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Foreword

The course “MVE550 Stochastic processes and Bayesian inference” is mostly
about stochastic processes. When introducing the course in 2018, we wanted
it to also have an element of inference, i.e., theory about how one can find
stochastic process models appropriate for given data. Further, we wanted this
inference to use a Bayesian framework. However, we could not find existing
teaching material that perfectly fitted our plans. The solution was to use
[Dob16] as the main textbook, but to supplement it with some additional
material, contained in this compendium. Further information about Bayesian
inference for stochastic inference can be found in for example [IRW12].

For the 2020 version of the course, each chapter will be successively revised,
and will appear on Canvas before the corresponding lecture.
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CHAPTER 1

Basics of Bayesian inference

This course is mostly about stochastic processes. Such processes can function
as models for many real phenomena where some uncertainty is involved. In the
simplest cases, we can set up a precise stochastic model based only on reasonable
assumptions, and then go on to make predictions from these models. For
example, when throwing a dice, it is reasonable to assume that the probability
of obtaining each of the outcomes 1 through 6 is 1/6. From this we can compute
such things as the probability of obtaining a total of 9 in the first three throws, or
the expected wait until we get 3 consecutive sixes. Similarly, using a deck of 52
playing cards, it is reasonable to assume that each draw from it is independent,
and we can compute such things as the probability of being dealt a straight
flush.

However, for most potential applications of stochastic processes, and of
mathematical statistics in general, the situation is more complex. We cannot
make predictions of future observations based only on reasonable assumptions,
we must also use earlier observations, data, to find a reasonable stochastic model.
Then we can make predictions from this model. For example, if we want to
predict the range of an electric car on full batteries, we could use data for the
ranges of similar cars. Using this data, we would build a model for the range of
the car in question, and we could then use the model to make predictions. A
simple model in this situation could be a normal distribution, with parameters
µ and σ, representing the expectation and standard deviation of the range.

Building a stochastic model using data is called inference. There are two
quite common ways of thinking, or paradigms. One is the classical or frequentist
approach. In this approach, we start with building a stochastic model which
can be used for making the predictions we want, defining the model in terms
of some parameters which are regarded as unknown. We then use the data to
estimate these parameters. Finally, plugging in these estimates in the model,
we can use it to make the predictions we want.

The alternative approach is Bayesian inference. In this approach, we build
a stochastic model using only general reasonable assumptions, but we include in
the model random variables representing both the data we have observed and
the future observations we want to predict. We then compute the conditional
distribution for the future observations given that the variables representing
data are fixed to the observed values. This conditional distribution is used
for prediction. So we start with a stochastic model, we update it using the
observations from the data (in a way we learn from the data), and then we use
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1. Basics of Bayesian inference

the updated model for prediction.
An example may make this clearer. Consider repeated throws of a six-sided

dice. If you know that the dice is fair, all sequences of equal length of outcomes
will have the same probability: Observing 1,1,1 will have the same probability
as observing 2,4,1, namely (1/6)3 = 0.00463. But what if you suspect the dice
is not fair? In practice, you would throw the dice a number of times, and if one
outcome appears more often than other outcomes, you might start to suspect
that the dice is loaded in favour of this outcome. This would increase your
belief that this outcome would appear again, in your next throw. So if you have
thrown 1,2,3,1,1,4,1,2,1,1,5, continuing this sequence with a 1 would seem more
probable than continuing it with a 6. Even a short sequence like 1,1,1 would be
slightly more probable than a sequence like 2,4,1. In other words, if you suspect
a loaded dice, the outcomes are no longer independent.

Using a Bayesian approach, one could set up a model for how the dice
could be loaded, which would yield predicted probabilities for any sequence of
observed outcomes. Let p1, p2, . . . , p6 denote the probabilities of observing six
sequences that are identical except for the last throw, which would be 1, 2, . . . , 6,
respectively. If you have observed the throws these sequences have in common,
the conditional probabilities for the next throw to be either of 1, 2, . . . , 6 given
the observed outcomes would be p1/(p1 + · · · + p6), . . . , p6/(p1 + · · · + p6),
respectively.

1.1 Tossing a coin

Let us explore the idea above in greater detail in a slightly simpler setting: A
loaded coin has probability 0.7 for either H (heads) or T (tails), but you do not
know which. In fact, you think there is an equal probability that it is loaded in
favour of heads or tails. The probability for observing k heads in n throws is
now

Pr (k) = 0.5 · Binomial(k;n, 0.7) + 0.5 · Binomial(k;n, 0.3) (1.1)

Here we write, for example, Binomial(k;n, 0.7) for the value at k of the Binomial
probability mass function with parmeters n and 0.7. We obtain the formula
above by conditioning on whether the coin is loaded in favour of either H
or T : The probability of each of these possibilities is 0.5, and, given each
choice, the probabilities of k heads in n throws is either Binomial(k;n, 0.7) or
Binomial(k;n, 0.3), respectively.

Figure 1.1 illustrates a particular sequence of observations of heads
(represented as crosses at 1) and tails (represented as crosses at 0). Together
with each observation, we also plot the probability, before this observation is
made but given all the previous observations, of observing heads. Before any
observations are made, the probabilities of observing either heads of tails is 0.5,
because of the symmetry of the situation. Once we start making observations,
the prediction for the next observation will jump up and down a bit, depending
on those observations. However, after a while, it settles close to 0.3: we then
have such a substantial overweight of tails in the data that it seems reasonable
to believe that the coin is loaded towards tails. In a way, we have learned from
the data that the coin is loaded this way.

The probabilities displayed in Figure 1.1 may be computed as follows: The
conditional probability of heads after observing a specific sequence of heads

2



1.1. Tossing a coin
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Figure 1.1: The probability of heads at each point in a sequence of observations,
conditioning on the previous observations of heads and tails. The prior used is
θ = 0.7x · 0.31−x where x ∼ Bernoulli(0.5).

and tails is equal to the probability of observing this sequence, followed by
observing heads, divided by the probability of observing the sequence. Thus, if
the sequence contains yH heads and yT tails, the probability is given by

Pr (heads | sequence) = 0.5 · 0.7yH+10.3yT + 0.5 · 0.3yH+10.7yT
0.5 · 0.7yH0.3yT + 0.5 · 0.3yH0.7yT (1.2)

Here, we have used that the probability of observing a specific sequence with yH
heads and yT tails is θyH (1− θ)yT , where θ is the probability of observing heads
each time. So we have implicitly used the order of the observations of heads
and tails as part of the data. However, we get the same results by assuming
that the data only contains the counts yH and yT , see Exercise 4 of Section 1.7.

To sum up, Bayesian inference is done with the following steps:

1. Based on reasonable assumptions, create a stochastic model containing
random variables representing observed data and observations you would
like to predict.

2. Use for prediction the conditional distribution of prediction variables given
that the the data variables are fixed to their observed values.

A frequentist approach in the situation above might focus on estimating
whether the coin is loaded towards heads or towards tails. With n low, one might
conclude that there is not enough information to reliably make an estimate,
and continue to predict heads in the next throw with probability 0.5. Then, as
n increases, one would reach a point where one would conclude that one could
reliably estimate the direction of the bias. From that point on, the predicted
probability for heads would be exactly 0.7 or 0.3, depending on the estimate.

3



1. Basics of Bayesian inference

Although the Bayesian approach above is not formulated in terms of
estimating the direction of the bias, we may reformulate it as stepwise learning
about a stochastic variable θ representing the true probability of heads. Thus
in our current setup θ has the two possible values 0.7 and 0.3, with some
probability for each. We may reformulate the model as encompassing two
dependent random variables, θ and k (the count of heads after n trials):

x ∼ Bernoulli(0.5)
θ = 0.7x · 0.31−x

k | θ ∼ Binomial(n, θ).

Here, we write Bernoulli(0.5) for a random variable which has value 1 with
probability 0.5 and otherwise value 0. We also write Binomial(n, θ) for a random
variable which is Binomially distributed with parameters n and θ. We write
x ∼ Bernoulli(0.5) and k | θ ∼ Binomial(n, θ) to indicate that the random
variables x and k | θ have the given distributions.

Now, let y be 1 or 0 depending on whether the n+ 1’st throw is heads or
not. Using standard probability theory formulas, the conditional distribution
of y given the count k of heads in the n first throws can be written

Pr (y | k) =
∑

θ=0.3,0.7
Pr (y, θ | k) =

∑
θ=0.3,0.7

Pr (y | θ, k) Pr (θ | k)

=
∑

θ=0.3,0.7
Pr (y | θ) Pr (θ | k) . (1.3)

The key step above is that we can write Pr (y | θ, k) = Pr (y | θ). This is
because once we know the value of θ, the probability that y is 1 does not
depend on k: In fact, the probability that y = 1 is exactly θ. According to
the computation above, we can compute the probability Pr (y = 1 | k) by first
computing the two probabilities Pr (θ = 0.3 | k) and Pr (θ = 0.7 | k), and then
multiplying these as weights with the probabilities Pr (y = 1 | θ = 0.3) = 0.3
and Pr (y = 1 | θ = 0.7) = 0.7.

At this point, we introduce a generic notation for probability mass functions
which may also be used for probability density functions: For example,
we write π(k) instead of Pr (k) and π(y | θ, k) instead of Pr (y | θ, k). If
z ∼ Exponential(λ) so that z is a continuous random variable with an
Exponential distribution with parameter λ, we also write π(z) = λ exp(−λz) for
the density function. This generic notation is helpful, as so many probability
computations are the same whether the underlying functions are probability
mass functions or probaility density functions.

The distribution π(θ | k) = Pr (θ | k) is called the posterior for θ. The
unconditional distribution for θ, in which θ has probability 0.5 for both 0.7 and
0.3 in our case, is called the prior. We may compute the posterior using Bayes
formula:

π(θ | k) = π(k | θ)π(θ)
π(k) = π(k | θ)π(θ)∑

θ π(k | θ)π(θ)
That Bayes formula appears in our approach is the reason why we call it
Bayesian inference. In our case, we get

π(θ | k) = π(k | θ)π(θ)∑
θ π(k | θ)π(θ)

4



1.2. The Beta and Binomial distributions

= Binomial(k;n, θ) · 0.5
Binomial(k;n, 0.3) · 0.5 + Binomial(k;n, 0.7) · 0.5

=
(
n
k

)
θk(1− θ)n−k(

n
k

)
0.3k0.7n−k +

(
n
k

)
0.7k0.3n−k

= θk(1− θ)n−k

0.3k0.7n−k + 0.7k0.3n−k

Using Equation 1.3 we now get

π(y | k) = 0.3 0.3k0.7n−k

0.3k0.7n−k + 0.7k0.3n−k + 0.7 0.7k0.3n−k

0.3k0.7n−k + 0.7k0.3n−k

Comparing with Equation 1.2, we see that we have arrived at exactly the same
result as we got there.

1.2 The Beta and Binomial distributions

Above, we made the rather curious assumption that θ was either equal to
0.3 or to 0.7. A more realistic assumption is that θ is just some real number
between 0 and 1. Specifically, let us now assume that θ has as prior the uniform
distribution on the interval [0, 1], so that π(θ) = 1.

Assume further that k out of n observations are heads. Even if θ is now a
continuous variable instead of a discrete one, we can still compute the posterior
using Bayes formula, we just need to use an integral instead of a sum:

π(θ | k) = π(k | θ)π(θ)
π(k) (1.4)

= π(k | θ)π(θ)∫
θ
π(k, θ) dθ

= π(k | θ)π(θ)∫
θ
π(k | θ)π(θ) dθ

= Binomial(k;n, θ)∫
θ

Binomial(k;n, θ) dθ

=
(
n
k

)
θk(1− θ)n−k∫

θ

(
n
k

)
θk(1− θ)n−k dθ

= θk(1− θ)n−k∫
θ
θk(1− θ)n−k dθ

To go on, we might compute the integral in the denominator. To do so, we
may use a shortcut, looking up the density of for the Beta distribution. In fact
x ∈ [0, 1] has a Beta distribution with parameters α > 0 and β > 0 if its density
is

π(x | α, β) = 1
B(α, β)x

α−1(1− x)β−1

where B(α, β) is the Beta function, defined by

B(α, β) = Γ(α)Γ(β)
Γ(α+ β)

where the Gamma function Γ(t) in turn is defined for t > 0 by

Γ(t) =
∫ ∞

0
xt−1 exp(−x) dx.

5



1. Basics of Bayesian inference

Right now, the important thing for us is that the Beta density integrates to 1,
so that, for all α > 0 and β > 0,∫ 1

0
θα−1(1− θ)β−1 dθ = B(α, β).

Plugging this into the computations above by setting α−1 = k and β−1 = n−k,
we get

π(θ | k) = θk(1− θ)n−k

B(k + 1, n− k + 1)
However, we can now use the definition of the Beta density again, to recognize
that the posterior density π(θ | k) is in fact a Beta density, specifically a Beta
density with parameters k + 1 and n− k + 1.

Our goal is to find the probability of heads in the n+ 1’st throw assuming
that k out of the n first throws were heads. Similar to above, we may compute

π(y = 1 | k) =
∫
θ

π(y = 1, θ | k) dθ (1.5)

=
∫
θ

π(y = 1 | θ, k)π(θ | k) dθ

=
∫
θ

π(y = 1 | θ)π(θ | k) dθ

=
∫
θ

θπ(θ | k) dθ

We could compute this integral. But we may also notice that the integral is
the expectation of the posterior distribution θ | k. Having derived that this
posterior is the Beta(k+1, n−k+1) distribution, we can look up its expectation,
finding that it is (k + 1)/(k + 1 + n− k + 1) = (k + 1)/(n+ 2), so that

π(y = 1 | k) = k + 1
n+ 2 .

In Figure 1.2 we show, as in the previous section, a sequence of observed heads
and tails, together with the probability of observing heads given all previous
observations. The difference compared to Figure 1.1 is that we now use the
prior Uniform(0, 1) for θ, while in Figure 1.1 we use a prior where θ is equal to
0.3 or 0.7 with equal probability. Thus the result does not stabilize as easily.
But it does seem to stabilize eventually.

Notice how we repeatedely took advantage of knowledge about the Beta
distribution in the computations above. This simplified our computations, but,
in fact, we may go one step further in simplification: As we are computing a
posterior density for θ, we know that whatever we compute will always integrate
to 1 when we integrate it as a function of θ over the possible values for θ, i.e.,
the interval [0, 1]. Thus, there is no loss of information if we multiply or divide
by factors that do not depend on θ. These factors can always be reinstated in
the end, by using the requirement that our density must integrate to 1. To take
advantage of this idea, we define the symbol ∝θ (read “proportional to”) to
mean that two expressions are identical up to a factor not involving θ. Thus we
can write for example θ ∝θ 3θ and θ/(1 + θ) ∝θ αθ/(1 + θ). Using this notation,
the computations of Equation 1.4 can be written

π(θ | k) ∝θ π(k | θ)π(θ) = Binomial(k;n, θ) ∝θ θk(1− θ)n−k. (1.6)

6



1.2. The Beta and Binomial distributions
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Figure 1.2: The probability of heads at each point in a sequence of observations,
conditioning on the previous observations of heads and tails. The prior used is
Uniform(0, 1).

By comparing with the density for a Beta distribution, we see that the posterior
π(θ | k) must necessarily be a Beta(k + 1, n − k + 1) density. This trick of
removing uninteresting factors until we need them is going to be used repeatedly
in the rest of this text.

