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Inference

I We want to use stochastic models to make probabilistic predictions
about future observations based on previous observations (i.e., data).

I Simple example: Predict the range of an electric car. Use as model a
normal distribution with parameters µ (expectation) and σ (standard
deviation).

I Adapting a model to data is called inference.

I The classical or frequentist inference paradigm: Define a model in
terms of unknown parameters, estimate these parameters using the
data, and predict from the model with the estimated parameters
plugged in.

I The Bayesian inference paradigm: Build a stochastic model (a
probability distribution) with variables representing both observed
data and the future data one would like to predict. Use for
prediction the conditional distribution with data variables fixed to
their observed values.
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Throwing a dice

I If you are trowing a fair six-sided dice, your stochastic model would
be that each outcome has probability 1/6.

I New observations would be independent of old observations: To
make predictions, you don’t need data.

I Assume instead the dice may be biased in some way, but you don’t
know exactly how.

I A way to make predictions would be to first acquire data, i.e., record
approximately how often each outcome occurs, and use that
information when predicting. Outcomes would be dependent.

I Thus you use a more complex stochastic model that reasonably
models the dependency.

I Given a sequence 1, 5, 6, 1, 3, 1, 1, 2, 1, 5, the probability for 1 in
the next throw is then computed as

Pr (1 | 1, 5, 6, 1, 3, 1, 1, 2, 1, 5) =
Pr (1, 5, 6, 1, 3, 1, 1, 2, 1, 5, 1)

Pr (1, 5, 6, 1, 3, 1, 1, 2, 1, 5)
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A biased coin example

You believe a coin is biased, and that the chance for heads is either 0.7 or
0.3. The probability for each of these possibilities is 0.5.

I Objective: Learn in which direction the bias goes by observing
repeated throws of the coin. Then make predictions.

I The probability of observing y heads in n throws is

Pr (y) = 0.5 · Binomial (y ; n, 0.7) + 0.5 · Binomial (y ; n, 0.3) .

I The probability of observing a specific sequence with y heads in n
throws is

Pr (y) = 0.5 · 0.7y0.3n−y + 0.5 · 0.3y0.7n−y .

I One can compute the probability of observing any sequence. The
prediction for observing H after observing for example HTTHTTT
can be computed as

Pr (HTTHTTTH)

Pr (HTTHTTT )
.
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Biased coin example
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Figure: The probability of heads at each point in a sequence of observations,
conditioning on the previous observations of heads and tails. The prior used is
that θ, the probability of heads, is either 0.7 or 0.5, with
Pr (θ = 0.7) = Pr (θ = 0.3) = 0.5.
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Reformulation using the underlying parameter θ

I A more common way to compute is to define the model in terms of
an underlying unknown parameter θ, so that all observations are
independent given θ.

I In our case, θ is a discrete random variable with possible values 0.7
and 0.3, with π(θ = 0.7) = π(θ = 0.3) = 0.5. We then have, if y is
the count of heads in the n first throws and ynew is the count of
heads in the next throw

y | θ ∼ Binomial(n, θ) and ynew | θ ∼ Binomial(1, θ)

I We can use the general formulas

π(ynew | y) =
∑
θ

π(ynew | θ)π(θ | y) and π(θ | y) =
π(y | θ)π(θ)

π(y)

I For example, π(θ = 0.3 | y) = π(y |θ=0.3)π(θ=0.3)
π(y |θ=0.7)π(θ=0.7)+π(y |θ=0.3)π(θ=0.3) .

I We get exactly the same results as above. (Prove!)
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General terminology

I The probability distribution for θ, π(θ), is called the prior.

I The probability distribution for the data y given θ, π(y | θ) is called
the likelihood, when it is viewed as a function of θ.

I The probability distribution for θ given the value of the data y ,
π(θ | y) is called the posterior.
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Generalizing the example: Learning about a proportion

I An experiment is performed n times. We assume there is a
probability θ for ”success” (or heads) each time, and that the
outcomes are independent after θ has been fixed. Let y be the
observed number of successes. We get y ∼ Binomial(n, θ). Given y ,
what do we know about θ?

I For a Bayesian analysis, we need a stochastic model, i.e., a joint
probability density (or probability mass function) π(y , θ). We have
defined the likelihood π(y | θ). We need to define the prior π(θ).

