MVE550 2020 Lecture 13.1
 Dobrow Sections 8.4, 8.5
 Zeros of Brownian motion.
 Variants of Brownian motion

Petter Mostad

Chalmers University

December 5, 2020

Review / overview

- Zeros of Brownian motion.
- Brownian bridge.
- Brownian motion with drift.
- Geometric Brownian motion.

Zeros of Brownian motion

- Let L be the last zero in $(0,1)$ of Brownian motion. (In other words, $L=\max \left\{t: 0<t<1, B_{t}=0\right\}$. Then

$$
L \sim \operatorname{Beta}\left(\frac{1}{2}, \frac{1}{2}\right)
$$

- Outline of proof on next page.
- Consequence: Let L_{t} be the last zero in $(0, t)$. Then

$$
L_{t} / t \sim \operatorname{Beta}\left(\frac{1}{2}, \frac{1}{2}\right) .
$$

- Note: The probability that Brownian motion has at least one zero in (r, t) for $0 \leq r<t$ is $1-\operatorname{Pr}\left(L_{t}<r\right)$.
- Note: The cumulative distribution for the Beta density can be computed with the arcsin function:

$$
\operatorname{Pr}\left(L_{t}<r\right)=\int_{0}^{r / t} \operatorname{Beta}\left(s ; \frac{1}{2}, \frac{1}{2}\right) d s=\frac{2}{\pi} \arcsin \left(\sqrt{\frac{r}{t}}\right)
$$

Outline of proof

$$
\begin{aligned}
\operatorname{Pr}(L>s) & =\int_{-\infty}^{\infty} \operatorname{Pr}\left(L>s \mid B_{s}=t\right) \operatorname{Normal}(t ; 0, s) d t \\
& =\int_{-\infty}^{\infty} \operatorname{Pr}\left(M_{1-s}>t\right) \operatorname{Normal}(t ; 0, s) d t \\
& =\int_{-\infty}^{\infty} 2 \operatorname{Pr}\left(B_{1-s}>t\right) \operatorname{Normal}(t ; 0, s) d t \\
& =2 \int_{-\infty}^{\infty} \int_{t}^{\infty} \operatorname{Normal}(r ; 0,1-s) \operatorname{Normal}(t ; 0, s) d r d t \\
& =\cdots \\
& =\frac{1}{\pi} \int_{s}^{1} \frac{1}{\sqrt{x(1-x)}} d x \\
& =\int_{s}^{1} \operatorname{Beta}\left(x ; \frac{1}{2}, \frac{1}{2}\right) d x
\end{aligned}
$$

Brownian bridge

- Define a Gaussian process X_{t} by conditioning Brownian motion B_{t} on $B_{1}=0$. Then X_{t} is a Brownian bridge.
- If $0<s<t<1$ then $\left(B_{s}, B_{t}, B_{1}\right)$ is multivariate normal with

$$
\mathrm{E}\left(\left(B_{s}, B_{t}, B_{1}\right)\right)=(0,0,0), \quad \operatorname{Var}\left(\left(B_{s}, B_{t}, B_{1}\right)\right)=\Sigma=\left[\begin{array}{lll}
s & s & s \\
s & t & t \\
s & t & 1
\end{array}\right] .
$$

Conditioning on $B_{1}=0$ and using properties of the multivariate normal (or see Dobrow) we get

$$
\operatorname{Cov}\left(X_{s}, X_{t}\right)=s-s t
$$

- Define another Gaussian process with $Y_{t}=B_{t}-t B_{1}$. Then we see that $\mathrm{E}\left(Y_{t}\right)=0$ and (when $0<s<t<1$)

$$
\operatorname{Cov}\left(Y_{s}, Y_{t}\right)=s-s t
$$

It follows that this is identical to the Brownian bridge defined above.

- Example: Estimate by simulation: If a Brownian motion fulfills $B_{1}=0$, what is the probability that it has values below -1 ?

Brownian motion with a drift

- For real μ and $\sigma>0$ define the Gaussian process X_{t} as

$$
X_{t}=\mu t+\sigma B_{t}
$$

This is Brownian motion with a drift, and is often a more useful model than standard Brownian motion.