Above, we assume a Uniform(0, 1) prior for θ. However, the computation
of Equation 1.6 suggests that, as long as the prior has the form θsomething(1−
θ)something else, we will get a posterior that has the form of a Beta density. So,
specifically, we now assume that θ has a Beta(α, β) prior for some parameters
α > 0 and β > 0. The computation of the posterior density now becomes

π(θ | k) ∝θ π(k | θ)π(θ) ∝θ θk(1−θ)n−kθα−1(1−θ)β−1 = θα+k−1(1−θ)β+n−k−1

from which we can read off that the posterior θ | k is a Beta(α+ k, β + n− k)
distribution. The computations of Equation 1.5 apply unchanged to our more
general situation. Referring again to what we know about the expectation of
the Beta distribution, we get

π(y = 1 | k) = α+ k

α+ β + n

We now have the possibility to do slightly more realistic learning about the
biasedness of the coin. Neither guessing that θ is either 0.3 or 0.7 or assuming
that it can be any number between 0 and 1 with equal probability seems very
realistic. Rather, one might guess that the coin is not too far away from fair,
but it might be slightly unfair, i.e., θ might for example most likely be in the
interval from 0.4 to 0.6. Selecting a Beta density that is symmetric and has
approximately 90% of its probability mass in this interval (see Exercise 5 of

7



1. Basics of Bayesian inference

Section 1.7), we find that we may use the prior Beta(33.4, 33.4). Figure 1.3 is
comparable to Figures 1.1 and 1.2, but now using this new prior. Because we
have now put much more information into the prior, the prediction probabilities
are much more stable from the start. Another way to illustrate what is going on
is with Figure 1.4. It shows the prior density Beta(33.4, 33.4) and the posterior
density Beta(33.4 + 11, 33.4 + 19) after considering all of the 30 observations
illustated in Figure 1.3. Notice how the posterior is slightly narrower than the
prior, as it is based on more information and thus represents less uncertainty. It
is also slightly shifted to the left, as there are 11 heads and 19 tails in the data.

0 5 10 15 20 25 30
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0
.8
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Figure 1.3: The probability of heads at each point in a sequence of observations,
conditioning on the previous observations of heads and tails. The prior used is
Beta(33.4, 33.4).

1.3 The Poisson Gamma conjugacy

In the previous section, we saw that when considering data with a Binomial(n, θ)
likelihood and using a prior for θ with a Beta distribution, the posterior for θ
also became a Beta distribution. This kind of situation is in fact quite common
in basic Bayesian inference. We say that a family of distributions is conjugate
to a likelihood if selecting the prior in the family leads to a posterior in the
same family. Thus the Beta family of distributions is conjugate to the Binomial
likelihood, when considering the probability θ as the parameter. In this section,
we will look at the Poisson Gamma conjugacy. Note that Appendix C contains
an overview of several examples of conjugacy.

Assume you are monitoring the number of incoming requests for data to
some internet database. Assuming these requests happen independently, we
see in Chapter 6 of Dobrow how it may be reasonable to model the number
of requests per time unit as Poisson distributed. In other words, if k is the

8



1.3. The Poisson Gamma conjugacy
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Figure 1.4: The the prior and posterior probability for θ when the prior
Beta(33.4, 33.4) is used. The prior is the dotted line.

number of requests per time unit, the probability mass function is

π(k | θ) = e−θ
θk

k! ,

where θ is the expected number of requests for this time unit. Assume you
count the number of such requests for successive time units. After a number of
such counts, you want to predict the count for the coming time unit.

The situation is quite similar to the one in the previous section, and indeed,
we can use much of the same thinking. As successive counts are independent
if we know the true value of θ, we can handle the situation as follows: We set
up a prior density π(θ) for θ, representing our knowledge about the expected
count before we have made any actual counts. Then, we find a way to compute
the posterior density π(θ | k1) given an observed count k1. Notice that, if we
then make another count, k2, we can update our knowledge about θ again, but
now using π(θ | k1) as the prior and obtaining a posterior density π(θ | k1, k2).
Continuing like this for some counts, we obtain a final posterior π(θ | k1, . . . , kn).
We can then use this posterior to make a prediction for the next count kn+1,
using computations like those in Equation 1.5:

π(kn+1 | k1, . . . , kn) =
∫
θ

π(kn+1 | θ)π(θ | k1, . . . , kn) dθ. (1.7)

To make computations in practice, we need to decide on a prior π(θ) to
start with. In the previous example, we used the uniform distribution on the
interval [0, 1] to indicate starting out with “no knowledge”. In our current
situation, θ can be any positive number. One possibility might be to try to
use a uniform distribution on the interval [0,∞). Notice that there is no such

9



1. Basics of Bayesian inference

thing, as the integral of any positive function constant on this interval is infinite.
However, without going into the technical arguments here, it turns out that in
Bayesian statistics, we may use “densities” that integrate to infinity: We call
these densities “improper”. This will work fine as long as the posterior density
we compute is an ordinary “proper” density.

So we might use a “constant density” on [0,∞); we would denote this
as π(θ) ∝θ 1, for θ ≥ 0. However, this improper density may actually not
correspond very well to “having no knowledge” about θ. In fact, it would for
example appear to assign the same probability to the intervals [1, 2] [10, 11],
and [1000000, 1000001]. A better representation of “no knowledge” about the
parameter θ might be that the intervals [1, 2], [10, 20] and [1000000, 2000000]
have the same prior probability. It would then be reasonable to use the prior

π(θ) ∝θ
1
θ
.

Notice that this prior is also improper, as the integral of 1/θ over [0,∞) is
infinite.

Assuming we have observed a count k, we can now get, using Bayes formula,

π(θ | k) ∝θ π(k | θ)π(θ) ∝θ e−θθk ·
1
θ

= e−θθk−1

Using a similar trick as in the previous section, we look up the density for a
Gamma distribution:

Gamma(θ;α, β) = βα

Γ(α)θ
α−1 exp (−βθ) .

Thus we see that we must have

π(θ | k) = Gamma(θ; k, 1).

Continuing with the script from the previous section, we can now try out using
the prior

π(θ) = Gamma(θ;α, β)
Computations with Bayes formula give

π(θ | k) ∝ π(k | θ)π(θ) ∝θ e−θθkθα−1 exp(−βθ) = θα+k−1 exp(−(β + 1)θ)

so the posterior is a Gamma(θ;α+ k, β + 1) distribution, and we have proved
that the Gamma family of distributions is conjugate to the Poisson likelihood.

It is now easy to determine the effect of observing counts k1, k2, . . . , kn.
Starting with the distribution Gamma(α, β) for θ, each time we observe a count
ki we add ki to the first parameter and 1 to the second parameter. Thus, after
n repeated updates, we get a Gamma (α+

∑n
i=1 ki, β + n) distribution. It is

worth noticing that the two improper densities for θ that we considered at
the start can fit into this framework: The prior π(θ) ∝θ 1 could be named
a “Gamma(1, 0)” density, resulting in a Gamma (1 +

∑n
i=1 ki, n) posterior.

Similarly, the prior π(θ) ∝θ 1/θ could be named a “Gamma(0, 0)” density,
resulting in a Gamma (

∑n
i=1 ki, n) posterior.

We can also make the computation of Equation 1.7 explicit:

π(kn+1 | k1, . . . , kn) (1.8)

10



1.3. The Poisson Gamma conjugacy

=
∫
θ

π(kn+1 | θ)π(θ | k1, . . . , kn) dθ

=
∫
θ

e−θ
θkn+1

kn+1!
(β + n)α+

∑n

i=1
ki

Γ(α+
∑n
i=1 ki)

θα+
∑n

i=1
ki−1 exp (−(β + n)θ) dθ

= (β + n)α+
∑n

i=1
ki

Γ(α+
∑n
i=1 ki)kn+1!

∫
θ

θα+
∑n+1

i=1
ki−1 exp (−(β + n+ 1)θ) dθ

= (β + n)α+
∑n

i=1
ki

Γ(α+
∑n
i=1 ki)kn+1!

·
Γ(α+

∑n+1
i=1 ki)

(β + n+ 1)α+
∑n+1

i=1
ki
.

In the last step, we have again compared with the density for a Gamma
distribution to compute the integral.

0 10 20 30 40 50

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Figure 1.5: The three posterior distributions Gamma(20, 1), Gamma(44, 2),
and Gamma(67, 3).

Let us illustrate our results so far in a concrete example. We start with
the prior π(θ) ∝θ 1/θ, and we then make the consequtive observations k1 = 20,
k2 = 24, and k3 = 23. The posteriors after one, two, and three observations
are Gamma(20, 1), Gamma(44, 2), and Gamma(67, 3), respectively. These
posteriors are illustrated in Figure 1.5. We see that our knowledge about θ is
increasing in each step, as the variances of the distributions are decreasing. Note
that the expectations of the Gamma distributions are 20/1 = 20, 44/2 = 22,
and 67/3 = 22.33, respectively.

Figure 1.6 illustrates predictions we may make for the fourth observation k4
after observing k1, k2, k3. The pluses represent probabilities for various values
of k1 computed according to the formula for π(k4 | k1, k2, k3) above. The circles
represents a more classical prediction: Using the three observations k1, k2, k3,

11



1. Basics of Bayesian inference
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Figure 1.6: Two possible predictions for the fourth observation k4: One derived
in our Bayesian computations (shown with pluses) and one derived with a
classical approach (shown in circles).

the maximum likelihood estimate for the parameter θ is 67/3 = 22.33. The
circles plots a Poisson mass density function with parameter 22.33. We see that
the predicted distribution is then narrower than the one using Equation 1.8.
The reason is that with the classical prediction, we have “thrown away” our
remaining uncertainty about θ: We believe that its value is exactly 22.33 instead
of believing that its value is given by the posterior Gamma(67, 3) depicted in
Figure 1.5. In this sense, we can say that the frequentist model is overfitted.

The computations shown in Equation 1.8 may seem a bit messy. Let us
close this section with showing how we can do such computations in a more
structured way that make them simpler to follow. In general, if we are in a
situation with conjugacy, so that all the densities π(k | θ), π(θ), and π(θ | k)
are expressed in nice analytic formulas, the last relevant density, π(k), can also
be expressed in a nice analytic formula using the following formula, which can
be derived immediately from Bayes rule:

π(k) = π(k | θ)π(θ)
π(θ | k) (1.9)

If all the densities on the right have nice formulas, we get a nice formula also for
π(k) on the left. Moreover, as the right-hand side contains θ while the left-hand
side does not, we know that if we put in explicit formulas on the left-hand side,
the θ must somehow disappear from the formula after simplifications.

Let us assume that π(k | θ) = Poisson(k; θ), π(θ) = Gamma(α, β), and
π(θ | k) = Gamma(α+ k, β + 1). We then get

π(k) = π(k | θ)π(θ)
π(θ | k) (1.10)

= Poisson(k; θ) Gamma(θ;α, β)
Gamma(θ;α+ k, β + 1)

=
e−θ θ

k

k! ·
βα

Γ(α)θ
α−1 exp(−βθ)

(β+1)α+k

Γ(α+k) θ
α+k−1 exp(−βθ − θ)

12



1.4. Summary so far

= βαΓ(α+ k)
(β + 1)α+kΓ(α)k!

As we knew it should, the θ’s disappeared from our computations, and we
are left with what is called the prior predictive distribution for k, given the
prior θ ∼ Gamma(α, β). If we instead start with a posterior, for example the
posterior θ ∼ Gamma(α+

∑n
i=1 ki, β+n), the formula above gives the posterior

predictive. Replacing α with α+
∑n
i=1 and β with β + n in Equation 1.10, we

see that we get exactly the result of Equation 1.8.
The trick we just used to compute the predictive distribution can be used

in all situations where you have conjugacy. Often the resulting predictive
distribution turns out to be in a well-known family of distributions. In our
case, the probability mass function for π(k) found in Equation 1.10 is actually
a Negative Binomial distribution: A stochastic variable x taking on as possible
values any positive integer has a Negative Binomial distribution if its probability
mass function is given by

π(x | r, p) =
(
x+ r − 1

x

)
· (1− p)xpr = Γ(x+ r)

Γ(x+ 1)Γ(r) (1− p)xpr (1.11)

where r > 0 and p ∈ (0, 1) are parameters. Thus we see that the prior predictive
density computed in Equation 1.10 is a Negative-Binomial(α, β/(1 + β))
distribution.

1.4 Summary so far

Bayesian inference can be summarized in the following way: Let y represent a
vector of random variables which you have observed, and let ynew represent a
vector of random variables you would like to predict. There are then two steps:

1. Based on reasonable assumptions, create a stochastic model relating y
and ynew.

2. Make predictions for ynew using the conditional distribution ynew | y,
where y is fixed to its observed values.

Most often, the stochastic model is formulated using an additional stochastic
variable θ, a parameter or vector of parameters, so that y and ynew are
conditionally independent given θ, i.e., for the densities,

π(ynew | θ, y) = π(ynew | θ).

Then,

π(ynew | y) =
∫
θ

π(ynew, θ | y) dθ =
∫
θ

π(ynew | θ)π(θ | y) dθ (1.12)

and computation of π(ynew | y) is done by first computing π(θ | y) and then
computing the integral above.

To find π(θ | y) one can generally formulate the joint distribution π(θ, y) =
π(y | θ)π(θ) and then use Bayes theorem:

π(θ | y) = π(y | θ)π(θ)
π(y) ∝θ π(y | θ)π(θ)

13



1. Basics of Bayesian inference

The distributions π(θ) and π(θ | y) are called the prior and posterior,
respectively.

In many cases, the data y is a random sample y = (y1, . . . , yn), where the yi
are conditionally independent given the parameter θ, in other words,

π(y | θ) =
n∏
i=1

π(yi | θ).

We get for the posterior

π(θ | y) ∝θ
n∏
i=1

π(yi | θ)π(θ),

and it can be obtained by stepwise updating the prior π(θ), using the data
values yi in any order, and using the posterior from one update as the prior for
the next update.

A parametric family of probability distributions for a parameter θ is conjugate
to a likelihood π(y | θ) if, when the prior is in the family, the posterior is also
in the family. We have so far looked at two examples of conjugacy: The Beta-
Binomial conjugacy and the Gamma-Poisson conjugacy. Whenever we have
conjugacy, the prior predictive density

π(y) =
∫
θ

π(y, θ) dθ =
∫
θ

π(y | θ)π(θ) dθ

has a simple closed form, which may be computed using Equation 1.9. The
posterior predictive density of Equation 1.12 can also be computed from the
same equation, replacing the prior π(θ) with the posterior π(θ | y). Explicitly,

π(ynew | y) = π(ynew | θ)π(θ | y)
π(θ | ynew, y) .

1.5 Bayesian inference using discretization

We saw in the previous section that Bayesian inference requires computation
of the posterior π(θ | y) and the predictive distribution π(ynew | y) using
(most often) Equation 1.12. However, in many practical applications, these
computations cannot be done using conjugacy; there simply does not exist a
conjugate prior to the likelihood π(y | θ) one would like to use. In this and the
next section we look at some simple alternative computational approaches.

We first turn to discretization, which can be a very good alternative if θ
has only one dimension (i.e., component) and π(θ) is positive only within some
bounded interval. Assume θ1, θ2, . . . , θk are equally-spaced values within this
interval, so that the prior density π(θ) can reasonably be approximated by a
discrete distribution on {θ1, . . . , θk} specified by

ai = Pr (θ = θi) = π(θi)∑k
j=1 π(θj)

.

