MVE550 2020 Lecture 12 Dobrow Sections 8.1, 8.2 Introduction to Brownian motion

Petter Mostad

Chalmers University

December 2, 2020

- Definition. Visualization.
- Simulation. Fractal simulation.
- Basic computational rules. Examples.
- Random walks. Donsker invariance.
- Nowhere differentiable paths.

Having looked at

- Discrete-time discrete state space processes. (Discrete Markov chains and Branching processes).
- Discrete-time continuous state space processes (not so much but we had some MCMC examples).
- Continuous-time discrete state space processes (Poisson processes and more generally continuous-time Markov chains).
- we now look at continuous-time continuous state space processes.
- ▶ We will look at two examples:
 - Brownian motion.
 - More generally, Gaussian processes.

Brownian motion

- In a gas, atoms bump into each other and change course. Over time, how does a single atom move, on average?
- ► If f(x, t) represents the probability density for the position x of an atom at time t, Einstein showed that

$$\frac{\partial}{\partial t}f(x,t)=\frac{1}{2}\frac{\partial^2}{\partial x^2}f(x,t).$$

The solution is

$$f(x,t)=\frac{1}{\sqrt{2\pi t}}e^{-x^2/2t}.$$

So $x \sim \text{Normal}(0, t)$ at time t.

It turns out a single atom will move as simulated below. These paths are sampled from a model called Brownian motion.



Standard Brownian motion is a continuous-time stochastic process $\{B_t\}_{t\geq 0}$ with the following properties:

1.
$$B_0 = 0$$
.

- 2. For t > 0, $B_t \sim \text{Normal}(0, t)$ (so the *variance* is t, not the standard deviation).
- 3. For s, t > 0, $B_{t+s} B_s \sim \text{Normal}(0, t)$.
- 4. For $0 \le q < r \le s < t$, $B_t B_s$ is independent from $B_r B_q$.
- 5. The function $t \mapsto B_t$ is continuous with probability 1.

Simulation of Brownian motion

• Given time points $t_1 < t_2 < \cdots < t_n$, we can write

$$B_{t_i} = B_{t_{i-1}} + (B_{t_i} - B_{t_{i-1}}) = B_{t_{i-1}} + Z_i$$

where $Z_i \sim \text{Normal}(0, t_i - t_{i-1})$.

• Writing $t_0 = 0$, we get for independent Z_1, \ldots, Z_n ,

$$B_{t_n}=\sum_{i=1}^n Z_i.$$

▶ A good way to simulate the path $t \mapsto B_t$ on $t \in [0, a]$ is to set $t_i = ai/n$, simulate independently

$$Z_i \sim \text{Normal}(0, a/n)$$

and compute

$$B_{t_i}=\sum_{j=1}^i Z_j.$$

• Note that we can also write $Z_i = \sqrt{a/n}Y_i$, where $Y_i \sim \text{Normal}(0, 1)$.

Zooming in on a Brownian motion realization

- What if we have a Brownian motion path simulated above, and want to zoom in one some detail?
- ► The difference Z_i between the value at t_i and t_{i+1} can be written as a sum

$$Z_i = Z_{i0} + Z_{i1}$$

where $Z_{i0}, Z_{i1} \sim \text{Normal}(0, a/2n)$ independently.

- ▶ We get the value at midpoint between t_i and t_{i+1} by adding only Z_{i0} to the value at t_i.
- ► The simulated path follows the original model, but with a replaced by a/2.
- > This shows that the path is a fractal, i.e., invariant under scaling.

- To compute probabilities for Brownian motion, we generally use the properties in the definition, e.g.,
 - $B_{t+s} B_s \sim \text{Normal}(0, t)$
 - ▶ For $0 \le q < r \le s < t$, $B_t B_s$ is independent from $B_r B_q$.
- Example: Show that $B_1 + B_3 + 2B_7 \sim \text{Normal}(0, 50)$.
- Example: Show that $P(B_2 > 0 | B_1 = 1) = 0.8413$.
- Example: Show that $Cov(B_s, B_t) = min\{s, t\}$.

Connection to random walks

► Consider a symmetric random walk: A discrete time Markov chain S₀, S₁, S₂,... where

$$S_n = X_1 + X_2 + \cdots + X_n$$

where X_1, X_2, \ldots are independent random variables with expectation zero.

- If we assume $Var(X_i) = 1$ we get $Var(S_n) = n$.
- Interpolating between the values S_n we can make this into a continuous time process S_t (see Dobrow). Var(S_t) ≈ t.
- We may scale with an s > 0 to get processes S^(s)_t = S_{st}/√s where we get lim_{s→∞} Var(S^(s)_t) = t.
- It turns out that the processes S^(s)_t when s → ∞ are exactly Brownian motion, no matter what type of X_i we start with.
- This is the Donsker's invariance principle.
- We can see this effect in simulations.
- ▶ We can use this to find approximate properties of random walks.

- We have seen in our simulations that paths of Brownian motion are "jagged".
- We have also seen that this quality is unchanged if we change the scale, i.e., look at smaller intervals.
- Formally note that $B_{t+h} B_t \sim \text{Normal}(0, h)$ so that

$$\frac{B_{t+h}-B_t}{h} \sim \mathsf{Normal}(0,1/h)$$

► Using these observations as starting points, one may show that the path (i.e., the function t → B_t) of a Brownian motion is nowehere differentiable, even though it is everywhere continuous.