- Examples:
- The amount won or lost in a game of chance that is not fair (approximating discrete winnings / losses with continuous changes).
- The score difference between two competing sports teams (approximating this difference with a continuous function).
- This is a Gaussian process with continuous paths and stationary and independent increments.
- Example: Computing the chance of winning team game based on intermdiate score.
- If a Brownian motion with drift is observed at points y_{1}, \ldots, y_{n} and μ and σ are not fixed, there are priors so that we can do conjugate analysis, and analytically get a posterior process. However this posterior process is not a Gaussian process.

Geometric Brownian motion

- The stochastic process

$$
G_{t}=G_{0} e^{\mu t+\sigma B_{t}}
$$

where $G_{0}>0$ is called geometric Brownian motion with drift parameter μ and variance parameter σ^{2}.

- $\log \left(G_{t}\right)$ is a Gaussian process with expectation $\log \left(G_{0}\right)+\mu t$ and variance $t \sigma^{2}$.
- Show that
- $\mathrm{E}\left(G_{t}\right)=G_{0} e^{t\left(\mu+\sigma^{2} / 2\right)}$
- $\operatorname{Var}\left(G_{t}\right)=G_{0}^{2} e^{2 t\left(\mu+\sigma^{2} / 2\right)}\left(e^{t \sigma^{2}}-1\right)$
- Natural model for things that develop by multiplication of random independent factors, rather than addition of random independent increments. Example: Stock prices.

MVE550 2020 Lecture 13.2
 Dobrow section 8.5, 8.6
 Modelling stocks and options. Martingales. Black Scholes

Petter Mostad

Chalmers University
December 5, 2020

Modelling stock price with geometric Brownian motion

- To model the price of a stock, it is reasonable to
- use a continuous-time stochastic model.
- consider the factor with which it changes, not the differences in prices.
- consider normal distributions for such factors (?)
- use a parameter for the trend of the price, and one for the variability of the price.
- make a Markov assumption(??)
- This leads to using a geometric Brownian motion as model

$$
G_{t}=G_{0} e^{\mu t+\sigma B_{t}}
$$

In this context σ is called the volatility of the stock.

- Example: A stock price is modelled with $G_{0}=67.3, \mu=0.08$, $\sigma=0.3$. What is the probability that the price is above 100 after 3 years?

Discounting future values

- When making investments, there is always a range of choices, some of which are sometimes called "risk free". Such investments may pay a fixed interest.
- When interests are compounded frequently, a reasonable model is that an investment of G_{0} has a value $G_{0} e^{r t}$ after time t, where r is the "risk free" investment rate of return.
- A common way to take this alternative into account is to instead "discount" all other investments with the factor $e^{-r t}$.
- For example, the value of a stock may be modelled with

$$
e^{-r t} G_{t}=e^{-r t} G_{0} e^{\mu t+\sigma B_{t}}=G_{0} e^{(\mu-r) t+\sigma B_{t}}
$$

So discounting corresponds to adjusting the trend parameter from μ to $\mu-r$.

Stock options

- A (European) stock option is a right (but not obligation) to buy a stock at a given time t in the future for a given price K.
- How much can you expect to earn from a stock option at that future time?
- We get that (see next page)
$\mathrm{E}\left(\max \left(G_{t}-K, 0\right)\right)=G_{0} e^{t\left(\mu+\sigma^{2} / 2\right)} \operatorname{Pr}\left(B_{1}>\frac{\beta-\sigma t}{\sqrt{t}}\right)-K \operatorname{Pr}\left(B_{1}>\frac{\beta}{\sqrt{t}}\right)$
where $\beta=\left(\log \left(K / G_{0}\right)-\mu t\right) / \sigma$.
- Example: A stock price is modelled with $G_{0}=67.3, \mu=0.08$, $\sigma=0.3$. What is the expected payoff from an option to buy the stock at 100 in 3 years?

Proof

- Prove the algebraic identity

$$
e^{\sigma x} \operatorname{Normal}(x ; 0, t)=e^{\sigma^{2} t / 2} \operatorname{Normal}(x, \sigma t, t)
$$