Writing bi = π(y | θi) for i = 1, . . . , k we can then approximate the posterior
with a discrete distribution on {θ1, . . . , θk} specified by

ci = Pr (θ = θi | y) = π(y | θ = θi) Pr (θ = θi)∑k
j=1 π(y | θ = θj) Pr (θ = θj)

= aibi∑k
j=1 ajbj
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1.5. Bayesian inference using discretization

Finally, for a specific value of ynew we may approximate the predictive
distribution as

π(ynew | y) =
∫
θ

π(ynew | θ)π(θ | y) dθ

≈
k∑
i=1

π(ynew | θi) Pr (θ = θi | y) dθ =
k∑
i=1

π(ynew | θi)ci.

How good this approximation is depends of course on how large k is, as well
as the regularity of the functions involved.

Example

Assume

p ∼ Beta(2.3, 4.1)
y | p ∼ Binomial(17, p)

ynew | p ∼ Binomial(3, p).

Assume we would like to compute the probability π(ynew = 1) given that y = 4.
Using the theory developed above, we get the posterior

p | (y = 4) ∼ Beta(2.3 + 4, 4.1 + 17− 4) = Beta(6.3, 17.1).

According to the results of Exercise 8 of Section 1.7, the predictive distribution
is Beta-Binomial, so we get

π(ynew = 1 | y = 4) = B(6.3 + 1, 17.1 + 3− 1)
B(6.3, 17.1)

(
3
1

)
= Γ(7.3)Γ(20.1)Γ(6.3 + 17.1)

Γ(7.3 + 20.1)Γ(6.3)Γ(17.1) ·
3!

1!2!
= 0.403364

The following R code approximates this result using discretization:

p <- seq(0, 1, length.out=20)
a <- dbeta(p, 2.3, 4.1)
b <- dbinom(4, 17, p)
c <- a*b/sum(a*b) #No need to divide a by its sum before this step
d <- dbinom(1, 3, p)
sum(c*d)

The code results in 0.4033704, which we see is a good approximation even if k
is only 20. The advantage with the R code is of course that one may use any
prior density on [0, 1], not just a Beta density.
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1. Basics of Bayesian inference

1.6 Bayesian inference using numerical integration

Instead of discretizing one may apply numerical integration. After all, the
answers we seek can be expressed as integrals:

π(ynew | y) =
∫
θ

π(ynew | θ)π(θ | y) dθ =
∫
θ

π(ynew | θ)
π(y | θ)π(θ)∫

θ
π(y | θ)π(θ) dθ

=
∫
θ
π(ynew | θ)π(y | θ)π(θ) dθ∫

θ
π(y | θ)π(θ) dθ

Example

For simplicity we continue with the example from the previous section. So
assume we would like to compute, as above, the probability that ynew = 1 given
that y = 4. We get

π(ynew = 1 | y = 4) =
∫ 1

0 Binomial(1; 3, θ) Binomial(4; 17, θ) Beta(θ; 2.3, 4.1) dθ∫ 1
0 Binomial(4; 17, θ) Beta(θ; 2.3, 4.1) dθ

and the R code

f1 <- function(theta) {dbinom(1, 3, theta)*dbinom(4, 17, theta)*
dbeta(theta, 2.3, 4.1)}

f2 <- function(theta) {dbinom(4, 17, theta)*dbeta(theta, 2.3, 4.1)}
integrate(Vectorize(f1), 0, 1)$value/

integrate(Vectorize(f2), 0, 1)$value

which produces the answer 0.403364, i.e., an even better approximation than
with the discretization. As with discretization, the computations above can
be done in principle with any densities, one is not limited to using conjugate
priors.

Note the use of the Vectorize function above: The integrate function in
R requires as input a function that not only computes the functional value, but
given a vector of input values it should compute the vector of the corresponding
functional values. The function Vectorize is a trick in R to convert any function
into a vectorized one. In our particular example, the functions f1 and f2 are
already vectorized, as you may check. However, this issue is easy to forget, so
it is safest to include Vectorize as done in the code above.

Discretization or numerical integration works well in the simple example
above, yielding accurate results. When variables are defined on unbounded
intervals, one may need to make transformations before doing discretization.
However, the biggest limitation to these methods is the dimension of the θ
vector.

Let’s imagine that, to get some kind of reasonable accuracy when discretizing
a real variable, you cannot use fewer than 10 values to represent it. A density
in n dimensions will then need 10n points to represent it. For many problems n
will be higher than, say, 10, giving at least 1010 gridpoints, which is unfeasible
to handle. In fact we may very well want to study problems with millions of
dimensions. Cleary, neither discretization nor numerical integration are then
useful tools.

16



1.7. Exercises

1.7 Exercises

1. A survey has been made about the type of living conditions and the
political opinions of people in a city. Probabilities for observing each
combination have been estimated and is listed in the following table

Party A Party B Party C Party D
Rental flat 0.11 0.03 0.08 0.01
Self-owned flat 0.09 0.01 0.14 0.03
House 0.13 0.04 0.09 0.24

If you observe that a person lives in a rental flat, what is the probability
that the person votes for party B?

2. A disease is affecting 0.7% of the population. Initial diagnosis is done
with a somewhat unreliable test. If a person is affected, the test will be
positive with a 95% probability. However, if the person is not affected,
there is still a 5% chance that the test is positive. Given that the test is
positive, what is the probability that the person is affected?

3. Assume you are making repeated independent experiments with a
probability of success θ in each experiment. Initially, you make 12
experiments, of which 9 are successful.

a) Using a prior for θ that is uniform on the interval [0, 1], what is the
posterior for θ given the results of the 12 experiments?

b) Assume now that you continue with doing 19 more experiments, of
which 11 are successful. Given the combined information from all
your 31 experiments, what is the posterior for θ?

c) Given all the information above, what is the probability for success
in your thirtysecond experiment?

4. Refer to the coin-flipping example in the beginning of the chapter.

a) Write down the probability of observing yH heads and yT tails during
a sequence with yH + yT coinflips.

b) Write down the probability of observing yH heads and yT tails
followed by observing heads, during yH + yT + 1 coinflips.

c) Write down the conditional probability of observing heads after
having observed yH heads and yT tails. Verify that your result is
the same as that in Equation 1.2.

5. Write an R program that computes the parameter α for a Beta(α, α)
distribution which has 90% of its density in the interval [0.4, 0.6].

6. Assume y ∼ Negative-Binomial(α, p), where α is fixed and known and p
is the unknown parameter. Prove that the Beta family is a conjugate
prior family.

7. Assume y ∼ Normal(µ, τ−1) where µ is fixed and τ is the unknown
parameter. Prove that the Gamma family of distributions is a conjugate
prior family.
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1. Basics of Bayesian inference

8. Find the formula for the probability mass function of the prior predictive
distribution for the Beta Binomial conjugacy. Try to look up if this
distribution has a standard name.

9. In the beginning of this chapter, we discussed an example with a loaded
dice. We will now make some explicit computations for this example. We
will use a parameter vector θ = (θ1, θ2, θ3), where each θi ∈ (0, 1). Given
this parameter, and based on the geometry of standard dice, we model
the probability of obtaining the value k with the dice as

π(k | θ) =



1
3θ1 k = 1
1
3θ2 k = 2
1
3θ3 k = 3

1
3 (1− θ3) k = 4
1
3 (1− θ2) k = 5
1
3 (1− θ1) k = 6

For the prior on θ, we use

π(θ) = Beta(θ1; 20, 20) · Beta(θ2; 20, 20) · Beta(θ3; 20, 20)

a) Find a formula for the posterior for θ given a specific observed
sequence of throws k1, k2, . . . , kn.

b) Find the probabilities for each of the outcomes 1, 2, . . . , 6 conditional
on having observed the following sequence: 2, 4, 1, 6, 3, 6, 6, 3, 4, 2,
2.

10. Assume you have defined a likelihood function π(y | θ) and are given a
family of priors qγ(θ), parametrized by a vector γ of parameters, with
γ ∈ Ω. Assume now that this family is conjugate, so that, if the prior
is qγ(θ) for some γ ∈ Ω, then the posterior θ | y has density qf(γ)(θ) for
some other f(γ) ∈ Ω.

a) Fix an integer k > 1 and describe a new family of priors as consisting
of all densities

r(θ) =
k∑
i=1

λiqγi(θ)

where λ1, . . . , λk are nonnegative real numbers summing to 1, and
for all i, γi ∈ Ω. Prove that this family is a conjugate family. Derive
explicit formulas for the posterior given a prior like the one above.

b) Compute an explicit formula for the prior predictive distribution in
this case.

c) Can you imagine an application where using this kind of mixture
prior as a model could be advantageous?

11. An example of conjucacy is the Normal Normal conjugacy; see the
Appendix in Chapter C. Assume that x | µ ∼ Normal(µ, τ−1) and
µ ∼ Normal(µ0, τ

−1
0 ) for fixed and known τ and τ0. Then it can be

shown that the prior predictive distribution for x is normal. Use this fact,
together with what is called in Dobrow the Law of Total Expectation
and the Law of Total Variance, to find the parameters of this normal
distribution.
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CHAPTER 2

Hidden Markov Models

Let us start with reviewing Exercise 2.20 of Dobrow: We let X0, X1, . . . be a
Markov chain with transition matrix

P =

0 1 0
0 0 1
p 1− p 0


for some 0 < p < 1. Let g be a function defined by

g(x) =
{

0, if x = 1
1, if x = 2, 3

If we let Yn = g(Xn) for n ≥ 0, we might ask if also Y0, Y1, . . . is a Markov
chain. However, it is not: If Yi = 1 and Xi = 2, the probability that Yi+1 = 0 is
zero, as we necessarily have Xi+1 = 3. However, if Yi = 1 and Xi = 3, then the
probability that Yi+1 = 0 is p. Thus, given Yi, the value of Yi+1 would depend
on Xi, and thus on Yj for j < i, as these Yj and Xi are not independent. In
other words, Y0, Y1, . . . is not a Markov chain.

This very simple example illustrates a situation which can be found in many
types of data indexed with an integer: The sequence Y0, Y1, . . . of the data
itself is not a Markov chain, as each Yi does not contain all the underlying
information that we imagine is used to "generate" a new state Yi+1 in the chain.
However, there may exist, as in the example above, some underlying variables
Xi that encode the underlying information, in such a way that X0, X1, . . . is a
Markov chain.

The situation can be illustrated with Figure 2.1. Note that the graph does
not illustrate transitions between states of a Markov chain, but instead the
dependencies between the random variables x0, x1, . . . , xT and y0, y1, . . . , yT .
We assume x0, x1, . . . is a Markov chain. The figure also illustrates the
assumption that yi depends on xi, but given xi, it is conditionally independent
of all the other variables. In some situations, yi may also depend on yi−1. There
is then an arrow from yi−1 to yi for all i. This will be the case in Example 2
below. However, for simplicity, we will focus on the theory for the case where
yi does not depend on yi−1 when xi is given. The extension to the case where
there is such a dependency is generally not so difficult.

The model described above is called a Hidden Markov Model, or HMM.
Below, we will look at some examples of situations where such models may be
useful. Afterwards, we will summarize the inference questions we might have
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2. Hidden Markov Models

Figure 2.1: A hidden Markov model. Note that this is not a transition graph
relating states of a Markov chain, but instead a graph showing the dependencies
between the random variables x0, x1, . . . , xT and y0, y1, . . . , yT .

in such situations. In the next chapter, we will look at how these inference
questions can be answered using Bayesian inference.

2.1 Examples of Hidden Markov Models

Example 1

Each day i, a pharmacy sells on-line Yi bottles of cough-medicine. We assume the
number of bottles sold is Poisson distributed based on an underlying expected
demand Xi in the area of the pharmacy, so that

Yi ∼ Poisson(Xi)

The underlying demand Xi depends on whether there is a flu-infection in the
area or not: We simplify and say that Xi = 30 if there is an infection present
and Xi = 10 if not. We then model the presence of the infection with a Markov
chain. Specifically, we assume X0, X1, . . . is a two-state Markov chain with
possible values 10 and 30 and transition matrix

P =
[
0.95 0.05
0.2 0.8

]
.

Figure 2.2 shows a simulation of this process over 60 days. The full line
represents the underlying demand for cough-medicine, which is assumed to be
30 if there is a flu-infection in the area and 10 if not. What is actually observed
are the daily sales, which are assumed to be Poisson distributed based on the
expected demand. From the figure, we see that the sales go up when there is
an infection in the area. Thus, observing the sales might be used as a way to
detect such infection. However, as the actual sales is a noisy observation of the
underlying demand, it is not clear-cut to conclude from this data exactly when
the infection is present. And, of course, in a more realistic model, this would
be much more difficult.

Example 2

As our second and more realistic example, we look at the problem of finding
promotor regions for genes in vertebrate genomes. The example is based on
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Figure 2.2: A simulation from the flu model. The full line represents the
underlying expected demand for cough-medicine, based on whether there is a
flu-infection in the area or not. The dots represent the observed actual sales of
the medicine.

[Axe10], which is an excellent reference for both theory and examples of Hidden
Markov Models, in particular when used in genetics.

DNA consists of the four nucleotides, or bases, A, C, G, and T. One may try
to model DNA strands consisting of sequences of such bases as a Markov chain,
with the bases being the states of the Markov chain and each position on the
DNA corresponding to a "time" step i. Of course, the bases are not randomly
distributed along the DNA, so one might expect to capture some (small part)
of the structure using a Markov chain model.

In fact, the two matrices below represent transition matrices for two types
of genetic strands:

P+ =


0.180 0.274 0.426 0.120
0.171 0.368 0.274 0.188
0.161 0.339 0.375 0.125
0.079 0.355 0.384 0.182

 , P− =


0.300 0.205 0.285 0.210
0.322 0.298 0.078 0.302
0.248 0.246 0.298 0.208
0.177 0.239 0.292 0.292

 .
The transition matrix P+ has been found by studying DNA from so-called

CpG islands: These are places on the genome where the usual tendency for
CG-pairs to mutate to different pairs is dampened by evolution, as the actual
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sequences are important for the functioning of the gene regulation processes.
The transition matrix P− is based on data from other parts of the genome.

One may now try to use the differences between these two transition matrices
to detect whether some sequence is a CpG island or not. For a given sequence,
one might try out the two models to see which one fits best. However, a
more realistic application is that one is given the entire DNA sequence of a
chromosome, and one would like to detect which parts of that sequence are
CpG islands. Just like in Example 1, it might then not be entirely obvious how
best to determine the boundaries between CpG islands and non-CpG islands.

This is where the theory of Hidden Markov Models can be used: Let Xi be
1 or 0 depending on whether position i of the genome is in a CpG island or not.
Then let Yi be A, C, G, or T, depending on the observed nucleotide at i. The
probabilities of observing possible value for Yi would depend on Yi−1, where
one would use the P+ transition matrix if Xi = 1 and P− otherwise. In order
to complete the model, we would need transition probabilities for a Markov
chain modelling the Xi. Such probabilities could be found by considering data
where the CpG islands are known.

Note how in this example Yi depends on both Xi and Yi−1. Thus, a proper
illustration of this model would look like Figure 1.1, but with arrows added
between the y variables.

2.2 Inference questions for HMMs

Let us try to get an overview of the types of inference questions that might be
considered for HMMs. We can divide them into two types: Cases where the
model parameters are known, and cases where they are not.

Known model parameters

Imagine that the transition matrix for the Markov chain X0, X1, . . . is known,
as well as its initial distribution. Also, imagine that all the conditional
probability distributions π(Yi | Xi) (or, in the more general case, the probability
distributions π(Yi | Xi, Yi−1)) are known. Finally, assume that we have observed
as data Y0, Y1, . . . , YT . What is unknown is then the values of the hidden
variables X0, X1, . . . , XT .

