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Review

I We look at discrete time / discrete state space Markov chains
X0,X1, . . . ,Xn, . . . .

I What happens when n→∞?

I For some Markov chains there is a (unique) limiting distribution
limn→∞ Pn

ij = vj .

I Which Markov chains have a limiting distribution, and how to
compute it? Results so far:

I There is a limiting distribution when P is regular.
I If a limiting distribution exists, there is exactly one stationary

distribution v (fulfilling vP = v), and it is equal to the limiting
distribution. Also, v is positive (all entries are positive).
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Contents of Lecture 4.1

I Moving around: Recurrent and transient states; communication
classes.

I The limit theorem for finite irreducible Markov chains.

I Periodicity
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Moving between states

I State j is accessible from state i if (Pn)ij > 0 for some n ≥ 0.

I States i and j communicate if i is accessible from j and j is
accessible from i .

I “Communication” is transitive, i.e., if i communicates with j and j
communicates with k , then i communicates with k.

I Communication is an equivalence relation, subdividing all states into
communication classes.

I Communication classes can be found for example by drawing
transition graphs.

I A Markov chain is irreducible if it has exactly one communication
class.
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Recurrence and transience

I Let Tj be the first passage time to state j :
Tj = min{n > 0 : Xn = j}.

I Define fj as the probability that a chain starting at j will return to j :

fj = P(Tj <∞ | X0 = j)

I A state j is recurrent if a chain starting at j will eventually revisit j ,
i.e., if fj = 1.

I A state j is transient if a chain starting at j has a positive probability
of never revisiting j , i.e., if fj < 1.

I Note: The expected number of visits at j when the chain starts at i
is given by

∑∞
n=0(Pn)ij .

I j is recurrent if and only if
∑∞

n=0(Pn)jj =∞.

I j is transient if and only if
∑∞

n=0(Pn)jj <∞.
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Communication classes

I The states of a communication class are either all recurrent or all
transient.

I The states of a finite irreducible Markov chain are all recurrent.

I Note: There are infinite irreducible Markov chains where all states
are transient.

I Example: Simple random walk with non-symmetric probabilities.

I If a state is recurrent, only states inside its communication class are
accessible from it.

I If no states outside a finite communication class are accesible from
it, then the class consists of recurrent states.
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Finite irreducible Markov chains

I Recall: In a finite irreducible Markov chain, all states are recurrent.

I Limit Theorem for Finite Irreducible Markov Chains: Let
µj = E (Tj | X0 = j) be the expected return time to j . Then µj <∞
and the vector v with vj = 1/µj is a stationary distribution.
Furthermore,

vj = lim
n→∞

1

n

n−1∑
m=0

(Pm)ij .

I NOTE: All finite regular Markov chains are finite irreducible Markov
chains.

I NOTE: The conclusion is weaker than that for finite regular Markov
chains: Not all finite irreducible Markov chains have limiting
distributions.

I Example: The theorem holds for the chain with transition matrix

P =

0 1 0
0 0 1
1 0 0

.
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Extention to infinite irreducible Markov chains

I In a finite irreducible Markov chain, all states are recurrent, and all
expected return times µj are finite.

I In a Markov chain, states may be recurrent but with infinite expected
return times. Such states are called null recurrent, while recurrent
states with finite expected return times are called positive recurrent.

I The previous theorem may be extended to infinite irreducible Markov
chains where all states are positive recurrent.
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Periodicity

I The period of a state i is the greatest common divisor of all n > 0
such that (Pn)ii > 0.

I Show: All states of a communication class have the same period.

I A Markov chain is periodic if it is irreducible and all states have
period greater than 1.

I A Markov chain is aperiodic if it is irreducible and all states have
period equal to 1.

9 / 9



MVE550 2020 Lecture 4.2
Dobrow Sections 3.6, 3.7, 3.8

Ergodicity. Time reversibility. Absorbing chains

Petter Mostad

Chalmers University

November 11, 2020

1 / 9



Overview

I Classification of irreducible Markov chains.

I Time reversibility.