I Let us first try with the prior θ ∼ Uniform[0, 1].
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Finding the posterior for θ

I The conditional model π(θ | y) (the posterior for θ) can be
computed with Bayes formula. We get

π(θ | y) =
π(y | θ)π(θ)

π(y)
=

π(y | θ)π(θ)∫ 1

0
π(y | θ)π(θ) dθ

=
Binomial(y ; n, θ)∫ 1

0
Binomial(y ; n, θ) dθ

=
θy (1− θ)n−y∫ 1

0
θy (1− θ)n−y dθ

.

I Before we continue with computing the integral, we review the
definition of the Beta distribution.
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Review of definition: The Beta distribution

θ has a Beta distribution on [0, 1], with parameters α and β, if its density has
the form

π(θ | α, β) =
1

B(α, β)
θα−1(1− θ)β−1

where B(α, β) is the Beta function defined by

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

where Γ(t) is the Gamma function defined by

Γ(t) =

∫ ∞
0

x t−1e−x dx .

Recall that for positive integers, Γ(n) = (n − 1)! = 1 · · · · · (n − 1). See for

example Wikipedia for more properties of the Beta distribution, and the Beta

and Gamma functions. We write π(θ | α, β) = Beta(θ;α, β) for the Beta

density; we then also write θ ∼ Beta(α, β).
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Example: Learning about a proportion, continued

I Comparing the computations above with the Beta density we can
read off:

θ | y ∼ Beta (y + 1, n − y + 1) .

I To compute the probability given data y that a new observation
ynew is a success, we can use general formulas

π(ynew = 1 | y) =

∫ 1

0

π(ynew = 1 | θ)π(θ | y) dθ =

∫ 1

0

θBeta(θ; y+1, n−y+1) dθ.

Looking up the expectation of the Beta distribution, we get
π(ynew = 1 | y) = y+1

n+2 .

I The posterior π(θ | y) can be computed most easily using
proportionality notation. We get in our case

π(θ | y) ∝θ π(y | θ)π(θ) = π(y | θ) ∝θ θy (1− θ)n−y .

I We can directly recognize this as a Beta density:
θ | y ∼ Beta(y + 1, n − y + 1)
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Biased coin example
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Figure: The probability of heads at each point in a sequence of observations, or
the probability of “success”, conditioning on the previous observations. The
priors used are π(θ = 0.7) = π(θ = 0.3) = 0.5 (left) and θ ∼ Uniform(0, 1)
(right).
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Using a Beta distribution as prior

I Assume the prior is θ ∼ Beta(α, β).

I The posterior becomes (prove!)

θ | y ∼ Beta(α + y , β + n − y)

I The prediction becomes (prove!)

π(ynew = 1 | y) = E (θ | y) =
y + α

n + α + β
.

I DEFINITION: Given a likelihood model π(x | θ). A conjugate family
of priors to this likelihood is a parametric family of distributions for
θ so that if the prior is in this family, the posterior θ | x is also in the
family.
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Biased coin example
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Figure: Left: The prior Beta(33.4, 33.4) and the posterior
Beta(33.4 + 11, 33.4 + 19) for θ. Right: The probability of heads at each point
in a sequence of observations, conditioning on the previous observations of
heads and tails, using the shown prior.
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Review / overview

Outline:

I DEFINITION: Given a likelihood model π(x | θ). A conjugate family
of priors to this likelihood is a parametric family of distributions for
θ so that if the prior is in this family, the posterior θ | x is also in the
family.

I Second example: The Poisson Gamma conjugacy.

I Computations for predictive distributions.

I Bayesian inference using discretization or numerical integration.
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Example: The Poisson-Gamma conjugacy

I Assume π(x | θ) = Poisson(x ; θ), i.e., that

π(x | θ) = e−θ θ
x

x!

I Then π(θ | α, β) = Gamma(θ;α, β) where α, β are positive
parameters, is a conjugate family. Recall that

Gamma(θ;α, β) =
βα

Γ(α)
θα−1 exp(−βθ).

I Specifically, we have the posterior

π(θ | x) = Gamma (θ;α + x , β + 1) .
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Poisson-Gamma example

I We make repeated observations of a Poisson(θ) distributed variable
for some θ > 0. The observed values are x1 = 20, x2 = 24, and
x3 = 23. What is the posterior distribution for θ given this data?

I We first must decide on a prior for θ. In this example we use
π(θ) ∝θ

1
θ .

I Note that this is an improper prior; it is a “density” that does not
integrate to 1! However, using such improper priors is possible in
Bayesian statistics.

I We get the posterior after observing x1:

θ | x1 ∼ Gamma(20, 1)

I Using this as prior, we get after also observing x2:

θ | x1, x2 ∼ Gamma(20 + 24, 1 + 1)

and similar for the last observation x3.

