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Some words you need to learn about Markov chains

MARKOV CHAIN, STATE SPACE, TIME-HOMOGENEOUS,
TRANSITION MATRIX, STOCHASTIC MATRIX, LIMITING
DISTRIBUTION, STATIONARY DISTRIBUTION, POSITIVE MATRIX,
REGULAR TRANSITION MATRIX, RANDOM WALK, TRANSITION
GRAPH, WEIGHTED GRAPH, ACCESSIBLE STATES,
COMMUNICATING STATES, EQUIVALENCE RELATION,
COMMUNICATION CLASSES, IRREDUCIBILITY, RECURRENT
STATES, TRANSIENT STATES, CLOSED COMMUNICATION
CLASSES, CANONICAL DECOMPOSITION, IRREDUCIBLE MARKOV
CHAINS, POSITIVE RECURRENT STATES, NULL RECURRENT
STATES, PERIODICITY, APERIODIC, ERGODIC MARKOV CHAINS,
TIME REVERSIBILITY, DETAILED BALANCE CONDITION,
ABSORBING STATES, ABSORBING MARKOV CHAINS,
FUNDAMENTAL MATRIX, ...
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Overview of lecture 3.1: Dobrow Chapter 2

I Definition and examples of Markov chains.

I Basic computations

I Investingating long term evolution using powers of matrices or
simulation.

I Induction
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Example

I Consider a game: At each time step i you are at positions 1, 2, or 3.

I We write Xi = 1, Xi = 2, or Xi = 3 for i = 0, 1, 2, . . . .

I At each time step, you move to a higher number (or from 3 to 1)
with probability p, or stay put with probability 1− p.

I The transitions can be specified with

Pr (Xi+1 = 1 | Xi = 1) = 1− p Pr (Xi+1 = 2 | Xi = 1) = p Pr (Xi+1 = 3 | Xi = 1) = 0
Pr (Xi+1 = 1 | Xi = 2) = 0 Pr (Xi+1 = 2 | Xi = 2) = 1− p Pr (Xi+1 = 3 | Xi = 2) = p
Pr (Xi+1 = 1 | Xi = 3) = p Pr (Xi+1 = 2 | Xi = 3) = 0 Pr (Xi+1 = 3 | Xi = 3) = 1− p

I A more succinct specification is with the transition matrix:

P =

1− p p 0
0 1− p p
p 0 1− p

 .
I The sequence X0,X1,X2, . . . , is an example of a Markov chain (see

definition on next overhead).
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Definition of a Markov chain

Let S be a discrete set (not necessarily finite), called the state space. A
Markov chain is a sequence of random variables X0,X1, . . . taking values
in S , with the property

π(Xn+1 | X0,X1, . . . ,Xn) = π(Xn+1 | Xn)

for all n ≥ 1 .

I The chain is time-homogeneous if, for all n > 0,

π(Xn+1 | Xn) = π(X1 | X0)

(We will generally assume this).

I The transition matrix is defined with

Pij = π(X1 = j | X0 = i)

I A stochastic matrix is a real matrix P with non-negative entries,
satisfying P1t = 1t , where 1 is a row vector consisting only of 1’s.

I All transition matrices are stochastic matrices, and all stochastic
matrices can be used as transition matrices.
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Basic computations

I If v is a vector describing the distribution of states at stage k, then
vP is the vector describing the distribution of states at stage k + 1.

I If v is a vector describing the distribution of states at stage k, then
vPn is the vector describing the distribution of states at stage k + n.

I Thus the probability to go from state i to state j in n steps is given
by (Pn)ij . (We write Pn

ij )

I The probability of being at i1 at stage n1, and then at i2 in stage n2,
and so on up to ik at stage nk , with n1 < n2 < · · · < nk , is given by
the product of corresponding entries of powers of the transition
matrix:

(p0P
n1)i1

(
Pn2−n1

)
i1i2

(
Pn3−n2

)
i2i3
· · ·
(
Pnk−nk−1

)
ik−1ik

where p0 is the distribution of states for X0.
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Long term evolution: Computing powers of P

When the number of states in S is finite and not too big, we can
investigate long term behaviour by computing Pn for large n.