I Canonical decomposition and absorbing chains
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Classification of (discrete time, discrete state space)
irreducible Markov chains

Irreducible Markov chains

For remaining chains: 
Theorem 3.6 holds, about limits of
averages

Ergodic Markov Chains. Theorem 3.8 
holds, about limiting distributions. 

= Markov chains with regular transition
matrices

Infinite state space chains with
states that are transient or null
recurrent

PeriodicAperiodic

Figure: A subdivision of (discrete time, discrete state space) irreducible Markov
chains

3 / 9



Ergodic Markov chains

I A Markov chain is ergodic if
I it is irreducible
I it is aperiodic
I all states are positive recurrent (i.e., have finite expected return

times). (Always happens if the state space is finite).

I Fundamental Limit Theorem for Ergodic Markov Chains: There
exists a unique positive stationary distribution v which is the limiting
distribution of the chain.

I We can also show that a finite Markov chain is ergodic if and only if
it its transition matrix is regular.
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Time reversibility

Let P be the transition matrix of an irreducible Markov chain with
stationary distribution v .

I The chain is “time reversible” if, after reaching its stationary
distribution, it looks the same moving foreard as backwards, i.e.,
π(Xk = i ,Xk+1 = j) = π(Xk+1 = i ,Xk = j).

I This may also be written as viPij = vjPji for all i , j : The detailed
balance condition.

I Show: If x is a probability vector satisfying xiPij = xjPji for all i , j ,
then necessarily x is the stationary distribution, so that x = v .

I Show: If a Markov chain is defined as a random walk on a weighted
undirected graph, then it is time reversible.

I Show: If a finite Markov chain is time reversible, it can be
represented as a random walk on a weighted undirected graph.
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Canonical decomposition (assume a finite state space)

I The states of a Markov chain can be subdivided into communication
classes, each consisting only of transient or recurrent states.

I Let T denote the union of all communication classes with transient
states. Let remaining communication classes be R1,R2, . . . ,Rm.

I Each Ri must necessarily be closed in the sense that no states
outside Ri are accessible from Ri .

I Ordering states according to T , R1, . . . , Rm, the transition matrix
can be written

P =


∗ ∗ · · · ∗
0 P1 · · · 0
...

...
. . .

...
0 0 · · · Pm

 .
I We get

lim
n→∞

Pn =


0 ∗ · · · ∗
0 limn→∞ Pn

1 · · · 0
...

...
. . .

...
0 0 · · · limn→∞ Pn

m

 .
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Absorbing chains

I State i is absorbing if Pii = 1.
I A Markov chain is absorbing if it has at least one absorbing state.
I By reordering the states, the transition matrix for an absorbing chain

can be written in block form

P =

[
Q R
0 I

]
.

where I is the identity matrix, 0 is a matrix of zeros, and Q
corresponds to transient states.

I We can prove by induction that

Pn =

[
Qn

(
I + Q + Q2 + · · · + Qn−1)R

0 I

]
.

I Taking the limit and using limn→∞Qn = 0 we get

lim
n→∞

Pn =

[
0 (I − Q)−1R
0 I

]
=

[
0 FR
0 I

]
.

I F = (I − Q)−1 = limn→∞ I + Q + · · · + Qn is called the
fundamental matrix.
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Absorbing chains, cont

I The probability to be absorbed in a particular absorbing state given
a start in a transient state is given by the entries of FR.

I Further, the expected number of visits in state j for a chain that
starts in the transient state i is given by Fij . (Show this).

I Thus, the expected number of steps until absorbtion is given by the
vector F1t .

I Note: Given an irreducible Markov chain. To compute the expected
number of steps needed to go from state i to the first visit to state
j , one can change the chain into one where state j is absorbing, and
compute the expected number of steps until absorbtion using the
theory above.
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Example: First detection of a particular sequence

I Assume you want to find the expected number of steps until you
detect HTTH in a sequence of fair coin flips.

I Build a Markov chain where the states indicate how far into the
sequence you have read so far. Make the state HTTH absorbing.

I Find the transition matrix in canonical block form.
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