From a Bayesian perspective, we would like to known the posterior
distribution for X0, . . . , XT given the data Y0, . . . , YT . But as this is a
(potentially long) sequence of random variables, we need in practice to be
more specific about what we want to compute. Three options are common:

1. We find a specific sequence of values x0, x1, . . . , xT which maximizes the
posterior distribution. In example 1 above, it would mean to find our
best possible guess for the time points when the flu infection appears and
disappears in the area. In example 2, it would produce our best possible
guess the locations of the CpG islands.

2. For each single step i, we find the marginal posterior distribution for Xi

given the data. In other words, for every position, we find the most likely
value for Xi, but we can also consider which values for Xi are almost as
likely. For example, in example 2 above, we could compute the probability
that a specific location is in a CpG island.
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2.2. Inference questions for HMMs

3. We might generate sample sequences x0, x1, . . . , xT from the posterior
distribution given the data. For example, in example 2 above, we might
use such samples to estimate the average lengths of the CpG islands that
we predict.

In the next chapter, we briefly discuss some methods for the types of inference
above.

Unknown model parameters

In our examples, we have simply presented fixed transition matrices. But model
parameters, such as transition matrices, ultimately come from data. In HMMs,
the model parameters consist of the transition matrix, the initial distribution
on X0, and the parameters of the distributions π(Yi | Xi) (or π(Yi | Xi, Yi−1)).
We need to learn about these from data.

We must then either make some very strong assumptions about the hidden
Markov chain, its states, and their relationship with observed values (as in
Example 1 above), or we need data that contain observations of both the hidden
chain values Xi and the values Yi (as in Example 2 above).

We will consider some methods for Bayesian inference for HMM model
parameters in the next Chapter.
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CHAPTER 3

Some basic inference for Markov
chains and HMMs

Assume you would like to use a Markov chain X0, X1, . . . , as your model in an
applied setting where some data is available. The parameters of the Markov
chain are the transition matrix P and the probability distribution p on the
initial state X0. You would then like to learn about these parameters from the
data. This data could take many forms, for example, you could have observed
only some specific selection of the variables Xi. In this chapter, we will assume
that you have observed the whole sequence X0, X1, . . . , Xn up to some number
n. After learning about the parameters, you can use this to predict further
steps Xn+1, Xn+2, . . . of the chain.

We will also consider inference for Hidden Markov Models (HMMs). There
is then a wider range of what your data could consist of. In this chapter, we
will consider a situation where the model parameters of the HMM are known
and only the values of the hidden states X0, X1, . . . , Xn are unknown. But we
will also consider a situation where model parameters are learned from data.

3.1 The Multinomial Dirichlet conjugacy

TheMultinomial distribution counts the number of outcomes in each of k possible
classes when n independent trials are performed and the probability of ending
up in each of the classes is given by the probability vector p = (p1, . . . , pk).
(Recall that a probability vector p of length k is a vector of non-negative real
numbers such that

∑k
i=1 pi = 1.) In other words, a vector x = (x1, . . . , xk) of

non-negative integers has a Multinomial distribution with parameters n and p
if
∑k
i=1 xi = n and the probability mass function is given by

π(x | n, p) =
(

n

x1 x2 x3 . . . xk

)
px1

1 px2
2 · · · p

xk
k .

Recall that the multinomial coefficient above is given by(
n

x1 x2 x3 . . . xk

)
= n!
x1!x2! . . . xk! .

Note that the Multinomial distribution with k = 2 can be identified with the
Binomial distribution.
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3. Some basic inference for Markov chains and HMMs

A vector θ = (θ1, . . . , θk) of non-negative numbers satisfying
∑k
i=1 θi = 1

has a Dirichlet distribution with parameter vector α = (α1, . . . , αk), with each
αi > 0, if it has probability density function

π(θ | α) = Γ(α1 + α2 + · · ·+ αk)
Γ(α1)Γ(α2) . . .Γ(αk) θ

α1−1
1 θα2−1

2 . . . θαk−1
k .

Note that the Dirichlet distribution with k = 2 can be identified with the Beta
distribution.

As the Beta family is conjugate to the Binomal likelihood, it is natural to
check if the Dirichlet family is conjugate to the Multinomial likelihood. So
assume θ has the prior θ | α ∼ Dirichlet(α) for some α, and assume we have
the Multinomial likelihood x | n, θ ∼ Multinomial(n, θ). Bayes formula gives

π(θ | x) ∝θ π(x | θ)π(θ)
∝θ θx1

1 θx2
2 . . . θxkk θα1−1

1 θα2−1
2 . . . θαk−1

k

= θα1+x1−1
1 θα2+x2−1

2 . . . θαk+xk−1
k

from which we deduce that

θ | x ∼ Dirichlet(α1 + x1, α2 + x2, . . . , αk + xk)

and we have shown conjugacy. For the predictive distribution we get

π(x) = π(x | θ)π(θ)
π(θ | x) (3.1)

= Multinomial(x;n, θ) Dirichlet(θ;α)
Dirichlet(θ;α+ x)

=
n!

x1!...xk!θ
x1
1 . . . θxkk

Γ(α1+···+αk)
Γ(α1)...Γ(αk) θ

α1−1
1 . . . θαk−1

k

Γ(α1+···+αk+x1+···+xk)
Γ(α1+x1)...Γ(αk+xk) θα1+x1−1

1 . . . θαk+xk−1
k

= n!
x1! . . . xk! ·

Γ(α1 + x1)
Γ(α1) · · · Γ(αk + xk)

Γ(αk) · Γ(α1 + · · ·+ αk)
Γ(α1 + · · ·+ αk + x1 + · · ·+ xk)

which is a generalization of the Beta Binomial distribution.
See Exercises 1 and 2 for more about these distributions.

3.2 Inference for time-homogeneous Markov chains with
finite state space

Consider a time-homogeneous markov chain consisting of random variables
X0, X1, . . . , with finite state space S with k elements. The parameters of this
model are p0, the probability vector describing the distribution on X0, and
P , the transition matrix of the chain. Assume first that p0 is known while P
is unknown, and assume we would like to learn about P using a sequence of
observations x0, x1, . . . , xn for the variables X0, . . . , Xn. Let us write Pi for the
i’th row of P : We now consider it a random variable, in fact, a probability
vector with non-negative entries summing to 1. The probability of the data
x0, . . . , xn for a fixed P is

π(x0, . . . , xn | P ) = π(x0)
n∏
r=1

π(xr | xr−1, P )
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3.2. Inference for time-homogeneous Markov chains with finite state space

= π(x0)
n∏
r=1

Pxr−1,xr

= π(x0)
k∏
i=1

k∏
j=1

(Pij)cij

where cij is the count of times the chain x0, x1, . . . , xn transits from state i to
state j. We now define a prior on P with

π(P ) =
k∏
i=1

Dirichlet(Pi;αi)

where αi = (αi1, . . . , αik) is a vector of parameters for i = 1, . . . , k. For the
posterior, we get

π(P | x0, . . . , xn) ∝P π(x1, . . . , xn | P )π(P )

∝P
k∏
i=1

k∏
j=1

(Pij)cij
k∏
i=1

k∏
j=1

(Pij)αij−1

∝P
k∏
i=1

k∏
j=1

(Pij)αij+cij−1

from which we read off that

π(P | x0, . . . , xn) =
n∏
i=1

Dirichlet(Pi;αi + ci)

where ci = (ci1, . . . , cik).

Example

Assume you have a Markov chain with three possible states, and that a sequence
of values x0, . . . , x20 have been observed. Assume the counts cij of transitions
from state i to state j are given by the following table:

1 2 3
1 3 4 1
2 3 3 0
3 2 0 4

A classical inference approach might try to use the observed frequencies
of transitions as the values in the transition matrix P . But we see that some
values of Pij would then become zero. We have seen that whether the entries of
the transition matrix are zero or positive can have a decisive influence on the
properties of the Markov chain, and it may seem rash to conclude that some
transitions have probability zero simply because they have not been observed
in a short sequence of the chain. Even more fundamentally, with other data,
some states might not have been visited at all. All counts in the vector ci would
then be zero, and it would be impossible to compute frequencies summing to
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3. Some basic inference for Markov chains and HMMs

one from such a vector. Note that even if such problems might be overcome
with more data, the amount of data needed for frequency estimates increases
dramatically with the number s of states in the state space.

In practice, to get a useful result for P , one may need to use more information
than that available in the counts cij . In the Bayesian inference above, such
information is provided in the parameters αi of the prior for P . Note that if
x ∼ Dirichlet(λ), then E[x] = λ/

∑k
i=1 λi. Thus, in our case1,

E(Pi | x0, . . . , xn) = αi + ci
αi1 + · · ·+ αik + ci1 + · · ·+ cik

.

Thus, as long as we use parameters αij > 0, all posterior expectations of values
in P will be nonzero. In many situations, a reasonable choice may be αij = 1
for all i, j, leading to

E(Pi | x0, . . . , xn) = (1, 1, . . . , 1) + ci
k + ci1 + · · ·+ cik

.

In the example above, we get for example

E(P1 | x0, . . . , x20) = (1, 1, 1) + (3, 4, 1)
3 + 3 + 4 + 1

and the posterior expectation for P would be the matrix

E(P | x0, . . . , x20) =

4/11 5/11 2/11
4/9 4/9 1/9
3/9 1/9 5/9

 . (3.2)

The values αij are sometimes called pseudocounts; however, they do not need
to be integers.

The situation where the distribution p0 for X0 is unknown can be handled
in a similar way. Note however that if we have observed only one sequence
x0, . . . , xn, only x0 informs us about p0, so unless we have observed a number of
sequences from the chain, the distribution for p0 will be more or less determined
by the prior.

Prediction

Let us assume we would like to predict the observation xn+1 of Xn+1 based on
the sequence x0, . . . , xn. We can write

π(xn+1 | x0, . . . , xn) =
∫
π(xn+1 | xn, P )π(P | x0 . . . , xn) dP

=
∫
Pxn,xn+1π(Pxn | x0 . . . , xn) dPxn (3.3)

If we use a prior and compute the posterior for Pxk as in the last subsection,
we get

Pxn | x0, . . . , xn ∼ Dirchlet(αxn + cxn).
1Make sure you interpret this Equation correctly: The numerator is a vector and the

denominator is a number
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3.2. Inference for time-homogeneous Markov chains with finite state space

According to Equation 3.3, the predictive distribution is given as the Expectation
vector of the posterior Dirichlet distribution:

π(xn+1 | x0, . . . , xn) = αxn + cxn
αxn,1 + · · ·+ αxn,k + cxn,1 + · · ·+ cxn,k

.

Consider the example of the previous section, where x0, . . . , x20 were
observed; assume that x20 = 2. We showed in Equation 3.2 that the expectation
of P2, the second row of the transition matrix, was (4/9, 4/9, 1/9). Thus we get
that

π(x21 | x0, . . . , x20) = (4/9, 4/9, 1/9) . (3.4)

Let us also consider the prediction of a whole chain of observations
xn+1, . . . , xn+r based on the sequence x0, . . . , xn. In the same way as above,
we get

π(xn+1, . . . , xn+r | x0, . . . , xn)

=
∫ [ r∏

s=1
π(xn+s | xn+s−1, P )

]
π(P | x0 . . . , xn) dP

=
∫ [ r∏

s=1
Pxn+s,xn+s−1

]
π(P | x0 . . . , xn) dP. (3.5)

When the posterior for P is a product of Dirichlet distributions, it is in fact
possible to compute the value of this integral, in a simiar way as in computations
for the predictive distribution for the Multinomial Dirichlet conjugate pair given
in Equation 3.1. See Exercise 4 for concrete computations.

Extensions

The Dirichlet priors we have considered here assumes that the transition matrix
is positive. However, there may be situations where certain transitions may be
ruled out apriori. In such cases, an alternative is to use Dirichlet distributions
on the parameters in each line that could be non-zero. See Exercise 3 for an
example.

In other situations, the assumption used above that the lines of the transition
matrix are a priori independent may be unreasonable. In such cases, a prior
reflecting this situation could be used.

In yet other situations, it may be known that the Markov chain is time
reversible, so that inference about its parameters should be done under this
restriction. A possibility is then to represent the Markov chain as a random
walk on a weighted undirected graph, and infer the weights from data. It is
even possible to use a conjugate analysis in this case.

The above discussion on predictions can also be extended in many directions.
For example, making predictions for long stretches of a Markov chain may best
be done by first simulating its transition matrix from the posterior and then
continuing the Markov chain simulating with this transition matrix. Finally,
one may study how a stationary distribution derived from a transition matrix
changes when taking into account the posterior uncertainty in this transition
matrix.
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3. Some basic inference for Markov chains and HMMs

3.3 Inference for HMMs, known model parameters*

THIS SECTION IS CURRENTLY NOT PART OF THE CURRICULUM FOR
MVE550.

In Section 2.2 we discussed of possible goals for inference for HMMs. We will
in this section focus on the following situation: The distributions π(Xi+1 | Xi)
and π(Yi | Xi) are known for all i, and where the initial distribution π(X0) is
known. We also assume that we have observed the sequence y0, y1, . . . , yT for
the variables Y0, . . . , YT , and that our main objective is to find the marginal
posterior distribution for each of the variables X0, . . . , XT . These posterior
distributions may be of interest in themselves or one may use the posterior
distributions to make other predictions of interest.

The Forward algorithm

The objective is to compute, and store, for i = 0, 1, . . . , T , the distributions
π(Xi | Y0, . . . , Yi). This is done recursively, starting with i = 0, and at each
step using the results of the previous step.

We first compute π(X0 | Y0) using Bayes formula:

π(X0 | Y0) = π(Y0 | X0)π(X0)
π(Y0) ∝X0 π(Y0 | X0)π(X0).

Then, assuming that we have computed and (somehow) stored π(Xi | Y0 . . . , Yi)
we compute π(Xi+1 | Y0 . . . , Yi+1) again using Bayes formula:

π(Xi+1 | Y0, . . . , Yi+1) ∝Xi+1 π(Yi+1 | Xi+1, Y0, . . . , Yi)π(Xi+1 | Y0, . . . , Yi)

= π(Yi+1 | Xi+1)
∫
π(Xi+1 | Xi)π(Xi | Y0 . . . , Yi) dXi

The details of how these computations are done, and how the results are
stored, depend on the particular types of distributions involved. In an
alternative description of the Forward algorithm, one recursively computes
π(Xi | Y0, . . . , Yi−1) instead of π(Xi | Y0, . . . , Yi). The same ideas as above are
used and the same computations are done; they are simply subdivided in a
slightly different manner.

The Backward algorithm

The objective now is to compute and store, for i = T, . . . , 0, the probabilities
π(Yi+1, . . . , YT | Xi). Note that when i = T , this expression is not really
meaningful; however we will interpret π(Yi+1 . . . , YT | Xi) for i = T as a
function equal to 1 for all values of XT . Starting with this function, we go
backwards, stepwise decreasing the index i, and computing π(Yi+1, . . . , YT | Xi)
in terms of π(Yi+2, . . . , YT | Xi+1). We can to this by averaging out over Xi+1:

π(Yi+1, . . . , YT | Xi) =
∫
π(Yi+1, . . . , YT , Xi+1 | Xi) dXi+1

=
∫
π(Yi+1 | Xi+1)π(Yi+2, . . . , YT | Xi+1)π(Xi+1 | Xi) dXi+1

The details of how these computations are done, and how the results are
stored, depend on the particular types of distributions involved. In an
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3.3. Inference for HMMs, known model parameters*

alternative description of the Backward algorithm, one recursively computes
π(Yi . . . , YT | Xi) instead of π(Yi+1, . . . , YT | Xi). the same ideas as above are
used and the same computations are done; they are simply subdivided in a
slightly different manner.