I In some cases, the powers stabilize into a matrix where all rows are
identical.

I It may also stabilize without identical rows: Try out P = I , the
identity matrix!

I Sometimes it does not stabilize: Try out, for example

P =

0 1 0
0 0 1
1 0 0


I Note that if P is block-diagonal, it may combine several behaviours:

If P =


P1 0 . . . 0
0 P2 . . . 0
...

...
. . . 0

0 0 . . . Pk

 then Pn =


Pn
1 0 . . . 0

0 Pn
2 . . . 0

...
...

. . . 0
0 0 . . . Pn

k

.
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Long term evolution: Using simulation

If S is large or infinite, we may instead investigate long term behaviour
using simulation:
Repeat many times:

I Draw x0 according to π(x0).

I For i in 1 through n:
I Draw xi according to π(xi | xi−1).

Use the distribution of the xn to approximate the distribution of Xn.
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Proving stuff using induction

1. Formulate a statement S(n) depending on a non-negative integer n.

2. Prove S(0).

3. Prove that if S(n) is true, then S(n + 1) is also true.

With this, one may conclude that S(n) is true for all non-negative n.
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Limiting distribution

I A limiting distribution for a Markov chain with transition matrix P is
a probability vector v such that

lim
n→∞

(Pn)ij = vj

for all i and j .

I A Markov chain has either no or one unique limiting distribution.
We have seen examples of both cases, using numerical methods.

I If a limiting distribution exists, its probabilities correspond to the
proportion of time steps the chain spends at each state.
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Stationary distribution

I A stationary distribution for a Markov chain is a distribution that is
unchanged when applying one step of the Markov chain.

I If P is the transition matrix, then a probability vector v represents a
stationary distribution if and only if

vP = v

I A Markov chain can have zero, one, or many stationary distributions.

I Limiting distributions are stationary distributions (but not necessarily
vice versa).
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Regular transition matrices

I A stochastic matrix P is positive if all entries are positive. A
stochastic matrix P is regular if Pn is positive for some n > 0.

I Limit Theorem for Regular Markov Chains: If the transition
matrix P is regular, the limiting distribution exists, and it is the
unique stationary distribution. The limiting distribution is positive,
i.e., all its probabilities are positive.

I Proof in section 3:10 (not part of course): One first proves that
regular Markov chains are ergodic, and then that ergodic Markov
chains have a limiting distribution. Two proofs are given:

I A proof using coupling
I A proof using linear algebra
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Finding a stationary distribution

I Find the v satisfying vP = v by
I solving the linear system vP = v .
I guessing at a v , and showing that vP = v .
I computing an eigenvector for the transponse P t belonging to the

eigenvalue 1.

I Having found a v satisfying vP = v ; if the transition matrix P is
regular, we know v represents the unique limiting distribution and
the unique stationary distribution.
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Example: Random walks on undirected graphs

I An undirected graph consists of nodes and undirected edges
connecting them. (An edge may connect a node with itself).

I An undirected graph defines a random walk Markov chain by, at
every time step, following one of the edges out of a node, with equal
probability. (You also need a starting distribution).

I When the graph is finite, show that the vector u is a stationary
distribution, where ui = deg(i)/2e, where deg(i) is the number of
edges going into edge i and e is the total number of edges.

I Generalization: A weighted undirected graph is a graph with a
positive weight at any edge between i and j for all i and j .

I Define the Markov chain by choosing the next node according to the
weights.

I Show that when the graph is finite, the vector u is a stationary
distribution, where ui = w(i)/2e, where w(i) is the sum of the
weights of the edges going into i , and e is the total sum of all
weights.

I NOTE: Any Markov chain can be represented with a directed
weighted graph (the transition graph).
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