding only Zj
to the value at t;.

The simulated path follows the original model, but with a replaced
by a/2.

This shows that the path is a fractal, i.e., invariant under scaling.
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Computing with Brownian motion

> To compute probabilities for Brownian motion, we generally use the
properties in the definition, e.g.,

> Bt+5 — Bs ~ NormaI(O, t)
» For0 < g<r<s<t, By — Bsis independent from B, — Bj.

Example: Show that B; + B; + 2B; ~ Normal(0, 50).
Example: Show that P(B, > 0| B; = 1) = 0.8413.
Example: Show that Cov(Bs, B;) = min{s, t}.

v

v

v
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Connection to random walks

» Consider a symmetric random walk: A discrete time Markov chain
50, 51, 52, ... where

Sn:X1+X2+"'+Xn

where X1, X3, ... are independent random variables with expectation
zero.

> If we assume Var(X;) =1 we get Var(S,) = n.

» Interpolating between the values S, we can make this into a
continuous time process S; (see Dobrow). Var(S5;) ~ t.

» We may scale with an s > 0 to get processes St(s) = Ss:/+/s where
we get limg_ oo Var(St(s)) =t.

> It turns out that the processes St(s) when s — oo are exactly
Brownian motion, no matter what type of X; we start with.

» This is the Donsker's invariance principle.

» We can see this effect in simulations.

» We can use this to find approximate properties of random walks.
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Nowhere differentiable paths

» We have seen in our simulations that paths of Brownian motion are
“jagged"” .

» We have also seen that this quality is unchanged if we change the
scale, i.e., look at smaller intervals.

» Formally note that By, — B; ~ Normal(0, h) so that

Bein — B
% ~ Normal(0,1/h)

» Using these observations as starting points, one may show that the
path (i.e., the function t — B;) of a Brownian motion is nowehere
differentiable, even though it is everywhere continuous.
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Gaussian processes: Definition.

>
» Gaussian processes and Brownian motion.
» First hitting time

>

Maximum of Brownian motion
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The multivariate normal distribution

» Definition (one of many): A set of random variables X, ..., Xx has
a multivariate normal distribution if, for all real a1, ..., ak,
a1 Xy + -+ - + ak X is normally distributed.

> It is completely determined by the expectation vector
w=(E(X1),...,E(Xk)) and the (k x k) covariance matrix X, where
Z,‘j = COV(X;,)(j).

» The joint density function on the vector x = (xg,...,Xxx) is

m(x) = |277;|1/2 exp <—;(X — )T (x - u)) .

where |27X| is the determinant of the matrix 27 X.

» All marginal distributions and all conditional distributions are also
multivariate normal.
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Gaussian processes

» A Gaussian process is a continuous-time stochastic process {Xt}tZO
with the property that foralln>1and 0< t; < tp < -+ < tp,
X1,...,X, has a multivariate normal distribution.

» Thus, a Gaussian process is completely determined by its mean
function E(X;) and its covariance function Cov(X;, X;).

» Gaussian processes are extremely versatile as models. One may
generalize for example so that the index set (the t's) is R".
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Brownian motion and Gaussian processes

» Brownian motion is a Gaussian process, as we can show that any
aiB:, + -+ axB;, is normally distributed.
A Gaussian process {X;}+>0 is Brownian motion if and only if

1. Xo =0.

2. E(X:) =0 for all ¢.

3. Cov(Xs, Xt) = min{s, t} for all s, t.

4. The function t — X; is a continuous with probability 1.

v

v

The proof is fairly straightforward (see Dobrow).

v

One may use the above for example when proving that something is
Brownian motion, if it is easier than using the definition directly.
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Transformations of Brownian motion

> The following transformations of Brownian motion are again
Brownian motion:
> {—B:}i>o.
> (Biys — Bs)i>o for any s > 0.
> {%Bat}tZO for any a > 0.
> The process {X:}:>0 where Xo = 0 and X; = tB; for t > 0.

» The proofs are fairly straightforward.

» The process X; = x + B; where B; is Brownian motion and x is
some real number is called “Brownian motion started at x".
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First hitting time as a stopping time

» For any fixed t, (Biys — Bt),~( is Brownian motion.

» Does this also happen if we start the chain anew from T when T is
random? It depends.

» If T is the largest value less than 1 where Br =0, is Brys — Bt
Brownian motion?

» No!

» If T is the smallest value where Br = a for some constant a, is
B1.+s — Bt Brownian motion?

» Yes! The reason is that the event T = t can be determined based
on B, where 0 < r <'t.

» Random T's that have this property are called stopping times. For
these Br,s — Bt is Brownian motion.
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The distribution of the first hitting time

Given a # 0 what is the distribution of the first hitting time
T,=min{t: B; = a}?

It turns out that
1 G 1
— ~ Gamma | =, —
T, 2’2

We prove this below, using that T, is a stopping time!
Assuming below that a > 0, we get

Pr(B:>al| T,<t)=Pr(Be_7, >0)=1.

We also have

Pr(B:>a,T,<t) Pr(B:>a)
Pr(B T,<t)= = .
r(Be>alTo<t) Pr(T, <t) Pr(T, <t)

It follows that
Pr(T, < t)=2Pr(B; >a)=2-2Pr(B, < a) = 2-2Pr (Bl < at*1/2) .

Taking the derivative w.r.t. t, using the normal density formula, and
cleaning up, we get the density

- () (2
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Maximum of Brownian motion

v

Define M; = maxo<s<¢ Bs.

v

We may compute for a > 0 (using results from previous page)

Pr(M; > a)=Pr(T, <t)=2Pr(B; > a) =Pr(|B| > a)

v

Thus M; has the same distribution as |B;|, the absolute value of B;.
Example: What is the probability that M3 > 57
Example: Find t such that Pr(M, < 4) = 0.9.

v

v
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