MVE550 2020 Lecture 12.2 Dobrow 8.3, 8.4 Gaussian processes. Properties of Brownian motion.

Petter Mostad

Chalmers University

December 4, 2020

- Gaussian processes: Definition.
- Gaussian processes and Brownian motion.
- First hitting time
- Maximum of Brownian motion

The multivariate normal distribution

- ▶ Definition (one of many): A set of random variables X₁,..., X_k has a multivariate normal distribution if, for all real a₁,..., a_k, a₁X₁ + ··· + a_kX_k is normally distributed.
- It is completely determined by the expectation vector $\mu = (E(X_1), \dots, E(X_k))$ and the $(k \times k)$ covariance matrix Σ , where $\Sigma_{ij} = Cov(X_i, X_j)$.
- The joint density function on the vector $x = (x_1, \ldots, x_k)$ is

$$\pi(x) = \frac{1}{|2\pi\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)\right).$$

where $|2\pi\Sigma|$ is the determinant of the matrix $2\pi\Sigma$.

 All marginal distributions and all conditional distributions are also multivariate normal.

- ▶ A Gaussian process is a continuous-time stochastic process $\{X_t\}_{t\geq 0}$ with the property that for all $n \geq 1$ and $0 \leq t_1 < t_2 < \cdots < t_n$, X_1, \ldots, X_n has a multivariate normal distribution.
- Thus, a Gaussian process is completely determined by its mean function E(X_t) and its covariance function Cov(X_s, X_t).
- Gaussian processes are extremely versatile as models. One may generalize for example so that the index set (the t's) is ℝⁿ.

- ▶ Brownian motion is a Gaussian process, as we can show that any $a_1B_{t_1} + \cdots + a_kB_{t_k}$ is normally distributed.
- ▶ A Gaussian process $\{X_t\}_{t \ge 0}$ is Brownian motion if and only if

1.
$$X_0 = 0$$
.

2.
$$E(X_t) = 0$$
 for all *t*.

- 3. $\operatorname{Cov}(X_s, X_t) = \min\{s, t\}$ for all s, t.
- 4. The function $t \mapsto X_t$ is a continuous with probability 1.
- The proof is fairly straightforward (see Dobrow).
- One may use the above for example when proving that something is Brownian motion, if it is easier than using the definition directly.

- The following transformations of Brownian motion are again Brownian motion:
 - $\blacktriangleright \{-B_t\}_{t\geq 0}.$

•
$$(B_{t+s} - B_s)_{t\geq 0}$$
 for any $s \geq 0$.

•
$$\left\{\frac{1}{\sqrt{a}}B_{at}\right\}_{t\geq 0}$$
 for any $a>0$.

- The process $\{X_t\}_{t\geq 0}$ where $X_0 = 0$ and $X_t = tB_{1/t}$ for t > 0.
- The proofs are fairly straightforward.
- ► The process X_t = x + B_t where B_t is Brownian motion and x is some real number is called "Brownian motion started at x".

- ▶ For any fixed t, $(B_{t+s} B_t)_{s \ge 0}$ is Brownian motion.
- ► Does this also happen if we start the chain anew from *T* when *T* is random? It depends.
- ▶ If *T* is the largest value less than 1 where $B_T = 0$, is $B_{T+s} B_T$ Brownian motion?
- No!
- If T is the smallest value where B_T = a for some constant a, is B_{T+s} − B_T Brownian motion?
- Yes! The reason is that the event T = t can be determined based on B_r where 0 ≤ r ≤ t.
- ► Random T's that have this property are called *stopping times*. For these B_{T+s} B_T is Brownian motion.

The distribution of the first hitting time

- Given $a \neq 0$ what is the distribution of the first hitting time $T_a = \min \{t : B_t = a\}$?
- It turns out that

$$rac{1}{T_a} \sim \mathsf{Gamma}\left(rac{1}{2},rac{a^2}{2}
ight)$$

- ▶ We prove this below, using that *T_a* is a stopping time!
- Assuming below that a > 0, we get $\Pr(B_t > a \mid T_a < t) = \Pr(B_{t-T_a} > 0) = \frac{1}{2}$.
- We also have

$$\Pr\left(B_t > a \mid T_a < t\right) = \frac{\Pr\left(B_t > a, T_a < t\right)}{\Pr\left(T_a < t\right)} = \frac{\Pr\left(B_t > a\right)}{\Pr\left(T_a < t\right)}$$

It follows that

$$\Pr(T_a < t) = 2\Pr(B_t > a) = 2 - 2\Pr(B_t \le a) = 2 - 2\Pr(B_1 \le at^{-1/2})$$

 Taking the derivative w.r.t. t, using the normal density formula, and cleaning up, we get the density

$$\pi(t) = \frac{a}{\sqrt{2\pi}} \left(\frac{1}{t}\right)^{\frac{1}{2}-1} \exp\left(-\frac{a^2}{2} \cdot \frac{1}{t}\right).$$

- Define $M_t = \max_{0 \le s \le t} B_s$.
- We may compute for a > 0 (using results from previous page)

$$\Pr\left(M_t > a\right) = \Pr\left(T_a < t\right) = 2\Pr\left(B_t > a\right) = \Pr\left(|B_t| > a\right)$$

- Thus M_t has the same distribution as $|B_t|$, the absolute value of B_t .
- Example: What is the probability that $M_3 > 5$?
- Example: Find t such that $Pr(M_t \le 4) = 0.9$.