The Forward Backward algorithm

There are several interesting ways of putting together the two algorithms above.
Let us for example assume that we would like to compute, for all i = 0, . . . , T ,
the marginal posterior distributions π(Xi | Y0, . . . , YT ). We can do this by using
(surprise!) Bayes formula:

π(Xi | Y0 . . . , YT ) ∝Xi π(Yi+1, . . . , YT | Xi, Y0, . . . , Yi)π(Xi | Y0, . . . , Yi)
= π(Yi+1, . . . , YT | Xi)π(Xi | Y0, . . . , Yi)

The distributions in the last line can be computed with the Backward and
Forward algorithms, respectively.

Instead of finding the marginal distributions above, one might be interested in
the joint distribution of all X0, . . . , XT given the observed values for Y0, . . . , YT .
As this is a high-dimensional distribution, it is easier to focus on obtaining a
sequence x0, x1, . . . , xT which is a sample from this distribution. This can be
done, for example, as follows: First, draw x0 from π(X0 | Y0, . . . , YT ) found as
above. Then, for i = 1, 2, . . . , T , draw xi according to the density

π(Xi | Y0, . . . , YT , X0 = x0, . . . , Xi−1 = xi−1)
∝Xi π(Yi, . . . , YT | Xi, Y0, . . . , Yi−1, X0 = x0, . . . , Xi−1 = xi−1)

·π(Xi | Y0, . . . , Yi−1, X0 = x0, . . . , Xi−1 = xi−1)
= π(Yi | Xi)π(Yi+1, . . . , YT | Xi)π(Xi | Xi−1 = xi−1)

As always, the details depend on the types of distributions involved.

Implementation when the state space is finite

Let us now assume the state space for X is finite, with the possible values
1, . . . , s. The Forward algorithm can be implemented as follows: To compute
π(X0 | Y0) ∝X0 π(Y0 | X0)π(X0), compute π(X0) and π(Y0 | X0) for all s
possible values of X0, to obtain two vectors of lenght s. Multiply these two
vectors termwise to obtain a new vector of length s, and divide by its sum to
obtain a vector of length s representing π(X0 | Y0).

For the recursive part of the computation, let vi denote the probability vector
representing π(Xi | Y0 . . . , Yi). Then viP is the probability vector representing∫
π(Xi + 1 | Xi)π(Xi | Y0, . . . , Yi) dXi as a function of Xi+1. Multiplying

termwise with the probability vector representing π(Yi+1 | Xi+1) as a function
of Xi+1 and normalizing so that the sum becomes 1, we get the probability
vector representing π(Xi+1 | Y0, . . . , Yi+1).

The Backward algorithm is implemented similarly. See the exercise which
concerns writing an R implementation of these algorithms.

31



3. Some basic inference for Markov chains and HMMs

3.4 Inference for HMMs, unknown model parameters

Assume X0, X1, . . . , Xs, . . . , is a Markov chain with a discrete state space,
transition matrix P , and probability distribution p on the initial state X0.
Assume also Y0, Y1, . . . , Ys, . . . , are discrete random variables so that

π(Ys | X0, X1, . . . , Y0, . . . , Ys−1, Ys+1, . . . ) = π(Ys | Xs).

Assume further that Pr (Ys = j | Xs = i) = Qij is independent of s, so there is a
single matrix Q describing the dependence of Ys on Xs. Finally, assume one has
observed X0, . . . , Xn and Y0, . . . , Yn. How can we learn about the parameters
P , p and Q of our model?

This will depend on what prior distribution we use for P , p, and Q. Generally,
one will use independent priors for these. Then, the learning for P and p will
be done as for any Markov chain X0, . . . , Xn, see Section 3.2. The learning for
Q will be based on the n+ 1 observed pairs (X0, Y0), (X1, Y1), . . . , (Xn, Yn).
In the example below, we try out two different priors for Q, to illustrate how
this choice influences results.

Example

Assume the following values have been observed for X0, . . . , X20 and Y0, . . . , Y20:

X 3 3 3 1 2 1 1 2 2 1 1 3 3 3 1 1 2 2 1 2 2
Y 1 4 3 2 3 2 1 1 4 1 1 3 3 4 0 0 3 0 0 2 2

We assume the X variable has possible values 1, 2, 3. The counts of
transitions are exactly the same as those of the Example of Section 3.2, and
we can learn about the transition matrix P in exactly the same way as in that
section.

Let us first assume that Y can only take on the values 0, 1, 2, 3, 4, and use
as a prior for Q a product of Dirichlet distributions. Specifically,

π(Q) =
3∏
i=1

Dirichlet(Qi;βi)

where Qi is the i’th row of the Q matrix, and the vector βi is the corresponding
set of pseudocounts for the transitions from state i. The counts of transitions
from the possible values 1, 2, 3 for X to the possible values 0, 1, 2, 3, 4 for Y are
given in the following table:

0 1 2 3 4
1 3 3 2 0 0
2 1 1 2 2 1
3 0 1 0 3 2

Just like in Section 3.2 we get that the posterior for Q is also a product of
Dirichlet distributions:

π(Q | data) =
3∏
i=1

Dirichlet(Qi;βi + di)

32



3.4. Inference for HMMs, unknown model parameters

where di is the vector of counts of transitions from state i. So, for example,
d1 = (3, 3, 2, 0, 0) and d2 = (1, 1, 2, 2, 1). Setting all the pseudocounts equal to
1, we get, explicitly,

π(Q | data) = Dirchlet(Q1; 4, 4, 3, 1, 1) Dirchlet(Q2; 2, 2, 3, 3, 2) Dirichlet(Q3; 1, 2, 1, 4, 3).

Computing expectations as in Section 3.2, if a state Xi for i > 20 has value
2, the probabilities for Yi are given by the vector (2/12, 2/12, 3/12, 3/12, 2/12),
i.e.,

[1] 0.1666667 0.1666667 0.2500000 0.2500000 0.1666667

More generally we get the posterior expectation

E(Q) =

4/13 4/13 3/13 1/13 1/13
2/12 2/12 3/12 3/12 2/12
1/11 2/11 1/11 4/11 3/11

 .
We can make a prediction for Y21 by conditioning on the posterior

probabilities for X21 found in Equation 3.4. We get, for example, the posterior
probability

Pr (Y21 = 4) = E[Pr (Y21 = 4) | X21]
= Pr (X21 = 1) E(Q14) + Pr (X21 = 2) E(Q24) + Pr (X21 = 3) E(Q34)

= 4
9 ·

1
13 + 4

9 ·
2
12 + 1

9 ·
3
11

= 0.1385651.

For illustration, we try out a second, more structured prior: Yi ∼
Poisson(λXi), where we use a Gamma(2, 2) prior for λ. Such a prior might be
chosen if there is a reason to believe that each Yi is Poisson distributed with
some underlying parameter that might be proportional to the value Xi of the
“hidden chain”. When Xi and λ are known all Yi are independent and we can
update our knowledge about λ stepwise, using information from one observed
Yi at the time. Specifically, if λ ∼ Gamma(α, β) and y ∼ Poisson(xλ), then

π(λ | y) ∝λ π(y | λ)π(λ)

∝λ e−λx
(λx)y

y! λα−1 exp(−λβ)

∝λ λα+y−1 exp(−λ(β + x))

so λ | y ∼ Gamma(α + y, β + x). Thus, to find the posterior for λ given all
the data, we take the first parameter and add the sum of all the Yi observed,
obtaining 2 + 40 = 42. To the second parameter we add 1 times the number of
observations with Xi = 1, 2 times the number of observations with Xi = 2, and
3 times the number of obervations with Xi = 3, obtaining 2+1·8+2·7+3·6 = 42.
Thus we have the posterior λ | data ∼ Gamma(42, 42).

If a state Xi for i > 20 has value 2, the probabilities for Yi will be given by
the Poisson distribution with parameter 2λ, where λ ∼ Gamma(42, 42). Writing
λ′ = 2λ, it is fairly direct to show that λ′ ∼ Gamma(42, 42/2) = Gamma(42, 21).
From the general conjugacy theory of Chapter 1 we have that if y ∼ Poisson(λ)
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and λ ∼ Gamma(α, β), then y ∼ Negative-Binomial(α, β/(β+1)). Thus, in our
case Yi | data ∼ Negative-Binomial(41, 21/(21+1)), and we can for example use
the R command dnbinom(0:4, 42, 21/22) to compute some probabilities
for Yi, resulting in

[1] 0.1417287 0.2705730 0.2644236 0.1762824 0.0901444

The probability for Y21 = 4 using the distribution for X21 can be found with

sum(dnbinom(4, 42, 42/(1:3)/(42/(1:3) + 1))*c(4, 4, 1)/9)

producing 0.06530846.

3.5 Exercises

1. Assume an experiment can have one of three outcomes; let us name the
outcomes 1, 2, and 3. Assume the probabilities for these outcomes are
p1, p2, and p3, respectively, but that these probabilities are unknown.
Assume 13 independent experiments are performed, of which 3 have
outcome 1, 9 have outcome 2, and 1 has outcome 3.

a) Using a Dirichlet(α) prior for p = (p1, p2, p3), where α =
(α1, α2, α3) = (1, 1, 1), find the posterior for p.

b) Find the expected posterior value for p. (See the Appendix on
probability distributions).

c) Still using the same prior, compute the probability that, among the
next 4 experiments, there will be 1 with outcome 1, 2 with outcome
2, and 1 with outcome 3.

2.

a) Convince yourself that a Dirichlet distribution with k = 2 is the
same as a Beta distribution, just using different notation.

b) Define a function on the set of non-negative vectors θ = (θ1, . . . , θk)
with

∑k
i=1 θi = K by

π(θ | α,K) = 1
Kα1+···+αk−1 ·

Γ(α1 + α2 + · · ·+ αk)
Γ(α1)Γ(α2) . . .Γ(αk) θ

α1−1
1 θα2−1

2 . . . θαk−1
k .

Show that π is a density on this set, i.e., that it integrates to 1. We
will use the notation θ | α,K ∼ DirichletK(α).

c) Assuming that (θ1, . . . , θk) ∼ Dirichlet(α1, . . . , αk), use a proportion-
ality argument to show that for any i with 2 < i < k,

θ1 . . . , θi−1 | θi, . . . , θk ∼ Dirichlet1−θi−···−θk(α1, . . . , αi−1).

(Note also that the ordering of the indexes does not matter in our
context).

34



3.5. Exercises

d) For i with 1 < i < k, use the identity

π(θ1, . . . , θi) = π(θ1, . . . , θk)
π(θi+1, . . . , θk | θ1, . . . , θi)

to compute the marginal density π(θ1, . . . , θi) up to a constant not
depending on θ1, . . . , θi.

e) Assuming that (θ1, . . . , θk) ∼ Dirichlet(α1, . . . , αk), find the distri-
bution of the random vector (θ1, . . . , θi, θi+1 + · · ·+ θk).

f) Assuming that (θ1, . . . , θk) ∼ Dirichlet(α1, . . . , αk), show that
θ1 + · · ·+ θi has a Beta distribution, and find the parameters of this
distribution.

3. Assume a Markov chain with state space containing the numbers 1, 2, 3,
4 has been observed for 26 steps. The values in these steps are 1, 2, 3, 2,
2, 3, 4, 4, 3, 2, 3, 2, 1, 1, 2, 1, 2, 3, 4, 3, 4, 3, 3, 2, 1, 1.

a) Write down an estimate for the transition matrix P based only on
frequencies of observed transitions.

b) Using a prior for the transition matrix consisting of a product of
Dirchlet distributions with all pseudo-counts equal to 1, find the
expectation of the posterior for the transition matrix given the
observed sequence above.

c) Given the same prior, compute the posterior distribution for P11 |
data. (Hint: You may need to look up, or solve Exercise 2 above, for
the marginal distribution for the components of a Dirchlet distriution).
In particular compute P (P11 > 0.3 | data).

d) Assume now that you have prior information that transitions in the
Markov chain cannot happen to states whose value differs more than
one compared to the current state. Reformulate a new prior for P
incorporating this information. Then, recompute the results from
questions (b) and (c) above using this new prior.

4. We will now compute the explicit value for the predictive distribution in
Equation 3.5.

a) Assume your data is a specific sequence z = (z1, z2, . . . , zn) of
outcomes from n independent trials where each trial can have one of
k outcomes, with probabilities of the outcomes given by a probability
vector p = (p1, . . . , pk). The probability mass function for z is given
by

π(z | n, p) = pc1
1 p

c2
2 · · · p

ck
k

where ci is the count of values in the sequence z equal to the i’th
outcome. Go through the discussion in this chapter about the
Multinomial Dirichlet conjugacy and show what needs to be changed
when the Multinomial density is replaced with the density above. In
particular, prove that the Dirichlet family is a conjugate family, and
compute the predictive distribution corresponding to Equation 3.1.
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3. Some basic inference for Markov chains and HMMs

b) Assume you are in the situation of Section 3.2 where you have
observed a sequence x0, . . . , xn of a Markov chain and you want to
predict the posterior probability of observing a specific continuation
xn+1, . . . , xn+r. You assume each line Pi of your transition matrix
has a Dirichlet distribution with parameter vector αi = (αi1, . . . , αik).
Further, you denote by cij and dij the counts of observed transitions
from state i to state j in the sequences x0, . . . , xn and xn+1, . . . , xn+r,
respectively. You also write, for i = 1, . . . , k, ci = (ci1, . . . , cik).
Show that the probability π(xn+1, . . . , xn+r | x0, . . . , xn) can be
written as a product over the values

Qi =
∫  k∏

j=1
P
dij
ij

Dirichlet(Pi;αi + ci) dPi

for i = 1, . . . , k.
c) Prove that

Qi = Γ(αi1 + ci1 + di1)
Γ(αi1 + ci1) · · · Γ(αik + cik + dik)

Γ(αik + cik)

· Γ(αi1 + · · ·+ αik + ci1 + · · ·+ cik)
Γ(αi1 + · · ·+ αik + ci1 + · · ·+ cik + di1 + · · ·+ dik)

d) Consider the data of Exercise 3 above, and the prior used in (3b)
and (3c). Given this prior, compute the probability of observing the
sequence 1,2,2,3 after the sequence given in 3.

5. Assume we have a Hidden Markov Model where the Markov chain has a
state space consisting of 1, 2, 3, 4, a transition matrix

P =


0.7 0.1 0.1 0.1
0.1 0.7 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7


and a distribution for the initial state X0 given by the probability vector
(0.2, 0.4, 0.1, 0.3). Assume also that the possible values for Yi are also 1,
2, 3, 4, and that the probability matrix for transitions from Xi to Yi is
given by

Q =


0.9 0.06 0.03 0.01
0.04 0.9 0.04 0.02
0.02 0.04 0.9 0.04
0.01 0.03 0.06 0.9


Assume we have observed the sequence 3, 4, 1, 1, 4, 3, 4, 3, 2, 2, 1 for
Y0, . . . , Y10.

a) Implement in R the Forward algorithm for this situation. Store the
computed distributions.

b) Implement in R the Backward algorithm for this situation. Store the
computed vectors.
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c) For each i = 0, . . . , 10, compute in R the vector representing the
marginal posterior Xi | Y0, . . . , Y10, when the Yi have the values
above.

d) Implement in R a function generating a sequence x0, . . . , x10
representing a sample from π(X0, . . . , X10 | Y0, . . . , Y10), when the
Yi have the values above.