4 / 11



Poisson-Gamma example
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Figure: The posteriors after one, two, and three observations, where
x1 = 20, x2 = 24, and x3 = 23. Note how increasing amounts of data leads to a
narrower posterior density.
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Prediction

I In the Bayesian paradigm, we create a joint probability model for the
parameters θ, the observed data x , and data we would like to predict
xnew . Often on the form π(θ, x , xnew ) = π(θ)π(x | θ)π(xnew | θ).

I The distribution for xnew is given by conditioning on the observed x
and marginalizing out θ:

π(xnew | x) =

∫
θ

π(θ, xnew | x) dθ =

∫
θ

π(xnew | θ, x)π(θ | x) dθ

=

∫
θ

π(xnew | θ)π(θ | x) dθ

This is called the posterior predictive distribution.

I It is also possible to look at the predictive distribution for x before it
has been observed. This is called the prior predictive distribution:

π(x) =

∫
θ

π(x , θ) dθ =

∫
θ

π(x | θ)π(θ) dθ
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Predictive distributions when using conjugate priors

I When using a conjugate prior, not only do we have an analytic expression
for the posterior density for θ, we also have analytic expressions for the
prior predictive density and the posterior predictive density.

I To see this for the prior predictive density, use this formula derived from
Bayes formula:

π(x) =
π(x | θ)π(θ)

π(θ | x)

The prior predictive density is on the left and all expressions on the right
have analytic formulas.

I Note that, when using the right hand side for computing, θ will necessarily
eventually disappear.

I As the posterior predictive distribution is on the same form as the prior
predictive, we also get an analytic formula for it. Specifically, we can write

π(xnew | x) =
π(xnew | θ)π(θ | x)

π(θ | xnew , x)
.
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Predictive distribution for the Poisson Gamma conjugacy

I We have seen: If k | θ ∼ Poisson(θ) and θ ∼ Gamma(α, β) then
θ | k ∼ Gamma(α + k , β + 1).

I Direct computation gives the prior predictive distribution

π(k) =
π(k | θ)π(θ)

π(θ | k)
=

βαΓ(α + k)

(β + 1)α+kΓ(α)k!

I Note that the positive integer x has a Negative Binomial distribution
if its probability mass function is

π(x | r , p) =

(
x + r − 1

x

)
· (1− p)xpr =

Γ(x + r)

Γ(x + 1)Γ(r)
(1− p)xpr

I We get that the prior predictive is Negative-Binomial(α, β/(1 + β)).

I Note that we can get the posterior predictive by simply replacing the
α and β of the prior with the corresponding α + k and β + 1 of the
posterior.
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Poisson-Gamma example
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Figure: Two different ways of predicting the values of k4, given the observations
k1 = 20, k2 = 24, k3 = 23. The pluses represent the Bayesian predictions using
the posterior predictive; the circles represent the Frequentist predictions, using
the Poisson distribution with parameter (20 + 24 + 23)/3 = 22.33.
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Bayesian inference using discretization

If the sample space of θ is finite, Bayesian inference is quite easy:

I The prior distribution π(θ) is represented by a vector.

I The posterior distribution π(θ | y) is obtained by termwise
multiplication of the vectors π(y | θ) and π(θ) and normalizing so
the result sums to 1.

I The prediction π(ynew | y) =
∫
θ
π(ynew | θ)π(θ | y) dθ simplifies to

taking the sum of the termwise product of the vectors π(ynew | θ)
and π(θ | y).

I USAGE: Approximate a 1D (and 2D) prior π(θ) by finding θ1, . . . , θk
equally spaced in the definition area for θ, compute π(θi ) and
normalize these values so that they sum to 1.

I Check out the R code in the example of Section 1.5 of the
Compendium!
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Bayesian inference using numerical integration

I The prediction we want to make can be expressed as a quotient of
integrals:

π(ynew | y) =

∫
θ

π(ynew | θ)π(θ | y) dθ

=

∫
θ

π(ynew | θ)
π(y | θ)π(θ)∫

θ
π(y | θ)π(θ) dθ

dθ

=

∫
θ
π(ynew | θ)π(y | θ)π(θ) dθ∫

θ
π(y | θ)π(θ) dθ

I One idea: Compute these integrals using numerical integration.

I Can work well as long as the dimension of θ is low (max 2 or 3?)
and the functions are well-behaved.

I Check out the R code in the example of Section 1.6 of the
Compendium!
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