- Then, defining $\beta=\left(\log \left(K / G_{0}\right)-\mu t\right) / \sigma$, we get

$$
\begin{aligned}
& \mathrm{E}\left(\max \left(G_{t}-K, 0\right)\right)=\mathrm{E}\left(\max \left(G_{0} \mathrm{e}^{\mu+\sigma B_{t}}-K, 0\right)\right) \\
= & \int_{-\infty}^{\infty} \max \left(G_{0} e^{\mu t+\sigma x}-K, 0\right) \operatorname{Normal}(x ; 0, t) d x \\
= & \int_{\beta}^{\infty}\left(G_{0} e^{\mu t+\sigma x}-K\right) \operatorname{Normal}(x ; 0, t) d x \\
= & G_{0} e^{\mu t} \int_{\beta}^{\infty} e^{\sigma x} \operatorname{Normal}(x ; 0, t) d x-K \int_{\beta}^{\infty} \operatorname{Normal}(x ; 0, t) d x \\
= & G_{0} e^{t\left(\mu+\sigma^{2} / 2\right)} \int_{\beta}^{\infty} \operatorname{Normal}(x ; \sigma t, t) d x-K \int_{\beta}^{\infty} \operatorname{Normal}(x ; 0, t) d x \\
= & G_{0} e^{t\left(\mu+\sigma^{2} / 2\right)} \operatorname{Pr}\left(B_{1}>\frac{\beta-\sigma t}{\sqrt{t}}\right)-K \operatorname{Pr}\left(B_{1}>\frac{\beta}{\sqrt{t}}\right)
\end{aligned}
$$

Martingales

- A stochastic process $\left(Y_{t}\right)_{t \geq 0}$ is a martingale if for $t \geq 0$
- $\mathrm{E}\left(Y_{t} \mid Y_{r}, 0 \leq r \leq s\right)=Y_{s}$ for $0 \leq s \leq t$.
- $\mathrm{E}\left(\left|Y_{t}\right|\right)<\infty$.
- Brownian motion is a martingale.
- $\left(Y_{t}\right)_{t \geq 0}$ is a martingale with respec to $\left(X_{t}\right)_{t \geq 0}$ if for all $t \geq 0$
- $\mathrm{E}\left(Y_{t} \mid X_{r}, 0 \leq r \leq s\right)=Y_{s}$ for $0 \leq s \leq t$.
- $\mathrm{E}\left(\left|Y_{t}\right|\right)<\infty$.
- Example: Define $Y_{t}=B_{t}^{2}-t$ for $t \geq 0$. Then Y_{t} is a martingale with respect to Brownian motion.

Geometric Brownian motion can be a martingale

Let G_{t} be Geometric Brownian motion. We get

$$
\begin{aligned}
& \mathrm{E}\left(G_{t} \mid B_{r}, 0 \leq r \leq s\right) \\
= & \mathrm{E}\left(G_{0} e^{\mu t+\sigma B_{t}} \mid B_{r}, 0 \leq r \leq s\right) \\
= & \mathrm{E}\left(G_{0} e^{\mu(t-s)+\sigma\left(B_{t}-B_{s}\right)} e^{\mu s+\sigma B_{s}} \mid B_{r}, 0 \leq r \leq s\right) \\
= & \mathrm{E}\left(G_{t-s}\right) e^{\mu s+\sigma B_{s}} \\
= & G_{0} e^{t\left(\mu+\sigma^{2} / 2\right)} e^{\mu s+\sigma B_{s}} \\
= & G_{s} e^{t\left(\mu+\sigma^{2} / 2\right)}
\end{aligned}
$$

- We see that G_{t} is a martingale with respect to B_{t} if and only if $\mu+\sigma^{2} / 2=0$.

The Black-Scholes formula for option pricing

- It is not easy to get a reliable estimate for μ in the model of a stock, even if one can get an estimate of σ, the volatility.
- A possibility is to assume that the discounted value of the stock is a martingale relative to Brownian motion: So on average it is not better or worse to invest in the stock than in a "risk free" investment.
- This means that $\mu-r+\sigma^{2} / 2=0$, i.e., $\mu=r-\sigma^{2} / 2$.
- Plugging this into the formula for the value of a stock option and multiplying with $e^{-r t}$ we get
$e^{-r t} \mathrm{E}\left(\max \left(G_{t}-K, 0\right)\right)=G_{0} \operatorname{Pr}\left(B_{1}>\frac{\beta-\sigma t}{\sqrt{t}}\right)-e^{-r t} K \operatorname{Pr}\left(B_{1}>\frac{\beta}{\sqrt{t}}\right)$
where $\beta=\left(\log \left(K / G_{0}\right)-\left(r-\sigma^{2} / 2\right) t\right) / \sigma$.
- This is the Black-Scholes formula for option pricing.
- With $r=0.02, G_{0}=67.3, \sigma=0.3, t=3$, and $K=70$, we get the discounted stock option price 3.39.