6. Assume you have the data:
X 0 1 2 2 1 2 1 0 0 1 2 1 1 0
Y 0 1 1 2 2 1 1 0 1 2 1 1 1 0

We use a HMM model with the three possible states 0, 1, and 2 for the
Xn and Yn. For the transition matrix P use a prior that is a product of
Dirichlet distributions with all pseudocounts set to 0.5. For the matrix Q
defined by

Qij = Pr (Yn = j | Xn = i)

use a prior that is a product of Dirichlet distributions with all pseudocounts
set to 2.

a) Find the posterior expectation of P given the data.
b) Find the posterior expectation of Q given the data.
c) Designating the observations above as X0, . . . , X13 and Y0, . . . , Y13,

compute the posterior probability distribution for X14.
d) Compute the posterior probability distribution for Y14.
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CHAPTER 4

Some basic inference for
Branching processes

Assume you want to use a Branching process, as defined in Dobrow, as a model
in some applied setting. The parameter defining such a Branching process is
the vector a of probabilities in the offspring distribution of having 0, 1, 2, . . . ,
offspring. Various types of data that one might learn about this parameter
are conceivable. Below, we will simply assume that the data consists of n
independent observations of the offspring distribution, i.e., counts y1, y2, . . . , yn
of the number of actual offspring in n different cases.

Within the Bayesian paradigm, we start inference with defining a probabil-
istic model for the data. One possibility is to view a as the model parameter.
The probability of observed data y1, y2, . . . , yn given this parameter is then
simply

∏n
i=1 ayi . However, defining a prior on the infinite-dimensional space of

possible vectors a is not trivial, and we will not pursue this possibility further
here.

Instead, we will look at situations where the context indicates that that
the offspring distribution has a certain parametric form. We will consider two
different such forms below, and a third in the Exercise. In either case, we find
a posterior for the model parameter, and briefly show how to use this posterior
in predictions, for example of computation of coming generation sizes or the
probability of extinction.

4.1 Using a Binomial likelihood

Assume from the context it is natural to assume that the number of offspring is
between 0 and N, distributed according to a Binomial distribution with some
parameter p. This means that the likelihood for the data is

π(y1, . . . , yn | p) =
n∏
i=1

Binomial(yi;N, p)

and to complete the model, we need a prior for p ∈ [0, 1]. A possibility is
to use a Beta(α, β) prior for p, as we did in Chapter 1 of this Compendium.
Using the theory of that chapter, we find that the posterior for p after the
observations y1, . . . , yn becomes Beta (α+ S, β + nN − S) where S =

∑n
i=1 yi.

This distribution can then be used in predictions for the further growth of the
branching process.
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4. Some basic inference for Branching processes

Instead of pursuing further the use of a Beta prior for p, let us consider how
to compute in the more general case when the prior for p is not conjugate. We
may then use numerical calculations.

Example with a general prior

Assume the prior is any non-negative function f(p) on [0, 1] that integrates to
1. We then get for the posterior

π(p | data) ∝p π(data | p)π(p) ∝p

(
n∏
i=1

Binomial(yi;N, p)
)

Beta(p; 1, 1)f(p)

∝p Beta(p; 1 + S, 1 + nN − S)f(p). (4.1)

In the computations above, we used the fact that Beta (p; 1, 1) = 1 for 0 ≤ p ≤ 1
and that the conjugate computations in this section give us(

n∏
i=1

Binomial(yi;N, p)
)

Beta(p; 1, 1) ∝p Beta(p; 1 + S, 1 + nN − S).

We can use Equation 4.1 in numerical computations. As a concrete example,
suppose that we use a prior π(p) = f(p) with

f(p) =

100(p− 0.1) 0.1 ≤ p ≤ 0.2
100(0.3− p) 0.2 ≤ p ≤ 0.3

0 otherwise
(4.2)

This is a "triangle prior", and it indicates that we believe the most likely value
for p is 0.2. Further, p could be as small as 0.1 or as large as 0.3, but it could
not be outside this interval. Note how f is defined so that it integrates to 1
over the interval [0, 1].

Let us further assume there can be a maximum of N = 6 offspring and that
the number of offspring is distributed according to a Binomial(6, p) distribution.
Finally, assume the number of offspring in 342 observed cases are

Number of offspring 0 1 2 3 4 5 6
Number of cases 117 138 58 25 3 0 1

so that the total number of offspring is S = 347. Equation 4.2 shows that
the posterior for p is proportional to Beta(p; 1 + 347, 1 + 342 · 6− 347)f(p) =
Beta(p; 348, 1706)f(p).

What is the probability that the branching process is supercritical? As the
offspring process is Binomial its expectation is 6p. We would like to compute
the posterior probability that 6p > 1, i.e., that p > 1/6. This can be done for
example with

prior <- function(p) {
if (p<0.1) 0 else if (p<0.2) 100*(p-0.1) else

if (p<0.3) 100*(0.3-p) else 0
}
g <- function(p) dbeta(p, 348, 1706)*Vectorize(prior)(p)
integrate(g, 1/6, 1)$value/integrate(g, 0, 1)$value
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4.2. Using a Multinomial likelihood

producing 0.671135. Note the use of the R function Vectorize: It changes the
function prior to a similar function that can take vectorized input, in other
words, instead of just outputing the prior density for a single input, the changed
function will also output a vector of prior densities given an input vector of
values. This vectorization is necessary as R’s integrate function expects as
input functions that are vectorized.

Notice also how we compute the result as a quotient of integrals. This is
because Equation 4.1 only gives the posterior density up to a proportionality
constant. Thus we must compute

∫ 1

1/6
π(p | data) dp =

∫ 1
1/6 Beta(p; 348, 1706)f(p) dp∫ 1
0 Beta(p; 348, 1706)f(p) dp

.

4.2 Using a Multinomial likelihood

We now look at the situation where we assume there is a fixed maximum
number offspring N , but where we otherwise don’t make assumptions about the
offspring distribution. Let p be a probability vector listing the probabilities for
the offspring outcomes 0, 1, . . . , N . Then the likelihood for data y1, y2, . . . , yn
becomes

π(data | p) = Multinomial(c; p)

where c = (c0, c1, . . . , cN ) lists the counts of each type of outcome in the data,
in other words,

cj =
n∑
i=1

I(yi = j)

for j = 0 . . . , N , where I is the indicator function. To complete the model, we
need a prior for p.

Based on our previous experience with the Multinomial Dirichlet conjugacy,
it is natural to try a Dirichlet prior. So assume we use the prior

p ∼ Dirichlet(α)

where α = (α0, α1, . . . , αN ) is a vector of pseudocounts. The results from
Section 3.1 gives the posterior

p | data ∼ Dirichlet(α+ c).

We may then use this posterior for predictions about the future growth or
extinction of the branching process.

As a concrete example, let us reconsider the data from the previous
section, but now assuming that there is a maximum of 6 offspring, and that
the prior on the probability vector p for the outcomes 0, 1, . . . , 6 is uniform.
The uniform distribution on the set of probability vectors for 7 outcomes is
Dirichlet(1, 1, 1, 1, 1, 1, 1): This may be seen by looking up the Dirichlet density
function. Using this prior, i.e., setting α = (1, 1, 1, 1, 1, 1, 1) and using the data
yields the posterior

π(p | data) = Dirchlet(p; (118, 139, 59, 26, 4, 1, 2)).
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4. Some basic inference for Branching processes

So, for example, we get the posterior expectation

E (p | data) =
(

118
349 ,

139
349 ,

59
349 ,

26
349 ,

4
349 ,

1
349 ,

2
349

)
.

From this we may compute the posterior expectation of the offspring random
variable X as

µ =
6∑
i=0

iPr (X = i | data) =
6∑
i=0

iE (pi | data)

= 0 · 118
349 + 1 · 139

349 + 2 · 59
349 + 3 · 26

349 + 4 · 4
349 + 5 · 1

349 + 6 · 2
349

= 1.054441

With our current assumptions, what is the posterior probability that the
branching process is supercritical? We have seen that the posterior expectation
of the offspring distribution is above 1, but there is some uncertainty in this
value. One way to answer the question is by simulation: We simulate posterior
values for p, compute for each such p whether the offspring distribution is
supercritical, and take the average. In R we may write

mean(rdirichlet(1000000, c(118,139,59,26,4,1,2))%*%(0:6)>1)

which produces 0.835042. The function rdirichlet simulates from the Dirichlet
distribution and can be found in the R package LearnBayes.

Note that under the assumptions used in these calculations, the probability
that the process is supercritical is higher than the probability we found in the
previous section, where the assumptions were different.

4.3 Exercise

1. In this exercise we use the same data as in the examples above. However,
we now assume that the offspring distribution is Geometric(p), with a
uniform prior π(p) ∼ Uniform(0, 1).

a) If y ∼ Geometric(p) find a family of distributions for p that is a
conjugate family. Do this by guessing and trying out if your guess
is correct. (If this fails you may also look up a conjugate family for
the Geometric distribution).

b) Compute the posterior distribution for the parameter p of the
offspring distribution when the prior above is used.

c) Compute the probability that the process is supercritical under the
assumptions if this exercise.
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CHAPTER 5

Markov chain Monte Carlo (MCMC)

As described in Section 1.4, the overall idea of Bayesian inference is to describe
a stochastid model with variables representing both y, the observed data, and
ynew, whatever you would like to predict, and then use the resulting conditional
distribution of ynew | y for predictions. Usually, one describes the model in
terms of a vector of parameters θ, describing models for likelihoods y | θ and
ynew | θ and a prior distribution for θ in such a way that y and ynew are
conditionally independent given θ, i.e.,

π(ynew | θ, y) = π(ynew | θ).

We can then write

π(ynew | y) =
∫
θ

π(ynew | θ)π(θ | y) dθ (5.1)

and Bayesian inference resolves into three steps: First describing the stochastic
model (i.e., the likelihoods and the prior), second deriving from this the posterior
π(θ | y), and finally using the posterior to to make predictions according to
Equation 5.1.

Computing the integral in Equation 5.1 can be a big challenge in many
types of models. In Chapter 1, we saw how it can be done numerically when
the number of dimensions of θ is very low (in practice 1-3). We have also seen
a number of cases where the integral can be computed analytically, i.e., where
we can use conjugacy. However, in most realistic models, none of these options
are available, and one needs to turn to approximate numerical approaches.

Assume we can generate a sample θ1, θ2, . . . , θm from the posterior
distribution π(θ | y). Then we can approximate the integral above with the
average of the numbers π(ynew | θi). More precisely, the Strong Law of Large
Numbers gives that, with probability 1,∫

θ

π(ynew | θ)π(θ | y) dθ = Eθ|y [π(ynew | θ)] = lim
m→∞

1
m

m∑
i=1

π(ynew | θi).

(5.2)
Importantly for us, Equation 5.2 holds even in the case where θ1, θ2, . . . , θi, . . .
is not a random sample but instead the values in a Markov chain with limiting
distribution π(θ | y). Equation 5.2 is then called the Strong Law of Large
Numbers for Markov chains. The second and third steps of Bayesian inference
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5. Markov chain Monte Carlo (MCMC)

can now be done as follows: Generate a sequence θ1, . . . , θm from a Markov
chain with the posterior π(θ | y) as limiting distribution, and approximate

π(ynew | y) ≈ 1
m

m∑
i=1

π(ynew | θi). (5.3)

This technique for Bayesian inference is called Markov chain Monte Carlo, or
MCMC. To use it, you need to

1. Define and simulate from a Markov chain with your posterior π(θ | y) as
a limiting distribution.

2. Do this in a way so that you know, or at least can argue, that the
approximation in Equation 5.3 is sufficiently accurate.

It turns out that the first point above is often surprisingly easy. We will briefly
describe the Metropolis Hastings algorithm in the next section. However, the
second point is surprisingly difficult. We will discuss it in the remaining parts
of this chapter.

5.1 Bayesian inference with the Metropolis Hastings
algorithm

Assume given a likelihood function π(y | θ) and a prior π(θ). Define a proposal
function which, for every θ in the set Ω of possible parameters describes a
probability density q(θ∗ | θ) on θ∗ ∈ Ω. Assume you have an algorithm to
simulate θ∗ from this proposal distribution. Then the Metropolis Hastings
algorithm for Bayesian inference is:

1. Simulate θ0 from some distribution on Ω.

2. For i = 1, . . . ,m:

a) Generate θ∗ from q(θ∗ | θi−1).
b) Generate U ∼ Uniform(0, 1).
c) If

U < aθ,θ∗ = π(y | θ∗)π(θ∗)q(θi−1 | θ∗)
π(y | θi−1)π(θi−1)q(θ∗ | θi−1)

set θi = θ∗, otherwise set θi = θi−1.

This will generate a Markov chain θ0, θ1, . . . . In Dobrow it is proven that as
long as this Markov chain is ergodic, it will have limiting distribution π(θ | y).
Note how

π(y | θ∗) = π(y | θ∗)π(θ∗)
π(y) and π(y | θi−1) = π(y | θi−1)π(θi−1)

π(y)

imply
π(θ∗ | y)
π(θi−1 | y) = π(y | θ∗)π(θ∗)

π(y | θi−1)π(θi−1) .

This is why we can use the quotient on the right instead of the quotient on the
left when computing aθ,θ∗ .
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The data y will often consist of a random sample y1, y2, . . . , yn of observations
that are independent given θ. Then π(y | θ) =

∏n
j=1 π(yi | θ) and numerically

this number may come extremely close to zero, in particular when n is large, so
that the computer may round it down to zero. Writing

aθ,θ∗ = π(y | θ∗)π(θ∗)q(θi−1 | θ∗)
π(y | θi−1)π(θi−1)q(θ∗ | θi−1)

=
∏n
j=1 π(yj | θ∗)π(θ∗)q(θi−1 | θ∗)∏n

j=1 π(yj | θi−1)π(θi−1)q(θ∗ | θi−1)

= exp

 n∑
j=1

[log π(yj | θ∗)− log π(yj | θi−1)] (5.4)

+ log π(θ∗)− log π(θi−1) + log q(θi−1 | θ∗)− log q(θ∗ | θi−1))

and computing aθ,θ∗ according to the last expression is a way to avoid such
underflow problems on the computer.

5.2 Using a random walk proposal

A popular choice for the proposal density q(θ∗ | θi−1) is to write

θ∗ = θi−1 + ε

where ε is some random variable with symmetric density, i.e., π(ε) = π(−ε).
With such a definition we get that q(θ∗ | θi−1) = q(θi−1 | θ∗) so Equation 5.4
simplifies to

aθ,θ∗ = exp

 n∑
j=1

[log π(yj | θ∗)− log π(yj | θi−1)] + log π(θ∗)− log π(θi−1)

 .

Example

We go back to the toy example used in Sections 1.5 and 1.6: Assume

p ∼ Beta(2.3, 4.1)
y | p ∼ Binomial(17, p)

ynew | p ∼ Binomial(3, p).

Assume we would like to compute the probability π(ynew = 1 | y = 4). In the
previous sections, we found, using either analytic computation, discretization, or
numerical integration, the value 0.4033. Let us now use random walk Metropolis
Hastings with ε ∼ Normal(0, 0.32). To make sure the proposed value is still
between 0 and 1, we subtract from it the largest integer less than it: Note
that the proposal will still be symmetric, so that we can use the simplified
computation of aθ,θ∗ above. We can now use the R code

N <- 1000
posterior <- rep(runif(1), N)
for (i in 2:N) {
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proposal <- posterior[i-1] + rnorm(1, 0, 0.3)
proposal <- proposal - floor(proposal)
loga <- dbinom(4, 17, proposal, log=T) -
dbinom(4, 17, posterior[i-1], log=T) +
dbeta(proposal, 2.3, 4.1, log=T) -
dbeta(posterior[i-1], 2.3, 4.1, log=T)

if (runif(1)<exp(loga))
posterior[i] <- proposal

else
posterior[i] <- posterior[i-1]

}
print(mean(dbinom(1, 3, posterior)))

We get for example the result 0.4024178; the result will vary with every run of
the code above.

5.3 Using independent proposals

Another choice for the proposals may be to simply generate them from some
fixed density. Below, we recompute the result from the previous section using
the independent proposal function Beta(2, 2). A possible code is then

N <- 1000
posterior <- rep(runif(1), N)
for (i in 2:N) {

proposal <- rbeta(1, 2, 2)
loga <- dbinom(4, 17, proposal, log=T) -
dbinom(4, 17, posterior[i-1], log=T) +
dbeta(proposal, 2.3, 4.1, log=T) -
dbeta(posterior[i-1], 2.3, 4.1, log=T) +
dbeta(posterior[i-1], 2, 2, log=T) -
dbeta(proposal, 2, 2, log=T)

if (runif(1)<exp(loga))
posterior[i] <- proposal

else
posterior[i] <- posterior[i-1]

}
print(mean(dbinom(1, 3, posterior)))

A result is 0.4043354; the result will vary with every run of the code.

5.4 Gibbs sampling

Inference for the toy examples above could more easily be done for example
with the methods of Sections 1.5 and 1.6. However when θ is a vector, say
θ = (θ1, θ2, . . . , θk), MCMC can be programmed in the same way, and the
strengths of the algorithm is then much more apparent compared to the
alternatives mentioned.

When θ is a vector there is in addition to the choices above another popular
choice for proposals which leads to the algorithm called Gibbs sampling. For each
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dimension i in the vector, a proposal is made as follows: All θj for j 6= i are kept
fixed, while a new value for θi is simulated from the conditional distribution of θi
given the remaining variables. It is fairly easy to show that using such a proposal
in the Metropolis Hastings algorithm results in an acceptance probability of
1. If one somehow cycles through all the dimensions of θ, one may obtain an
ergodic Markov chain, and thus a valid MCMC algorithm.

Example

Consider the model

y1, y2, . . . , yn ∼ Normal(µ, τ−1)
µ ∼ Normal(µ0, τ

−1
0 )

τ ∼ Gamma(α, β).

In other words, we have data y1, . . . , yn that is normally distributed given
parameters θ = (µ, τ), and there is a prior given by π(θ) = π(µ, τ) =
Normal(µ;µ0, τ

−1
0 ) Gamma(τ ;α, β). We assume that µ0, τ0, α, β are fixed and

known numbers. If we plan a new observation ynew ∼ Normal(µ, τ−1) what is
the probability that, say, ynew < y1?

We can solve this using Gibbs sampling. For the two components of the
parameter, µ and τ , we need to find their conditional distributions given that
the data and the other parameter are fixed. Let us start with τ . According to
Appendix C we have a Normal Gamma conjugacy: If x ∼ Normal(µ, θ−1) and
θ ∼ Gamma(α, β), then θ | x ∼ Gamma(α+ 1/2, β + (x− µ)2/2). Translating
the names of the variables and applying this rule n times, we get that

τ | y1, . . . , yn, µ ∼ Gamma
(
α+ n

2 , β + 1
2

n∑
i=1

(yi − µ)2

)
.

For µ, we can use the Normal-Normal conjugacy from Appendix C. Applying
that rule n times we now get

µ | y1, . . . , yn, τ ∼ Normal
(
τ0µ0 + τ

∑n
i=1 yi

τ0 + nτ
,

1
τ0 + nτ

)
.

R code for Gibbs sampling for such an example is

# Data:
y <- c(3,5,6,4,5,3,2)
n <- length(y)
# Fixed parameters:
alpha <- 2
beta <- 2
mu0 <- 4
tau0 <- 3
N <- 1000
posterior <- matrix(c(4,1), N, 2, byrow=T)
for (i in 2:N) {
posterior[i,1] <- rnorm(1,(tau0*mu0 + posterior[i-1,2]*sum(y))/

(tau0 + posterior[i-1,2]*n),
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1/(tau0 + posterior[i-1,2]*n))
posterior[i,2] <- rgamma(1, alpha + n/2, beta +

sum((y-posterior[i-1,1])^2)/2)
}
print(mean(pnorm(y[1], posterior[,1], 1/sqrt(posterior[,2]))))

yielding the result 0.2134255.

5.5 Advantages and disadvantages with MCMC for
Bayesian inference

MCMC is a very flexible technique with a huge range of applications. A big
advantage is that, for many models, it is quite simple and fast to program an
implementation of Metropolis Hastings that works with reasonable accuracy, at
least if the Markov chain is run long enough. A big disadvantage is that some
experience and skill, and some understanding of the posterior you are trying to
simulate from, may be needed in order to select a proposal function that leads
to reasonably fast and accurate results. An even bigger disadvantage may be
that, except for some limited cases, there are no general mathematical proofs
about the accuracy of results.

Although the Metropolis Hastings algorithm is very flexible, and has several
important special cases such as Gibbs sampling, it is not the last word in
how one can generate approximate samples from posteriors. Finding improved
algorithms for such situations is an active research field.

Many software packages exist which tries to make it easier to run MCMC even
for those without expert knowledge of the relevant algorithms. An important
package is Stan (https://mc-stan.org).

Finally, it should be mentioned that MCMC algorithms tend to be less
effective when the dimension of θ increases above a few thousand. In modern
machine learning applications, where parameter spaces can have millions of
dimensions, other approaches, such as Variational Bayes, seem to be more
effective.
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APPENDIX A

Some solutions to some Exercises

A.1 Exercises from Chapter 1

1. We want to compute the conditional probability that a person votes for
B given that he or she lives in a rental flat. This is the quotient of the
probability that the person lives in a rental flat and votes for B, divided
by the probability that he or she lives in a rental flat:

0.03
0.11 + 0.03 + 0.08 + 0.01 = 0.1304 = 13%.

2. Let A denote that the person is affected, and P that the test is positive.
Using Bayes formula, we get

π(A | P ) = π(P | A)π(A)
π(P | A)π(A) + π(P | Ac)π(Ac) = 0.95 · 0.007

0.95 · 0.007 + 0.05 · 0.993
= 0.118 ≈ 12%.

3.

a) A direct computation gives

π(θ | data) ∝θ π(data | θ)π(θ) ∝θ Binomial (9; 12, θ)
∝θ θ9(1− θ)12−9 ∝θ Beta (θ; 10, 4) .

A more direct argument uses that the uniform distribution on [0, 1] is
identical to the Beta (1, 1) distribution; with this the formulas of the
lecture notes can be used to derive the posterior Beta (1 + 9, 1 + 3)
directly.

b) The posterior becomes Beta (10 + 11, 4 + 19− 11) = Beta (21, 12).
c) The probability for success is the expectation of the Beta (21, 12)

density, which is 21
21+12 = 21

33 .

4.

a) (
yH + yT
yH

)
(0.5 · 0.3yH0.7yT + 0.5 · 0.7yH0.3yT )
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b) (
yH + yT
yH

)(
0.5 · 0.3yH+10.7yT + 0.5 · 0.7yH+10.3yT

)
c) We get, as before

0.3yH+10.7yT + 0.7yH+10.3yT
0.3yH0.7yT + 0.7yH0.3yT

5. For example

> fn <- function(alpha) {(pbeta(0.4, alpha, alpha)-0.05)^2}
> optimize(fn, c(1, 1000))
$‘minimum‘
[1] 33.38651

6. Assume p ∼ Beta(α0, β0). Then

π(p | y) ∝p π(y | p)π(p)
∝p (1− p)ypα · pα0−1(1− p)β0−1

∝p pα0+α−1(1− p)β0+y−1

so
p | y ∼ Beta(α0 + α, β0 + y)

and we have proved conjugacy.

7. Assume that τ ∼ Gamma(α, β). Then

π(τ | y) ∝τ π(y | τ)π(τ)

∝τ τ1/2 exp
(
−τ2 (y − µ)2

)
τα−1 exp(−βτ)

∝τ τα+1/2−1 exp(−(β + 1
2(y − µ)2)τ)

so
τ | y ∼ Gamma

(
α+ 1

2 , β + 1
2(y − µ)2

)
and we have proved conjugacy.

8. Writing

k | p ∼ Binomial(n, p)
p ∼ Beta(α, β)

we get

π(k) = π(k | p)π(p)
π(p | k)

= Binomial(k;n, p) · Beta(p;α, β)
Beta(α+ k, β + n− k)

=
(
n
k

)
pk(1− p)n−k 1

B(α,β)p
α−1(1− p)β−1

1
B(α+k,β+n−k)p

α+k−1(1− p)β+n−k−1
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= B(α+ k, β + n− k)
B(α, β)

(
n

k

)
This is a probability mass function on the set of integers {0, . . . , n} for all
real numbers α > 0, β > 0, and integers n > 0. In fact, it is called the
Beta-Binomial distribution.

9.

a) Writing (for i = 1, . . . , 6) ci for the count of throws with outcome i
among the throws k1, . . . , kn, we get

π(θ | k1, . . . , kn)
∝θ π(k1, . . . , kn | θ)π(θ)

∝θ
(

1
3θ1

)c1 (1
3θ2

)c2 (1
3θ3

)c3 (1
3(1− θ3)

)c4 (1
3(1− θ2)

)c5 (1
3(1− θ1)

)c6

θ20−1
1 (1− θ1)20−1θ20−1

2 (1− θ2)20−1θ20−1
3 (1− θ3)20−1

∝θ θ20+c1−1
1 (1− θ1)20+c6−1θ20+c2−1

2 (1− θ2)20+c5−1θ20+c3−1
3 (1− θ3)20+c4−1.

Thus the posterior is

Beta(θ1; 20+c1, 20+c6)·Beta(θ2; 20+c2, 20+c5)·Beta(θ3; 20+c3, 20+c4)

b) We have the counts

c1 = 1
c2 = 3
c3 = 2
c4 = 2
c5 = 0
c6 = 3

It is possible to use the predictive distribution found in Exercise 8
to answer the question, but the easiest approach may be to use the
same thinking as in the start of Chapter 1. Let kn+1 be the outcome
of the (n+ 1)’st throw. Then

π(kn+1 | k1, . . . , kn) =
∫
π(kn+1 | θ)π(θ | k1, . . . , kn) dθ

=
{ 1

3
∫
θkn+1π(θ | k1, . . . , kn) dθ kn+1 = 1, 2, 3

1
3
[
1−

∫
θ7−kn+1π(θ | k1, . . . , kn) dθ

]
kn+1 = 4, 5, 6

As we have the Expectations, for i = 1, 2, 3,∫
θiπ(θ | k1, . . . , kn) dθ = E [Beta(20 + ci, 20 + c7−i)]

= 20 + ci
20 + ci + 20 + c7−i

,
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we get

π(kn+1 = 1 | k1, . . . , kn) = 1
3 ·

20 + 1
20 + 1 + 20 + 3 = 0.159

π(kn+1 = 2 | k1, . . . , kn) = 1
3 ·

20 + 3
20 + 3 + 20 + 0 = 0.178

π(kn+1 = 3 | k1, . . . , kn) = 1
3 ·

20 + 2
20 + 2 + 20 + 2 = 0.167

π(kn+1 = 4 | k1, . . . , kn) = 1
3

(
1− 20 + 2

20 + 2 + 20 + 2

)
= 0.167

π(kn+1 = 5 | k1, . . . , kn) = 1
3

(
1− 20 + 3

20 + 3 + 20 + 0

)
= 0.155

π(kn+1 = 6 | k1, . . . , kn) = 1
3

(
1− 20 + 1

20 + 1 + 20 + 3

)
= 0.174

10.

a) Assume we use a prior π(θ) = r(θ) as defined in the exercise. For
each i = 1, . . . , k, define the prior predictive

ri(y) =
∫
θ

π(y | θ)qγi(θ) dθ = π(y | θ)qγi(θ)
qf(γi)(θ)

and we can also write

ri(y)qf(γi)(θ) = π(y | θ)qγi(θ).

Then,

π(θ | y) ∝θ π(y | θ)π(θ)

= π(y | θ)
k∑
i=1

λiqγi(θ)

=
k∑
i=1

λi [π(y | θ)qγi(θ)]

=
k∑
i=1

λi
[
ri(y)qf(γi)(θ)

]
To get the actual posterior, we need to normalize this so that it
integrates to 1 over θ. But the densities qf(γi)(θ) all integrate to 1,
so we get

π(θ | y) =
∑k
i=1 λiri(y)qf(γi)(θ)∑k

i=1 λiri(y)
.

We see that this is a new density in the family defined in the exercise,
with γ′i = f(γi) and

λ′i = λiri(y)∑k
j=1 λjrj(y)

.

This proves conjugacy.
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b) We have

π(y) =
∫
θ

π(y | θ)
k∑
i=1

λiqγi(θ) dθ =
k∑
i=1

λi

∫
θ

ri(y)qf(γi)(θ) dθ =
k∑
i=1

λiri(y).

c) Conjugate priors are very simple and practical to use, but they are
not very flexible. For example, in situations where the normal family
is conjugate, it may not always be reasonable to use a normal prior.
However, weighted sums of normals is represents a much more flexible
class of densities, and thus can often be used when a single normal
prior cannot.

11. Knowing that the marginal distribution for X is normal, we only have to
compute the expection and variance of this random variable to find its
distribution. We get

E(X) = Eµ
(
EX|µ (X)

)
= Eµ(µ) = µ0

and

Var(X) = Eµ
(
VarX|µ(X)

)
+Varµ

(
EX|µ(X)

)
= Eµ(τ−1)+Varµ(µ) = τ−1+τ−1

0 .

Thus we have the prior predictive

x ∼ Normal(µ0, τ
−1 + τ−1

0 ).

A.2 Exercises from Chapter 3

1.

a) According to the formulas in this chapter, the poterior is

p | data ∼ Dirichlet(1 + 3, 1 + 9, 1 + 1) = Dirichlet(4, 10, 2)

b) We get

E(p | data) = c(4, 10, 2)
4 + 10 + 2 =

(
4
16 ,

10
16 ,

2
16

)
c) According to Equation 3.1 we get

π(x = (1, 2, 1)) = 4!
1!2!1! ·

Γ(4 + 1)
Γ(4) · Γ(10 + 2)

Γ(10) · Γ(2 + 1)
Γ(2)

Γ(16)
Γ(16 + 4)

= 12 · 4 · 10 · 11 · 2 · 1
16 · 17 · 18 · 19 = 0.1135

2.

a)
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b) To compute the integral below, we use the change of variables
θi = Kui for i = 1, . . . , k − 1. Writing also θk = Kuk, we get∑k
i=1 ui = 1. Note that θk is completely determined by θ1, . . . , θk−1,

so the density is (k − 1)-dimensional. We get∫ 1
Kα1+···+αk−1

Γ(α1 + · · ·+ αk)
Γ(α1) · · ·Γ(αk) θ

α1−1
1 · · · θαk−1

k dθ1 . . . dθk−1

=
∫ 1
Kα1+···+αk−1

Γ(α1 + · · ·+ αk)
Γ(α1) · · ·Γ(αk) (Ku1)α1−1 · · · (Kuk)αk−1Kk−1 du1 . . . duk−1

=
∫ Γ(α1 + · · ·+ αk)

Γ(α1) · · ·Γ(αk) u
α1−1
1 · · ·uαk−1

k du1 . . . duk−1

= 1

where in the last step we use that the standard Dirichlet density
integrates to 1.

c) We get

π(θ1, . . . , θi−1 | θi, . . . , θk) ∝θ1,...,θi−1 π(θ1, . . . , θk) ∝θ1,...,θi−1 θ
α1−1
1 · · · θαi−1−1

i−1

Now, θ1 + · · ·+θi−1 = 1−θi−· · ·−θk. Comparing with the densities
defined in (b), we get that

θ1 . . . , θi−1 | θi, . . . , θk ∼ Dirichlet1−θi−···−θk(α1, . . . , αi−1).

d) We get

π(θ1, . . . , θi) = π(θ1, . . . , θk)
π(θi+1, . . . , θk | θ1, . . . , θi)

= Dirichlet((θ1, . . . , θk); (α1, . . . , αk))
Dirichlet1−θ1−···−θi((θi+1, . . . , θk); (αi+1, . . . , αk))

∝θ1,...,θi

θα1−1
1 · · · θαi−1

i

1/(1− θ1 − · · · − θi)αi+1+···+αk−1

= θα1−1
1 · · · θαi−1

i (1− θ1 − · · · − θi)αi+1+···+αk−1

e) When (θ1, . . . , θk) ∼ Dirichlet(α1, . . . , αk), we have that θi+1 +
· · · + θk is completely determined by (θ1, . . . , θi): It is equal to
1 minus the sum of these numbers. Thus the density for the vector
(θ1, . . . , θi, θi+1 + · · ·+ θk) is equal to the density found in (d). From
this, and the fact that θ1 + · · ·+ θi + (θi+1 + · · ·+ θk) = 1, we can
read off that

θ1, . . . , θi, θi+1 + · · ·+ θk ∼ Dirichlet(α1, . . . , αi, αi+1 + · · ·+ αk)

f) Applying the result from (e) twice, we get that

(θ1 +· · ·+θi, θi+1 +· · ·+θk) ∼ Dirichlet(α1 +· · ·+αi, αi+1 +· · ·+αk)

Using the result from (a) we see that

θ1 + . . . θi ∼ Beta(α1 + · · ·+ αi, αi+1 + · · ·+ αk)

56



A.2. Exercises from Chapter 3

3.

a) A table with counts of transitions is

1 2 3 4
1 2 3 0 0
2 3 1 4 0
3 0 4 1 3
4 0 0 3 1

Thus we get the estimate

P̂ =


2/5 3/5 0 0
3/8 1/8 4/8 0
0 4/8 1/8 3/8
0 0 3/4 1/4

 .
b)

E[P | data] =


3/9 4/9 1/9 1/9
4/12 2/12 5/12 1/12
1/12 5/12 2/12 4/12
1/8 1/8 4/8 2/8

 .
c) We have

P1 | data ∼ Dirichlet(3, 4, 1, 1).

According to Exercise 2f, we thus get

P11 | data ∼ Beta(3, 6).

And pbeta(0.3, 3, 6, lower.tail=FALSE) produces 0.5517738.
d) Choosing to keep pseudocounts equal to 1 for the states that are

possible, we get

π(P ) = Dirichlet(P1; (1, 1, 0, 0)) Dirichlet(P2; (1, 1, 1, 0)) Dirichlet(P3; (0, 1, 1, 1)) Dirichlet(0, 0, 1, 1)

With this prior, the expectation of the posterior for P becomes

E[P | data] =


3/7 4/7 0 0
4/11 2/11 5/11 0

0 5/11 2/11 4/11
0 0 4/6 2/6


and the command pbeta(0.3, 3, 4, lower.tail=FALSE) pro-
duces 0.74431.

4.

a) Assume p ∼ Dirichlet(α) where α = (α1, . . . , αk). Then, exactly as
for the Multinomial case,

p | z ∼ Dirichlet(α1 + c1, . . . , αk + ck) = Dirichlet(α+ c)
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where c = (c1, . . . , ck), so the Dirichlet family is a conjugate family.
Further,

π(z) = π(z | p)π(p)
π(p | z)

=
pc1

1 · · · · · p
ck
k Dirichlet(p;α)

Dirichlet(p;α+ c)

=
pc1

1 . . . pckk
Γ(α1+···+αk)
Γ(α1)...Γ(αk) p

α1−1
1 . . . pαk−1

k

Γ(α1+···+αk+y1+···+yk)
Γ(α1+c1)...Γ(αk+ck) pα1+c1−1

1 . . . pαk+ck−1
k

= Γ(α1 + c1)
Γ(α1) · · · Γ(αk + ck)

Γ(αk) · Γ(α1 + · · ·+ αk)
Γ(α1 + · · ·+ αk + c1 + · · ·+ ck)

b) According to Equation 3.5 we have

π(xn+1, . . . , xn+r | x0, . . . , xn) =
∫ [ r∏

s=1
Pxn+s,xn+s−1

]
π(P | x0 . . . , xn) dP

The distribution π(P | x0, . . . , xn) is a product over one independent
distribution for each Pi, i = 1, . . . , k. Also we can write

r∏
s=1

Pxn+s,xn+s−1 =
k∏
i=1

k∏
j=1

P
dij
ij

These two things together mean that the integral splits into a product
Q1Q2 · · ·Qk, where

Qi =
∫ k∏

j=1
P
dij
ij π(Pi | x0, . . . , xn) dPi =

∫ k∏
j=1

P
dij
ij Dirichlet(Pi;αi+ci) dPi.

c) Comparing with (a), we see that Qi is the same as the posterior pre-
dictive for a sequence of observations with counts ci = (ci1, . . . , cik).
Thus we can use the predictive distribution found in (a), but plugging
in the posterior Dirichlet(αi + ci). The result follows.

d) We found in Question 3 the counts of transitions in the table below:

1 2 3 4
1 2 3 0 0
2 3 1 4 0
3 0 4 1 3
4 0 0 3 1

Using the formula found in (c), we get that

Q1 = Γ(1 + 3 + 1)
Γ(1 + 3) · Γ(4 + 5)

Γ(4 + 5 + 1) = 4!
3! ·

8!
9! = 4

9

Q2 = Γ(1 + 1 + 1)
Γ(1 + 1) · Γ(1 + 4 + 1)

Γ(1 + 4) · Γ(4 + 8)
(
4 + 8 + 2)

= 2!
1! ·

5!
4! ·

11!
13! = 2 · 5

12 · 13
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Q3 = 1
Q4 = 1

Thus the answer becomes

Q1Q2Q3Q4 = 4 · 2 · 5
9 · 12 · 13 = 0.02849

5.

6. For counts of transitions between states of X we get the table

0 1 2
0 1 2 0
1 2 1 3
2 0 3 1

For counts of transitions from states of X to states of Y we get the table

0 1 2
0 3 1 0
1 0 4 2
2 0 3 1

1. We get

E(P ) =

1.5/4.5 2.5/4.5 0.5/4.5
2.5/7.5 1.5/7.5 3.5/7.5
0.5/5.5 3.5/5.5 1.5/5.5


2. We get

E(Q) =

5/10 3/10 2/10
2/12 6/12 4/12
2/10 5/10 3/10


3. As X13 = 0 we can read off the expectation of P that the posterior is the

probability vector (1.5/4.5, 2.5/4.5, 0.5/4.5).

4. We get the posterior probability distribution

[ 1.54.5 ,
2.5
4.5 ,

0.5
4.5 ]

5/10 3/10 2/10
2/12 6/12 4/12
2/10 5/10 3/10

 = [0.28148, 0.43333, 0.28518]

A.3 Exercises from Chapter 4
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APPENDIX B

List of some probability
distributions

The Bernoulli distribution

If x ∈ {0, 1} has a Bernoulli(p) distribution, with 0 ≤ p ≤ 1, then the probability
mass function is

π(x) = px(1− p)1−x.

R: Use the Binomial with sample size 1.

The Beta distribution

If x ≥ 0 has a Beta(α, β) distribution with α > 0 and β > 0 then the density is

π(x | α, β) = Γ(α+ β)
Γ(α)Γ(β)x

α−1(1− x)β−1.

R: dbeta, pbeta, qbeta, rbeta

The Beta-binomial distribution

If x ∈ {0, 1, 2 . . . , n} has a Beta-binomial(n, α, β) distribution with n a positive
integer, α > 0, and β > 0, then the probability mass function is

π(x | n, α, β) =
(
n

x

)
B(x+ α, n− x+ β)

B(α, β)

where B is the Beta function.

The Binomial distribution

If x ∈ {0, 1, 2, . . . , n} has a Binomial(n, p) distribution, with n a positive integer
and 0 ≤ p ≤ 1, then the probability mass function is

π(x | n, p) =
(
n

x

)
px(1− p)n−x.

R: dbinom, pbinom, qbinom, rbinom
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The Cauchy distribution

If x ≥ 0 has a Cauchy(µ, γ) distribution, with γ > 0, then the probability
density is

π(x | µ, γ) = 1

πγ

(
1 +

(
x−µ
γ

)2
) .

The standard Cauchy distribution with µ = 0 is the t-distribution with ν = 1.
R: dcauchy, pcauchy, qcauchy, rcauchy

The Dirichlet distribution

A vector θ = (θ1, . . . , θk) of non-negative real numbers satisfying
∑k
i=1 θi = 1

has a Dirichlet (α1, . . . , αk) distribution with parameter vector α = (α1, . . . , αk),
with each αi > 0, if it has probability density function

π(θ | α) = Γ(α1 + α2 + · · ·+ αk)
Γ(α1)Γ(α2) · Γ(αk) θα1−1

1 θα2−1
2 · · · θαk−1

k .

If θ has the distribution above, the expectation is the vector α∑k

i=1
αi
.

The Exponential distribution

If x ≥ 0 has an Exponential(λ) distribution with λ > 0 as parameter, then the
density is

π(x | λ) = λ exp(−λx)

and the cumulative distribution function is

F (x) = 1− exp(−λx).

R: dexp, pexp, qexp, rexp

The Gamma distribution

If x > 0 has a Gamma(α, β) distribution, with α > 0 and β > 0, then the
density is

π(x | αβ) = βα

Γ(α)x
α−1 exp(−βx).

The expectation and variance are α/β and α/β2, respectively, while the mode
is (α− 1)/β (when α ≥ 1). R: dgamma, pgamma, qgamma, rgamma

The Geometric distribution

If the non-negative integer x has a Geometric distribution with parameter
p ∈ [0, 1], its probability mass function is given by

π(x | p) = (1− p)xp.

R: dgeom, pgeom, qgeom, rgeom
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The Multinomial distribution

A vector x = (x1, . . . , xk) of non-negative integers satisfying
∑k
i=1 xi = n has a

Multinomial (n, p1, . . . , pk) distribution with parameters n and p = (p1, . . . , pk),
where n > 0 is an integer and pi ≥ 0 and

∑k
i=1 pi = 1, if the probability mass

function is given by

π(x | n, p) = n!
x1!x2! . . . xk!p

x1
1 px2

2 . . . pxkk .

The Negative Binomial distribution

A stochastic variable x taking on as possible values any positive integer has a
Negative Binomial distribution if its probability mass function is given by

π(x | r, p) =
(
x+ r − 1

x

)
· (1− p)rpx = Γ(x+ r)

Γ(x+ 1)Γ(r) (1− p)xpr

where r > 0 and p ∈ (0, 1) are parameters. R: dnbinom, pnbinom, qnbinom,
rnbinom

The Normal distribution

If the real x has a Normal distribution with parameters µ and σ2, its density is
given by

π(x | µ, σ2) = 1√
2πσ2

exp
(
− 1

2σ2 (x− µ)2
)
.

R: dnorm, pnorm, qnorm, rnorm

The Pareto distribution

If the real number x ∈ [M,∞) has a Pareto(M,α) distribution with parameters
M > 0 and α > 0, its density on this interval is given by

π(x |M,α) = αMαx−(α+1)

The Poisson distribution

If the nonnegative integer x has a Poisson(λ) distribution with parameter λ > 0,
its probability mass function is given by

π(x | λ) = e−λ
λx

x!
R: dpois, ppois, qpois, rpois

The t-distribution

If the real number x has a t(ν) distribution with parameter ν > 0, its density is

π(x | ν) =
Γ
(
ν+1

2
)

√
νπΓ

(
ν
2
) (1 + x2

ν

)− ν+1
2

.

R: dt, pt, qt, rt
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B. List of some probability distributions

The Uniform distribution

If x ∈ [a, b] has a Uniform(a, b) distribution with b > a, then the density is
given by

π(x | a, b) = 1
b− a

.

R: dunif, punif, qunif, runif
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APPENDIX C

List of some conjugacies

Note: More conjucacies can be found on the Wikipedia page “Conjugate priors”.

The Beta Binomial conjugacy

Likelihood: x ∼ Binomial (n, θ)
Prior: θ ∼ Beta (α, β)
Posterior: θ | x ∼ Beta (α+ x, β + n− x)
Prior predictive: x ∼ Beta-binomial(n, α, β)

The Exponential Gamma conjugacy

Likelihood: x ∼ Exponential (θ)
Prior: θ ∼ Gamma(α, β)
Posterior: θ | x ∼ Gamma(α+ 1, β + x)

The Multinomial Dirichlet conjugacy

Likelihood: x = (x1, . . . , xk) ∼ Multinomial (n, θ1, . . . , θk)
Prior: θ = (θ1, . . . , θk) ∼ Dirichlet (α1, . . . , αk)
Posterior: θ | x ∼ Dirichlet (α1 + x1, . . . , αk + xk)

The Poisson Gamma conjucacy

Likelihood: x ∼ Poisson (θ)
Prior: θ ∼ Gamma(α, β)
Posterior: θ | x ∼ Gamma(α+ x, β + 1)
Prior predictive: x ∼ Negative-Binomial (α, β/(1 + β))

The Normal-Gamma conjucacy

Likelihood: x ∼ Normal
(
µ, θ−1)

Prior: θ ∼ Gamma(α, β)
Posterior: θ | x ∼ Gamma

(
α+ 1

2 , β + 1
2 (x− µ)2)
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C. List of some conjugacies

The Normal-Normal conjugacy

Likelihood: x ∼ Normal
(
θ, τ−1)

Prior: θ ∼ Normal
(
µ, τ−1

0
)

Posterior: θ | x ∼ Normal
(
τx+τ0µ
τ+τ0

, 1
τ+τ0

)
Prior predictive: x ∼ Normal

(
µ, τ−1 + τ−1

0
)

Computations:

π(θ | x) ∝θ π(x | θ)π(θ)

∝θ exp
(
−τ2 (x− θ)2

)
exp

(
−τ02 (θ − µ)2

)
= exp

(
−1

2
[
τx2 − 2τxθ + τθ2 + τ0θ

2 − 2τ0θµ+ τ0µ
2])

∝θ exp
(
−1

2
[
(τ + τ0)θ2 − 2(τx+ τ0µ)θ

])
∝θ exp

(
−1

2(τ + τ0)
(
θ − τx+ τ0µ

τ + τ0

)2
)

∝θ Normal
(
θ; τx+ τ0µ

τ + τ0
,

1
τ + τ0

)
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